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NEW CARBAZOLE BASED MATERIALS: SYNTHESIS AND 

SPECTRAL CHARACTERIZATION 

Anca ALDEA1, Ana-Maria ALBU2, Ileana RAU3 

In this paper two new carbazole and azo-derivative based materials are 

presented. Although they are similar in composition, they differ by structure. The 

obtained materials were characterized by FT-IR and NMR spectroscopy in order to 

confirm the designed structure. These materials were investigated individually, but 

also comparatively, through UV-Vis spectroscopy in order to determine the 

possibility of using them in applications requiring NLO properties. 
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1. Introduction 

One of the most interesting domains of research remains the nonlinear 

optic (NLO) area. This is due to the applications requiring different type of 

materials from organic to inorganic and from small to supramolecular structures. 

Among all these materials, polymers with NLO properties are of high 

interest. Some properties can be induced even during the synthesis and an 

important step is represented by the monomers’ choice.  

It is well known that carbazole based materials [1] as well as azo-

chromophores [2] have already been proven to have good NLO properties. 

Therefore, it is expected that materials containing both types of sequences 

(carbazole and azo) will reveal enhanced NLO properties. 

In this respect, we synthesized new monomers with carbazole sequence 

and azo-benzene groups. We started with carbazole because of its known 

properties concerning the hole to hole conductivity, thermal and photochemical 

stability and for the possibility to control the structural modification on the 

carbazolyl ring. The azo-benzene groups are already used for materials in NLO 

applications like holography and dichroism due to their isomers’ stability and 

quick interconversion [3, 4]. To make these materials suitable for polymerization 

a methacrylate group was inserted.  
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In this paper two different materials are obtained by the same proposed 

method and a solvatochromic study for these polymers is presented. 

2. Experimental 

2.1. Materials 

For the compounds’ synthesis and characterization, the following solvents 

were used: tetrahydrofuran (THF), ethanol, toluene, dimethyl formamide (DMF), 

1,4-dioxane, dimethyl sulfoxide (DMSO) and diethyl ether. All solvents were 

purchased from Sigma-Aldrich and were used as received (analytic purity). 

In the monomer synthesis 9H-carbazole, epichlorohydrin and methacryloyl 

chloride purchased from Sigma-Aldrich were used as received, while 4-[(4-

hydroxyphenyl)diazenyl]benzo-R (HPDB-R) was synthesized [5]. Potassium 

hydroxide (KOH), triphenyl phosphine (Ph3P), 4-dimethylaminopyridine 

(DMAP) and triethylamine (TEA) were purchased from Sigma-Aldrich and used 

as received. 
 

2.2. Synthesis 

Two new monomers obtained by the same synthesis method are presented.  

This method leads to monomers with similar sequences but different 

structures. Our aim was to understand how the different substituent and the 

interest groups influence the properties of the final materials. 

The method used follows the classic steps of synthesis and polymerization 

[6]. Fig. 1 shows the synthesis reaction of Monomers 1 and 2 (M 1 and M 2).  

The synthesis starts by heating a mixture of 9H-carbazole and 

epichlorohydrin in THF in the presence of KOH at 80-90 oC. The reaction flask 

was sparged with nitrogen. The obtained intermediate compound 1 (IC 1) was 

separated and washed and then used to obtain intermediate compounds 2 and 3 

(IC 2 and IC 3) by reacting with HPDB-R in the presence of Ph3P at 120 oC for 

almost 18 hours. The IC 2 and IC 3 were separated and washed. 

All products were purified by ethanol recrystallization. 

The last step was the insertion of the polymerizable group. This was 

achieved by reacting IC 2 and IC 3 with methacryloyl chloride in the presence of 

TEA and DMAP (widely used as a hypernucleophilic acylation catalyst) at room 

temperature for 3-4 hours.  

The obtained monomers 1 and 2 (M 1 and M 2) were chromatographically 

separated and polymerized (M 1) in 1,4-dioxan using BP as initiator. The resulting 

polymer 1 (P 1) was precipitated in diethyl ether and washed several times before 

drying under vacumm at 40 oC for 48 hours [7-9]. 
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Fig. 1. The synthesis reactions of the monomers where R is CN for the monomer M1  

and NO2 for monomer M2 
 

2.3 FT-IR Spectroscopy 

In order to confirm the designed structure of the synthesized materials FT-IR 

spectroscopy was performed. For this characterization a Brucker VERTEX 70 

instrument, equipped with a Harrick MVP2 diamond ATR device apparatus have 

been used. The specific vibrational peaks of the contained groups were assigned 

for each material. 

The specific peaks of M 1 (Fig. 2) are found at: 2929-3053 cm-1 (Ar-CH 

stretching vibration), 2227 cm-1 (C≡N stretching vibration), 1598 cm-1 (Ar-C=C 

stretching vibration), 1453 cm-1 (CH3 deformation), 1139 cm-1 (CO stretching 

vibration) 1028 cm-1 (O-H stretching vibration) and 1720 cm-1 (C=O stretching 

vibration in the methacrylic group). 
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Fig. 2. FT-IR spectra of M 1 

 

Relevant FT-IR peaks for the M 2 (Fig. 3) can be observed at: 3453-3526 

cm-1 (O-H stretching vibration), 2931-3104 cm-1 (Ar-CH stretching vibration), 

1590 cm-1  (Ar-C=C stretching vibration), 1520 cm-1 (NO2 stretching asymmetric 

vibration), 1320 cm-1 (NO2 stretching symmetric vibration), 1453  

cm-1 (CH3 deformation), 1137 cm-1 (CO stretching vibration), 1493 and 1004 cm-1 

(O-H stretching vibration). Beside the peaks mentioned before, the characteristic 

peaks for the methacrylic group can be also observed at 1732 cm-1 (C=O 

stretching vibration) and 1635 cm-1 (C=C stretching vibration). 
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Fig.3. FT-IR spectra of M 2 

 

2.4. NMR Characterization 

A more specific structure determination is given by NMR investigation and, 

therefore, 1H-NMR spectra have been obtained in dimethylsulphoxide with a 
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Bruker Avance DRX 400 Instrument. For each monomer, 1H-NMR spectra were 

performed in order to determine its structure. In Figs. 4 (M 1) and 5 (M 2) the 

representative spectra are presented and the peak attribution for each monomer is 

described in each figure caption [10-12]. 

 
Fig. 4. 1H NMR spectra (DMSO-d6) of  M 1 ):  δ1=8.07 (d, 1H, aromatic), δ2=7,92 (s, 1H, aromatic), δ3=7.77 

(d, 1H, aromatic), δ4=7.56 (t, 1H, aromatic carbazole), δ5=7.21 (t, 1H, aromatic carbazole), δ6=8.05 (d, 1H, 

aromatic carbazole), δ7=4.67 (t, 2H), δ8=1.61 (s, 3H), δ9=5.80 (s, 1H) ppm. 

 
Fig. 5. 1H NMR spectra (DMSO-d6) of  M 2: δ1=8.44 (d, 1H, aromatic), δ2= 8.41 (d, 1H aromatic), δ3=8,05 

(d, 1H,aromatic carbazole), δ4=7.63 (d, 1H aromatic carbazole), δ5=7.60 (d, 1H, aromatic carbazole), 

δ6=7.44 (t, 1H, aromatic carbazole), δ7=7.22 (t, 1H, aromatic carbazole), δ8=8.05 (d, 1H, aromatic 

carbazole), δ9=4.41 (t, 2H,), δ10=3.71 (t, 2H,) , δ11=1.61 (s, 3H,), δ12=5.61 (s, 2H) ppm. 
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2.5. UV-VIS Characterization 

Comparing the UV-Vis spectra of IC 2 and of M 1 (Fig. 6) in different 

solvents, similar absorption maxima were observed: between 200-275 nm for the 

alkyl sequences, between 275-325 nm specific absorption maxima for π-π* 

transition of azoic sequences and between 325-450 nm specific absorption 

maxima for π-π* of the carbazole ring.  
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Fig. 6. UV-Vis spectra for IC 2 and M 1 in different solvents: THF, 1,4-dioxane, DMF and DMSO 

 

It can be observed, from Fig. 6, that the solvent polarity modifies the 

behavior of the intermediate compound: 1,4-dioxane stimulates transition between 

250-330 nm, while DMSO stimulates the specific transitions for the carbazole 

ring. For the monomer the same behavior was observed in relation to solvent 

polarity: the absorption maximum increases with the polarity increasing and the 

areas from 200 to 275 nm and from 275 to 330 nm are well defined. 

In the case of compound M 2 (Fig. 7) it is observed that for all solvents the 

specific absorption peaks for each constitutive sequence are defined. Only in 1,4-

dioxane the specific peak of the modified carbazole appears as a shoulder at 340 

nm. Another difference appears for the specific peak of azoic sequences 

absorption of π-π* transition around 280 nm. Comparing with the rest of the 

solvents, the peak at 280 nm is higher in intensity and wider. The IC 3 presents 

the same behavior in all the used solvents with no major differences. Only a small 

shift of the carbazole ring specific absorption can be observed when DMSO was 

used.  
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Fig. 7. UV-Vis spectra of IC 3 and M 2 in different solvents: THF, 1,4-dioxane, DMF and DMSO 

 

The absorption intensity of compound P1 (Fig. 8) is higher when the 

solvent polarity is lower (1,4-dioxane and THF), and comparing with the maxima 

of the monomer, a hypsochromic shift is observed.  
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Fig. 8. UV-Vis spectra of P 1 in different solvents: THF, 1,4-dioxane and DMSO 

 

The use of solvents with different polarities showed for the two 

synthesized monomers a different behavior concerning the specific absorption of 

the π-π* transition of the azo-derivative and of the carbazole groups (Fig. 9).  

For the compound M 2 the spectra in different polarity solvents (Fig. 9) 

shows the same behavior when THF, 1,4-dioxane and DMF were used as 

solvents. A hyperchromic effect can be observed in all three spectra. The 

difference appears in the shape of the spectra in the cases of 1,4-dioxane and 
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DMSO where the specific absorption of the azo sequence is higher than the one of 

the carbazole ring. 

In the case of M 1, the shape and the intensity proportionality between the 

specific peaks remains the same regardless the solvent polarity. Another 

observation can be made on each spectrum: increasing the polarity index of the 

solvent a small bathochromic effect is induced. The polarity of the solvents has 

the same effect on the spectra and a red shift appears. 
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Fig. 9. Comparative UV-Vis spectra of M 1 and M 2 in different solvents: THF, 1,4-dioxane,  

DMF and DMSO 
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3. Conclusions 

The presented synthesis method leads to monomers with designed 

structure. The advantage of this method is the fact that the resulting polymer has a 

precise structure even though there are more steps and strict conditions. The 

method yield is small, and the monomer hardly polymerizes because of its bulky 

substituents. 

The positions of the UV-Vis bands are not strongly affected by the length 

of the  conjugate bridge or by the electronic nature of the substituent groups. The 

solvent polarity affects the width and the intensity of the absorption peaks. At the 

same time the peaks are shifted to higher wavelengths.  

Comparing the absorption spectra of the synthesized materials we 

observed in the case of M2 an increase of the absorbance with the increase of 

solvent polarity which suggests a higher mobility and thus a better reorganization 

of the alkyl chain around the carbazole ring. 

This study can be useful as a tool for explaining the properties-structure 

correlation for these new polymers, more structural and compositional 

investigation will be performed in order to prove the properties-structure 

dependence. 

These investigations represent the first step in optical characterization of 

the synthesized compounds. NLO characterization will be performed on these 

materials in the future research. 
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