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APPLICATION OF DECOMPOSITION TECHNIQUE AND 

EFFICIENT METHODS FOR THE APPROXIMATE 

SOLUTION OF NONLINEAR EQUATIONS  
 

Farooq Ahmed SHAH1 and Muhammad Aslam NOOR2 

 

In this paper, we suggest and analyze two new iterative methods for solving 

nonlinear equations using the system of coupled equations together with 

decomposition technique. Various numerical examples are given to illustrate the 

efficiency and performance of these iterative methods. These new iterative methods 

may be sighted as an addition and generalization of the existing methods for solving 

nonlinear equations. 
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1. Introduction 

 

Several techniques are modified for finding the approximate solutions of 

the nonlinear equation ( ) 0.f x   Iterative methods are being developed by using 

techniques such as including Taylor series, quadrature formulas, homotopy and 

decomposition techniques. See [1-14] and the references therein. 

Consider the nonlinear equation of the type 

( ) 0.f x        (1) 

We can rewrite (1), in the following equivalent form as: 

( ).x h x       (2) 

which is a fixed point problem. This alternative equivalent formulation plays an 

important and fundamental part in developing various iterative methods for 

solving nonlinear equation. We use the fixed point formulation (2) to suggest the 

following iterative methods. 

For a given initial guess 
0 ,x find the approximation solution 

1nx 
by the following 

iterative schemes: 

1 ( ).n nx h x     1, 2,3...n     (3) 

Such type of iterative methods are called the explicit method, see [13]. In a similar 

way, we can use the fixed point formulation (2) to suggest the following iterative 

method. 

1 1( ).n nx h x    1, 2,3...n       (4) 
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Methods formulated in the form described as (4) are called the implicit methods. 

We remark that, to execute these iterative methods, one generally uses the 

predictor-corrector technique. Some well known implicit and explicit type of 

iterative methods are known as Newton method, Halley method and Householder 

method [13] and presented in [8-12]. 

Newton’s method and its modifications are being applied to locate the 

approximate solutions of nonlinear equations, [1–15] and the references therein. 

Abbasbandy [1] and Chun [2] have proposed and studied several one-step and 

two-step iterative methods with higher order convergence by using the Adomian 

decomposition technique. Abbasbandy [1] and Chun [2] used the higher order 

differential derivative for such purpose, which is the drawback of the technique. 

To overcome this drawback Noor [7, 9], Noor and Noor [6] and Noor et al. [8] 

considered another decomposition technique which does not involve the 

derivative of the Adomian polynomial.  

In this paper, we use this alternative decomposition to construct some 

multi-step iterative methods for solving nonlinear equations. Results obtained in 

this paper convey that this new technique of decomposition is a promising tool 

and can be considered as a substitute of the Adomian decomposition method. In 

Section 2, we sketch the main ideas of this alternative decomposition technique 

and develop one-step, two-step and three-step iterative methods for solving 

nonlinear equations. Several numerical examples are given to illustrate the 

efficiency and the performance of the new iterative methods. Our results can be 

considered as an important improvement and refinement of the previously known 

results. 

 

2. Technique and new suggested iterative methods 

 

Assume that   is a simple root of nonlinear equation (1) and   is an initial guess 

sufficiently close to .  We can rewrite the nonlinear equation (1) as a coupled 

system as: 

   2 2

3 3
( ) 3 3 ( )

( ) ( ) ( ) 0,
8

x xf f f f x
f x g x

 
 

       
    
 
 

   (5) 

or 

        2 2

3 3
( ) 3 3 ( )

( ) ( ) ( ) ( ) ,
8

x xf f f f x
g x f x f x

 
 

       
    
 
 

   (6) 

where   is the initial approximation for a zero of (1). We can rewrite equation (5) 

in the following form: 

   2 2

3 3

( ) ( )
8 .

( ) 3 3 ( )x x

f g x
x

f f f f x 




  

 


  
      
 

     (7) 
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We express (7), in the following form 

( ),x c N x        (8) 

where 

 ,c         (9) 

and 

   2 2

3 3

( ) ( )
( ) 8 .

( ) 3 3 ( )x x

f g x
N x

f f f f x 



  

 


  
      
 

   (10) 

Here ( )N x  is a nonlinear function and 0  is an auxiliary parameter. 

We now construct a sequence of higher order iterative methods for solving 

nonlinear equations by using the decomposition technique, which is mainly due to 

Daftardar-Gejji and Jafari [4]. This decomposition of the nonlinear function ( )N x  

is quite different from that of Adomain decomposition. 

The technique is designed to search for a solution having the series form 

0

.i

i

x x




        (11) 

The nonlinear operator N can be decomposed as 

   
1

0

1 0 0

.
i i

j j

i j j

N x N x N x N x
 

  

     
      

     
      (12) 

Combining (8), (11) and (12), we have 

 
1

0

0 1 0 0

.
i i

i j j

i i j j

x c N x N x N x
  

   

     
       

     
      (13) 

Thus we have the following iterative scheme: 

0

1 0

2 0 1 0

1

1

0 0

,

( ),

( ) ( ),

. 1,2,
m m

m j j

j j

x c

x N x

x N x x N x

x N x N x m




 





 


  


    

      
    

 

   (14) 

Then 

1 2 1 0 1( ), 1,2,m mx x x N x x x m          (15) 

and 

 
1

.i

i

x c x




        (16) 
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It can be shown that the series 
0 ii
x



  converges absolutely and uniformly to a 

unique solution of equation (8). 

From (9) and (14), we get 

0 ,x c         (17) 

from (6), (10) and by using the idea of Yun [15], we obtain 

 
0( ) 0,g x        (18) 

and 

   0 0

0
1 0

2 2
03 3

( ) ( )
( ) 8

( ) 3 3 ( )x x

f g x
x N x

f f f f x 



  

 


   
      
 

 

       

   0 02 2
03 3

( )
8 .

( ) 3 3 ( )x x

f

f f f f x 



  

 
  
      
 

   (19) 

Note that x  is approximated by 

0 1 2 ,m mX x x x x         (20) 

where lim .m
m

X x


  

For 0,m   

0 0 .x X x c          (21) 

For 1,m   

   0 0
1 0 1

2 2
03 3

( )
8

( ) 3 3 ( )x x

f
x X x x

f f f f x 




  

 
     
      
 

 

 
( )

.
( )

f

f





 


    (22) 

This formulation allows us to suggest the following one-step iterative method for 

solving the nonlinear equation (1). 

 

Algorithm 2.1. For a given 0 ,x  compute the approximate solution 1nx   by the 

following iterative scheme: 

             1

( )
,

( )

n
n n

n

f x
x x

f x
  


  ( ) 0.nf x      0,1, 2,n      

For 1,  it is well known Newton’s method [13] for solving nonlinear equations.  

From (22), we get 

0 1

( )
,

( )

f
x x

f





   


    (23) 

from (6), (10) and by applying the suggestion of Yun [15], we have 
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   0 1 0 1

0 1 0 1

2 2( )
03 3

0 1

0 1

( ) ( ) ( )

( ) 3 3 ( )
( )

8

( ) ( )

x x x x

g x x f x x f

f f f f x
x x

f x x f

 








   

   

      
   
 
 

  

 

   0 1 0 12 2( )
03 3

( )
( ) 3 3 ( ) .

8 ( )

x x x xf
f f f f x

f

 



          

    (24) 

and 

         
   0 1 0 1

0 1
1 2 0 1

2 2( )
03 3

( ) ( )
( ) 8

( ) 3 3 ( )x x x x

f g x x
x x N x x

f f f f x 



    

 
 

     
      
 

  

   0 1 0 1

2 0 1

2 2( )
03 3

8 ( )( )
.

( ) ( ) 3 3 ( )x x x x

f x xf

f f f f f x 



     


  

      

 (25) 

For 2,m   

2 0 1 2 0 1( )x X x x x c N x x        

   0 1 0 1

2 0 1

2 2( )
03 3

8 ( )( )
.

( ) ( ) 3 3 ( )x x x x

f x xf

f f f f f x 




     


  

      
(26) 

Using the above relation, we can suggest the following two-step iterative method 

for solving nonlinear equation (1). 

 

Algorithm 2.2. For a given 0 ,x  compute the approximate solution 1nx   by the 

iterative following scheme: 

 

      
( )

,
( )

n
n n

n

f x
y x

f x
 


 

   
2

1
2 2

3 3

( ) 8 ( )
.

( ) ( ) 3 3 ( )n n n n

n n
n n

x y x y
n n n

f x f y
x x

f x f x f f f y


 
  

      
  

Algorithm 2.2 is our newly derived iterative method in this paper for obtaining the 

approximate solution of nonlinear equations. 

From (26), we obtain 

   
   0 1 0 1

2 0 1
0 1 2

2 2( )
03 3

8 ( )( )
,

( ) ( ) 3 3 ( )x x x x

f x xf
x x x

f f f f f x 




     


     

      
 (27) 

from (6), (10) and by using the idea of Yun [15], we get 
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   

   

0 1 2 0 1 2

0 1 0 1

0 1 2 0 1 2 0 1 2

2 2( )
0 1 23 3

0 1 2

2 0 1

2 2( )
0 13 3

( ) ( ) ( ) ( )

( ) 3 3 ( )
,

8

( ) ( )

8 ( )1 ( )

8 ( ) ( ) 3 3 ( )

x x x x x x

x x x x

g x x x f x x x f x x x

f f f f x x x

f x x x f

f x xf

f f f f f x x

 

 

 







 

     

   

         

        
 
 
 

   

 
   

       
 

 

 

       0 1 2 0 1 22 2( )
0 1 23 3

( ) 3 3 ( )x x x x x xf f f f x x x                
 

 (28)  

and 

1 2 3 0 1 2

0 1 2

0 1 2 0 1 2
0 1 2

3 2 0 1

0 1 0 1
0 1

( )

( ) ( )
8

2 2
( ) 3 3 ( )

3 3

8 ( )( )

2 2( )
( ) 3 3 ( )

3 3

x x x N x x x

f g x x x

x x x x x x
f f f f x x x

f x xf

x x x xf
f f f f x x



 




 


     

 
   
 

                        


  

       
         

   

 

0 1 2

0 1 2 0 1 2
0 1 2

8 ( )
.

2 2
( ) 3 3 ( )

3 3

f x x x

x x x x x x
f f f f x x x

 


 


        
          

   

  (29) 

For 3,m   

3 0 1 2 3 0 1 2

3 2 0 1

0 1 0 1
0 1

( )

8 ( )( )

2 2( )
( ) 3 3 ( )

3 3

x X x x x x c N x x x

f x xf

x x x xf
f f f f x x




 


        


  

       
         

   

  

0 1 2

0 1 2 0 1 2
0 1 2

8 ( )
.

2 2
( ) 3 3 ( )

3 3

f x x x

x x x x x x
f f f f x x x

 


 


        
          

   

  (30) 

Using this formulation, we can suggest the following three-step iterative method 

for solving nonlinear equation (1). 

Algorithm 2.3. For a given 0 ,x  compute the approximate solution 1nx   by the 

iterative following scheme. 

( )
,

( )

n
n n

n

f x
y x

f x
 


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   
2

2 2

3 3

( ) 8 ( )
,

( ) ( ) 3 3 ( )n n n n

n n
n n

x y x y
n n n

f x f y
z x

f x f x f f f y 
  

      

 

   

   

3 2

1
2 2

3 3

2 2

3 3

( ) 8 ( )

( ) ( ) 3 3 ( )

8 ( )
.

( ) 3 3 ( )

n n n n

n n n n

n n
n n

x y x y
n n n

n

x z x z
n n

f x f y
x x

f x f x f f f y

f z

f x f f f z


 

 

  
      


     

   

Algorithm 2.3 is another newly derived method in this paper for solving nonlinear 

equations (1) and is one of the main motivations of this paper. 

 

3. Convergence Analysis 

 

In this section, we consider the convergence criteria of the iterative methods 

developed in section 2. 

Theorem 3.1. Let I  be a simple zero of sufficiently differentiable function 

:f I R R   for an open interval I. If 0x  is sufficiently close to ,  then for 

1  the iterative method defined by Algorithm 2.3 has fourth-order 

convergence. 

 Proof. Let   be a simple zero of ( ).f x  Then by expanding ( )nf x  and ( )nf x  in 

Taylor’s series about ,  we have 

     2 3 4 5

2 3 4 O ,n n n n n nf x f e c e c e c e e      
 

   (31) 

and 

     2 3 4 5

2 3 4 51 2 3 4 5 O ,n n n n n nf x f c e c e c e c e e        
 

  (32) 

where  
( )1 ( )

, 2,3,
! ( )

k

k

f
c k

k f




 


 and .n ne x    

From (31) and (32), we have 

     2 2 3 3 4 5

2 3 2 2 3 4 2(1 ) 2 7 3 4 O .n n n n n ny e c e c c e c c c c e e            (33) 

Expanding ( ),nf y  ( ),nf y  
2

3

n nx y
f

 
 
 

 and 
2

3

n nx y
f

 
 
 

 in Taylor series 

about   and using (33), we have after adding and simplifying 

       
   

     

2 2

3 3

2 3 6 5 4 3 2 3

( ) 3 3 ( )

1
( ) 1 2 2 1 O .

3

n n n nx y x y
n n

n n n

f x f f f y

f e e e

       

 
           

 

 (34) 

Using (33) and (34), we get 
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   2 2

3 3

8 ( )

( ) 3 3 ( )n n n n

n

x y x y
n n

f y

f x f f f y 


     
 

  2 2 2 2 2 2 3 4

3 3 3 2 2 2(1 ) (2 1) (5 2 6 2 ) ( ).n n n ne e c c c c c c e O e           (35) 

Equations (33) and (35) help to obtain the following 

 
 

   

2 3 2 2

2

3 2 3 2 2 2 2 2 3 4

2 3 2 3 3 2 3 2

( ) 1 2

6 5 2 2 2 2 O .

n n n

n n

z e c e

c c c c c c c c e e

     

        

 (36) 

By using (35), (36) and 
1 1 ,n ne x     we have 

  

 

2 3 2 3 2 3 3 2 2 2

1 2 3 2 2

2 2 2 3 3 3 2 4 3

2 3 3 3 2 2 2 3 2 3 4 4

3 5 4 3 5 3 6 3 6 3 2 4 3

2 3 4 4 2 2 2 4 2 4 2

(1 ) 3 1 2 2 3 5

4 27 45 7 10

36 3 4 4 15 4

n n n

n

e e c e c c c

c c c c c e c c c c c c c

c c c c c c c c c c c

              

         

         

   3 3 4 6 3 2 3 4 5

2 2 2 3 2 3 2 24 4 3 2 4 30 O .n nc c c c c c c c e e         (37) 

For 1,  we obtain from (37), the following error equation 
3 4 5

1 2 O( ).n n ne c e e         (38) 

Error equation (38) shows that for 1  the Algorithm 2.3 has fourth-order 

convergence. □ 

In a similar way, one can observe the analysis of convergence of Algorithm 2.2. 

 

4. Numerical Results 

 

We now present some examples to demonstrate the effectiveness of the newly 

developed two-step and three-step iterative methods in this paper. We compare 

the Newton’s method (NM), the method of Hasanov et al. [5] (HM), the method 

of Chun [2] (CM), Algorithm 2.2 (NR1), and the Algorithm 2.3 (NR2) introduced 

in this paper. We used 1  and 
1510 .   The following stopping criteria is used 

for computer programs: 

1( ). | |n ni x x        ( ). | ( | .)nii f x    

The computational order of convergence p is approximated also (See [12]).  

We consider the following nonlinear equations as test problems which are same as 

Noor and Noor [6]. 

 
2 2

1( ) sin 1,f x x x         2

2 ( ) 3 2,xf x x e x             
3

3( ) ( 1) 1,f x x    

3

4 ( ) 10,f x x       
2 2

5( ) sin 3cos 5,xf x xe x x     
2 7 30

6( ) 1.x xf x e     
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Table 4.1 

 

 IT   nx                  ( )nf x                 p  

1 0, 1f x    

NM 7 1.404491648215341226   –1.04e–50    7.33e–26 2.00003  

HM 5 1.404491648215341226            0     6.98e–32 3.03470  

CM 5 1.404491648215341226            0     1.31e-17 2.85844 

NR1 5 1.404491648215341226            0     7.31e–32 3.03479  

NR2 4 1.404491648215341226            0     2.95e–25 4.33335  

 

2 0, 2f x   

NM 6 0.25753028543986076      2.93e–55    9.10e–28 2.00050  

HM 4 0.25753028543986076     –3.91e–53    1.06e–17 3.49362  

CM 4 0.25753028543986076                0     9.46e–29 4.57143 

NR1 4 0.25753028543986076   –3.38e–53    1.01e–17 3.48939  

NR2 3 0.25753028543986076            0     1.08e–45 4.14860 

 

3 0, 3.5f x   

NM 8 2.00000000000000000    2.06e–42    8.28e–22 2.00025  

HM 6 2.00000000000000000              0     1.10e–40 2.99061  

CM 5 2.00000000000000000              0     2.74e–24        3.53144 

NR1 4 2.00000000000000000         0     1.10e–40 2.99061  

NR2 3 2.00000000000000000              0     9.78e–43 3.86663 

 

4 0, 1.5f x   

NM 7 2.15443469003188372    2.06e–54    5.64e–28 2.00003  

HM 5 2.15443469003188372    1.00e–58    4.57e–35 3.01855  

CM 5 2.15443469003188372    1.00e–58    1.57e-22 3.48932 

NR1 3 2.15443469003188372   –8.00e–59    4.57e–35 3.01855  

NR2 3 2.15443469003188372    1.00e–58    9.15e–28 4.22908 

 

5 0, 2f x    

NM 9 –1.2076478271309189   –2.27e–40    2.73e–21 2.00085  

HM 6 –1.2076478271309189   –2.38e–57    3.68e–20 3.00846  

CM 6 –1.2076478271309189     –1.10e-58    2.15e–36 3.88967 

NR1 5 –1.2076478271309189   –2.14e–57    3.56e–20 3.00831  

NR2 4 –1.2076478271309189    8.00e–59    4.39e–21 4.01292 

 

6 0, 3.5f x   

NM 13 3.000000000000000000  1.52e–47    4.21e–25 2.00023  

HM 9 3.000000000000000000          0     6.57e–39 2.99432  

CM 8 3.000000000000000000          0     2.12e–23 3.68024 

NR1 7 3.000000000000000000            0     6.03e–39 2.99434  

NR2 6 3.000000000000000000            0     1.31e–24 3.83853 
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5. Conclusion 

In this paper, we have studied one-step, two-step and three-step numerical 

methods for solving nonlinear equations by using a different composition 

technique. Our method of derivation of the iterative methods is very simple as 

compared with the Adomian decomposition technique. This is another feature of 

the simplicity. Using the technique and idea of this paper, one can suggest and 

analyze higher-order multi-step iterative methods for solving nonlinear equations 

as well as system of nonlinear equations. 
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