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ON THE BICOMPLEX VERSION OF THE WAVE EQUATION

Panagiotis N. Koumantos1

Considering the idempotent decomposition of bicomplex modules and bicomplex

linear operators, we apply operator (C0)-group theory, analogous to the classical case

of the problem, to achieve a unique solution for the bicomplex-valued wave equation.

Also, we formulate the Laplacian and the corresponding problem of the wave equation

in bicomplex Kähler manifolds.
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1. Introduction

In the present work we study the wave equation in the context of generalization with

values in the bicomplex numbers.

Let u : Rn × R+ → BC : (x, t) → u(x, t), and the wave equation

∂2u(x, t)

∂t2
= ∆u(x, t), t ∈ R+, (1)

with initial data u(x, 0) = f(x) and ∂u
∂t

∣∣
t=0

= g(x). Here ∆ is the suitable bicomplex version

of the Laplacian and for simplicity, in the standard form 1
c2

∂2u
∂t2 = ∆u of the wave equation,

the real positive constant c = 1 is chosen for the propagation speed of the wave.

We also consider the above wave equation (1), more generally in bicomplex Kähler

manifolds.

In the search for alternative algebras, and development of special algebras, bicomplex

numbers were introduced in 1892 by Segre in [36]. Also, in the classic book by Price [30]

there is a very comprehensive introduction to bicomplex numbers and their generalization,

as well as an essential presentation of basic topological properties.

Differential equations such as the Schrödinger equation have already been considered

in the context of bicomplex values in works by Rochon and Tremblay in [32], [33] and Rochon

in [34], and by Theaker and Van Gorder in [39]. Also in the paper by Agarwal et al. [3] the

Bochner theorem and applications of the bicomplex Fourier transform for the heat equation

and the wave equation in the bicomplex setting have been studied. We also refer to Luna-

Elizarrarás et al. in [24] and [25] for the Laplacian and derivatives of bicomplex functions,

while for the study of differential equations in multicomplex spaces we refer to Struppa et

al. in [38].

The topological bicomplex modules have been systematically studied by Kumar and

Saini in [20]. Also, results have been presented regarding bicomplex C∗-algebras in article

by Kumar et al. in [19], while by Kumar and Singh in [21] the bicomplex linear operators on

bicomplex Hilbert spaces were studied, as well Littlewood’s subordination theorem. We also
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refer to Guo in [16] for extension theory of Hilbert modules over semigroups, and to Alpay

et al. [2] for slice hyperholomorphic fractional Hardy spaces, and to Ghiloni and Stoppato

[15] for regularity in one hypercomplex variable. Further, we refer to the article by Colombo

et al. [8] for the study of bicomplex linear and bounded operators and bicomplex functional

calculus, as well as the article by Charak et al. [6] for infinite dimensional bicomplex spectral

decomposition theorem.

In Section 2 we list the necessary terminology from bicomplex numbers, bicomplex

Banach and Hilbert modules, and the (C0)-group theory we need to develop the results.

Further, in the case of the bicomplex Kähler manifold we extend the concept of the Laplacian

according to Kodaira (cf. Morrow and Kodaira [28], Moroianu [27]) of the classical complex

analysis to manifolds, again using the appropriate choice of the ∗-conjugate to the bicomplex

numbers. We also refer to the article by Baird and Wood [4] on the concept of bicomplex

manifold and applications. Also, we refer to the article by Chen and Millman [7] for classical

results on the wave equation on a Riemannian manifold.

Then, in Section 3 we present the main results, where we apply the method of op-

erator (C0)-group theory to the case of the wave equation (1) for the construction of the

infinitesimal generator of the bicomplex (C0)-group obtained through the idempotent com-

ponents and the existence of a generalized solution of the wave equation in the bicomplex

version.

In addition to the books and articles, mentioned above for bicomplex analysis, we

refer to the classical approaches of functional analysis and applications of semigroups to

differential equations in the standard books of Pazy [29], Engel and Nagel [11] Hille and

Phillips [17], and Yosida [40].

2. Preliminaries

2.1. Bicomplex numbers

The set BC of bicomplex numbers consists of the elements of the form z1+ jz2, where

z1, z2 ∈ C(i), i, j /∈ R, with i2 = j2 = −1 and ij = ji.

Here C(i) and C(j) are two copies of complex numbers that coexist in set BC, k := ij

is a hyperbolic unit and the set of hyperbolic numbers D, i.e. the set of the elements α+βk,

α, β ∈ R is contained in BC.
The set BC is a commutative ring with the standard operations and with a unit

element 1BC := 1. Furthermore, the Euclidean-type norm ∥·∥BC is defined on BC. Then,

∥ζ1ζ2∥BC ≤
√
2 ∥ζ1∥BC ∥ζ2∥BC, for every ζ1, ζ2 ∈ BC, and finally BC is a modified Banach

algebra (cf. [30]).

The simplest elements that are singular and divisors of zero in BC are e1 := 1+k
2 and

e2 := 1−k
2 , for which: e21 = e1 and e22 = e2 are valid, i.e. they are idempotent elements,

∥e1∥BC = ∥e2∥BC =
√
2
2 , e1 + e2 = 1, and additionally e1e2 = 0 while e1 ̸= 0 and e2 ̸= 0.

The role of the elements e1 and e2 is very important as they are also linearly indepen-

dent in terms of complex linear combinations and each element in BC is written in a unique

way in the the so-called idempotent representation.

Also, the set of positive hyperbolic numbers D+ is defined, and any hyperbolic number

is written in the corresponding equivalent idempotent representation νe1+µe2, with ν, µ ≥ 0.

Moreover, a binary relation ⪯ is defined on D as follows: α ⪯ β ⇔ (β − α) ∈ D+. Then, D
is a partially ordered set with D+ being convex and proper positive cone.

Let the projection maps p1 : BC → C(i) and p2 : BC → C(j) defined by p1(z1+jz2) =

z1 − iz2 and p2(z1 + jz2) = z1 + iz2.
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For X1 and X2 be subsets of C(i), the set X1 ×e X2 consists of all ζ = z1 + jz2 ∈ BC
such that p1(ζ) ∈ X1 and p2(ζ) ∈ X2, is called the bicomplex cartesian set determined by

X1 and X2.

Also, it is well-known that if X1 and X2 are domains (i.e. open and connected) of

C(i) then X1 ×e X2 is also a domain in BC. Moreover, if X1 and X2 are convex or closed

or compact sets then X1 ×e X2 is also a convex or closed or compact set in BC.
For the standard properties, the expression of the Euclidean norm and for the principal

ideals, as well as for detailed proofs of all the above standard concepts and results, refer to

the books (respectively in the first Chapter) [1], [24] and [30].

2.2. Bicomplex version of the Laplacian

In order to formulate the appropriate choice in Equation (1) for the Laplacian in the

bicomplex version, we recall that there are three standard types of conjugates defined and

the corresponding modulus derived from them.

Specifically, for each element ζ = z1 + jz2 ∈ BC, bar-conjugate ζ̄ := z̄1 + jz̄2, tilde-

conjugate ζ̃ := z1 − jz2 and ∗-conjugate ζ∗ := z̄1 − jz̄2 are defined, where z̄1 and z̄2 are the

usual conjugate complex numbers of z1 and z2 respectively. (cf. [1] and [24]).

There are several candidate forms for the bicomplex version of the Laplacian (see for

example in El Gourari et al. [10]).

We note that for the bicomplex version of the Laplacian henceforth we consider the

choice ∆ := ∂2

∂ζ∂ζ∗ , so we also write the corresponding idempotent representation ∆ =

e1∆1 + e2∆2, with ∆1 = e1∆ and ∆2 = e2∆ due to the linearity of the operator.

This is the appropriate choice, because by writing ζ = z1+jz2 ∈ BC, in the idempotent

representation ζ = e1α+ e2β, where α = z1 − iz2 and β = z1 + iz2, we have ζ∗ = e1ᾱ+ e2β̄.

Also, in this case ∂
∂ζ := 1

2

(
∂

∂z1
− j ∂

∂z2

)
= 1

2

(
e1

∂
∂α + e2

∂
∂β

)
, and ∂

∂ζ∗ := 1
2

(
∂

∂z̄1
+ j ∂

∂z̄2

)
= 1

2

(
e1

∂
∂ᾱ + e2

∂
∂β̄

)
, applies.

For the other choices of the Laplacian related to the choice of the corresponding kind

of conjugate bicomplex number, and how these operators are related to each other, we also

refer to Luna-Elizarrarás et al. in [24] and [25].

2.3. Bicomplex Kähler manifolds and Laplacian

We will then define the notion of bicomplex Kähler manifolds and arrive at the ex-

tension to the bicomplex version of Kodaira’s Laplacian known in the classical case.

Following Baird and Wood in [4] we give the following definition of a bicomplex

manifold.

Definition 2.1. A bicomplex manifold is a complex manifold endowed with a maximal dif-

ferential structure, i.e. a complex atlas whose transition functions are bicomplex holomorphic

functions.

At this point we mention the Ringleb decomposition Lemma for bicomplex holomor-

phic functions (cf. Riley in [31], while for bicomplex meromorphic functions we refer to

Charak, Rochon and Sharma in [5]).

Lemma 2.1. Let Ω ⊆ BC be an open set. Then, a function f : Ω → BC is bicomplex

holomorphic (resp. meromorphic) on Ω if and only if the functions fe1 : p1(Ω) → C(i) and

fe2 : p2(Ω) → C(j) are holomorphic (resp. meromorphic), where f(ζ) = fe1(p1(ζ))e1 +

fe2(p2(ζ))e2, for every ζ = z1 + jz2 ∈ Ω.
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Then, it is known that the next result about bicomplex manifolds holds (cf. [4]).

Proposition 2.1. A bicomplex manifold of bicomplex dimension n is locally the product of

complex manifolds of dimension n.

Moreover, it is well-known that in addition to the complex viewpoint for Kähler man-

ifolds, there are other compatible structures such that the symplectic and the Riemannian.

Thus, following Baird and Wood in [4], and LeBrun’s article [22] on which they are based,

the next concept of the complex Riemannian manifold is defined. We also mention the

article by Michelsohn [26] on Clifford and spinor cohomology of Kähler manifolds.

Definition 2.2. Let X be a complex manifold, with complex dimension m, and TX its

(1, 0)-holomorphic tangent space, i.e. TX is spanned by
{

∂
∂zk

}
, k = 1, 2, . . . ,m for any

complex coordinates
{
zk

}
. Then, the pair (X, g) is called a complex-Riemannian manifold

if g is a harmonic metric, i.e. g is a holomorhic section of TX ⊗ TX which is symmetric

and non-degenerate.

For U be an open set of Cm the complex Laplacian ∆C is defined as ∆C :=
∑m

k=1
∂2

∂z2
k
,

with ∆Cf :=
∑m

k=1
∂2f
∂z2

k
, where f : U → C and (z1, z2, · · · , zm) are the standard coordinates

on Cm.

Also, a holomorphic function f : X → C is said to be complex-harmonic if it satisfies

the complex-Laplace equation ∆Cf = 0, where the complex-Laplace operator is defined by

complexifying the formulae for the real case.

Then, in local complex coordinates
{
zk

}
, defining the matrix (gij) by gab = g

(
∂

∂za
, ∂
∂zb

)
and for

(
gab

)
its inverse, yields ∆Cf = gab

(
∂2f

∂za∂zb − Γk
ab

∂f
∂zk

)
, where the usual summation

convention is assumed in terms of indices, and Γk
ab = 1

2g
km

(
∂gbm
∂za

+ ∂gam

∂zb
− ∂gab

∂zm

)
, are the

corresponding Christoffel symbols.

In this direction, for examples of bicomplex manifolds by complexifying complex man-

ifolds, and results on complex-harmonic morphisms and bicomplex manifolds, we refer to

Baird and Wood in [4].

Now we give the next definition and keep in mind that from the three types of con-

jugates (∗-, bar-, tilde-) in bicomplex numbers we need the concept of ∗-conjugate to define

the concept of ∗-Hermitian form (cf. [1]).

Definition 2.3. A bicomplex Kähler manifold is a bicomplex manifold X with a bicomplex

∗-Hermetian metric h whose associated 2-form ω is closed. That is h gives a positive definite

∗-Hermitian form on the tangent space TxX at each point x ∈ X, and the 2-form ω is defined

by ω(u, v) = Reh(iu, v) = Imh(u, v), for tangent vectors u and v.

A bicomplex Kähler manifold can also be viewed as a Riemannian manifold, with

the Riemannian metric g defined by g(u, v) = Reh(u, v). Equivalently, a bicomplex Kähler

manifold X is a bicomplex Hermitian manifold of complex dimension n such that for every

point x ∈ X, there is a holomorphic coordinate chart around x in which the metric agrees

with the standard metric on Cn to order 2 near x.

After the above, we have the optimal assumptions so that the next result holds.

Proposition 2.2. A bicomplex manifold X is bicomplex Kähler manifold if and only if the

idempotent components Xℓ := eℓX are Kähler manifolds, for ℓ = 1, 2 respectively.

On a Riemannian manifold of dimension m, the Laplacian on smooth r-forms is

defined by ∆d = dd∗+ d∗d, where d is the exterior derivative and d∗ = −(−1)mr ⋆ d⋆, where
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⋆ is the Hodge star operator. Equivalently, d∗ is the adjoint of d with respect to the L2-inner

product on r-forms with compact support.

Let Ωp,q be the space of (p, q)-forms, Ek be the space of all complex differential forms

of total degree k, so that Ek = Ωk,0 ⊕ Ωk−1,1 ⊕ · · · ⊕ Ω1,k−1 ⊕ Ω0,k = ⊕
p+q=k

Ωp,q, and

for each k and each p and q with p + q = k, the canonical projections of vector bundles

πp,q : Ek → Ωp,q.

For a Hermitian manifold X, d and d∗ are decomposed as d = ∂+ ∂̄ and d∗ = ∂∗+ ∂̄∗,

and the two Laplacians are defined: ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄ and ∆∂ = ∂∂∗ + ∂∗∂.

Here ∂ and ∂̄ are the Dolbeault operators: ∂ := πp+1,q ◦ d : Ωp,q → Ωp+1,q and

∂̄ := πp,q+1 ◦ d : Ωp,q → Ωp,q+1, while ∂∗ and ∂̄∗ are the (formal) adjoints of ∂ and ∂̄,

i.e. ∂∗ : Ωp,q → Ωp−1,q, with ∂∗ := − ⋆ ∂̄⋆, and ∂̄∗ : Ωp,q → Ωp,q−1, with ∂̄∗ := − ⋆ ∂⋆

respectively.

At this point we also refer to the work of Ghiloni and Perotti in [14], where global

differential equations for slice regular functions are studied, and the global differential op-

erators ∂ and ∂̄ are particularly studied. Also, in the same article [14] examples are given

in quaternions, octonions and Clifford algebras for the form of the differential operators ∂

and ∂̄, while the characterization of Ker(∂̄) via semi-step functions is given.

Since X is Kähler, the Kähler identities imply these Laplacians are all the same up

to a constant, ∆ := ∆d = 2∆∂̄ = 2∆∂ .

Hence, on a Kähler manifold X, Hr(X) = ⊕
p+q=r

Hp,q(X), where Hr is the space of

harmonic r-forms on X, i.e. forms α with ∆α = 0, and Hp,q is the space of harmonic (p, q)-

forms. Therefore, a differential form α is harmonic if and only if each of its (p, q)-component

is harmonic.

Further, in order to ensure self-adjointness results (cf. Morrow and Kodaira in [28])

for the Lapalacian, and subsequently to be a semigroup infinitesimal generator, we consider

a compact Kähler manifold. So we will have a compact bicomplex Kähler manifold if and

only if the idempotent components are compact Kähler manifolds.

For pointwise gradient estimates results and poinwise semigroup domination inequali-

ties on E-valued (r, k)-forms over a complete Kähler manifold X we refer to Li [23], while the

Kodaira Laplacian is essentially a Schrödinger type operator acting on C∞ (
Ωr,kT ∗X ⊗ E

)
,

where E is a holomorphic Hermitian vector bundle on X.

Therefore, after the above, and due to the linearity of the operators, we write in the

idempotent representation: d = e1d1+e2d2 = e1(∂1+∂̄1)+e2(∂2+∂̄2) and d∗ = e1d
∗
1+e2d

∗
2 =

e1(∂
∗
1 + ∂̄∗

1) + e2(∂
∗
2 + ∂̄∗

2 ),

Also, ∆∂̄ = e1∆∂̄;1+e2∆∂̄;2 = e1
(
∂̄1∂̄

∗
1 + ∂̄∗

1 ∂̄1
)
+e2

(
∂̄2∂̄

∗
2 + ∂̄∗

2 ∂̄2
)
and ∆∂ = e1∆∂;1+

e2∆∂;2 = e1 (∂1∂
∗
1 + ∂∗

1∂1) + e2 (∂2∂
∗
2 + ∂∗

2∂2).

Consequently, we consider the best possible situation, so that the compact bicomplex

Kähler manifold X is written in the idempotent representation X = e1X1 + e2X2, where

X1 = e1X, X2 = e2X are compact Kähler manifolds.

2.4. Bicomplex Banach and Hilbert Modules

For the concept of topological bicomplex modules we refer to Kumar and Saini [20],

and for standard results of functional analysis with bicomplex scalars to Saini et al. in [35].

Let X be a BC-module with the idempotent decomposition X = e1X1 + e2X2, or

equivalents X = e1X + e2X, where X1 := e1X and X2 := e2X.

If we assume that X1 and X2 are spaces with norm ∥·∥X1
and ∥·∥X2

respectively, then

∥·∥X : X → R : x → ∥x∥X := 1√
2

√
∥x1∥2X1

+ ∥x2∥2X2
, where x = e1x1 + e2x2, with x1 ∈ X1
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and x2 ∈ X2 is the idempotent representation of x ∈ X, is a norm in X, the so-called

Euclidean-type norm in X.

In fact, then it applies ∥ζx∥X ≤
√
2 ∥ζ∥BC ∥x∥X , for every ζ ∈ BC, for every x ∈ X.

Moreover, X can also be equipped with the hyperbolic-valued norm or D-norm ∥x∥D =

e1 ∥x1∥X1
+ e2 ∥x2∥X2

, and for every x ∈ X it holds that |∥x∥D| = ∥x∥X .

Further, we refer to the books [1] and [24] for the standard notions of sequence

convergence in terms of the above norm types, as well as for Cauchy sequences.

The following result is well-known (cf. [21]).

Proposition 2.3. The pair (X, ∥·∥X) is a bicomplex Banach module, if and only if the pairs(
X1, ∥·∥X1

)
and

(
X2, ∥·∥X2

)
are complex Banach spaces.

Respectively, if we have in X1 and X2 the inner products ⟨·, ·⟩X1
and ⟨·, ·⟩X2

, then

the formula: ⟨x, y⟩X := ⟨e1x1 + e2x2, e1y1 + e2y2⟩X = e1 ⟨x1, y1⟩X1
+ e2 ⟨x2, y2⟩X2

, defines

an inner product in X.

Then the hyperbolic norm in X is defined as ∥x∥D = ∥e1x1 + e2x2∥D =
√
⟨x, x⟩X ,

and the real-valued norm ∥x∥X = 1√
2

√
⟨x1, x1⟩X1

+ ⟨x2, x2⟩X2
= 1√

2

√
∥x1∥2X1

+ ∥x2∥2X2
.

Thus, a BC-module X with inner product ⟨·, ·⟩X is said to be a bicomplex Hilbert

module if it is complete with respect to the hyperbolic norm induced by inner product

square.

The following result is valid (cf. [1]).

Proposition 2.4. The pair (X, ⟨·, ·⟩X) is a bicomplex Hilbert module, if and only if the

pairs
(
X1, ⟨·, ·⟩X1

)
and

(
X2, ⟨·, ·⟩X2

)
are complex Hilbert spaces.

Applying the above, we formulate the following bicomplex Banach modules by analogy

with the classical infinitely differentiable functions with a compact support C∞
c and Sobolev

spaces Wm,p of functional analysis.

More specifically we have C∞
c (Rn,BC) is the set of all φ ∈ C∞(Rn,BC) such that

supp(φ) is compact, where supp(φ) := {x : φ(x) ̸= 0} is the support of φ.

Moreover, for f : C∞
c (Rn,BC) → BC, s ∈ Nn

0 , the Schwartz generalized |s|-order
distributional derivative in the bicomplex setting is (∂sf) : C∞

c (Rn,BC) → BC, with

(∂sf)(φ) := (−1)|s|f(∂sφ), for every s ∈ Nn
0 , for every φ ∈ C∞

c (Rn,BC), where (∂sφ)(x) :=
∂|s|φ(x)

∂x
s1
1 ∂x

s2
2 ···∂xsn

n
, where s = (s1, s2, . . . , sn), |s| := s1 + s2 + · · ·+ sn.

Then, for 1 ≤ p < ∞ andm ∈ N0, we have the bicomplex Banach modulesWm,p(Rn,BC)
consisting of all g ∈ Lp(Rn,BC) such that exists (∂sg) ∈ Lp(Rn,BC), for every s ∈ Nn

0 ,

|s| ≤ m, with the norm

||g||m,p :=
(∑

0≤|s|≤m ||∂sg||pp;BC
) 1

p

=
(∑

0≤|s|≤m

∫
Rn ||∂sg(x)||pBCdx

) 1
p

, where Lp(Rn,BC) :={
f : Rn → BC : ∃

∫
Rn ||f(x)||pBCdx < +∞

}
, under the norm

||f ||p;BC =
(∫

Rn ||f(x)||pBCdx
) 1

p .

Also, W 0,p(Rn,BC) = Lp(Rn,BC), and for s = (0, 0, . . . , 0), we have ∂0g = g. For

p = 2 as usual we write Wm,2(Rn,BC) := Hm(Rn,BC) and Wm,2
c (Rn,BC) := Hm

c (Rn,BC),
for the corresponding bicomplex Hilbert modules.

In the idempotent decomposition, for ℓ = 1, 2, we write:

C∞
c (Rn,BC)ℓ := eℓC

∞
c (Rn,BC) := C∞

c (Rn, eℓBC),
Wm,p

ℓ (Rn,BC) := eℓW
m,p(Rn,BC) := Wm,p(Rn, eℓBC), and

Lp
ℓ (Rn,BC) := eℓL

p(Rn,BC) := Lp(Rn, eℓBC),
so that in the idempotent representation:

C∞
c (Rn,BC) = e1C

∞
c (Rn, e1BC) + e2C

∞
c (Rn, e2BC),
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Wm,p(Rn,BC) = e1W
m,p
1 (Rn,BC) + e2W

m,p
2 (Rn,BC), and

Lp(Rn,BC) = e1L
p
1(Rn,BC) + e2L

p
2(Rn,BC).

We can also consider the corresponding functional bicomplex modules with X instead

of Rn in the left hand sides and Xℓ = eℓX, ℓ = 1, 2, in the corresponding right hand sides

of the above idempotent decompositions, where X = e1X1 + e2X2 is a bicomplex Kähler

manifold.

For differential-difference bicomplex we refer to Zharinov [41]. We also cite the papers

by Değirmen and Sağir [9] for bicomplex lpBC sequence spaces, and Eryilmaz [12], [13] (and

references therein) on bicomplex versions of function spaces and in particular Lp
BC bicomplex

Lebesgue spaces.

For more details, corresponding results in bicomplex Hilbert modules, the bicomplex

vesrion of the parallelogram law and for bicomplex polarizarion identities we refer to the

book of Alpay et al. in [1] (especially Chapters 3 and 4) and the article of Kumar and Singh

in [21].

2.5. Bicomplex groups of operators

Let (X, ∥·∥X) be a bicomplex Banach module and let {Tt}t∈R be a family of BC-
linear and D-bounded operators, where Tt : X → X : x → Tt(x). Then, the definition of a

bicomplex (C0)-group {Tt}t∈R and its infinitesimal generator A is typically the same as in

the classical case (cf.[17] and [40]).

Furthermore, considering the idempotent representation of the linear operator Tt,

i.e. for −∞ < t < ∞ writing Tt = e1 (T1)t + e2 (T2)t, where (Tℓ)t : eℓX → eℓX

with (Tℓ)t(x) := eℓTt(eℓx), for ℓ = 1, 2 are linear operators respectively, the conditions

of a bicomplex (C0)-group (or of class (C0) or strongly continuous group) are reworded

in the idempotent components as follows: (Tℓ)t ◦ (Tℓ)s = (Tℓ)t+s , ∀ − ∞ < t, s < ∞,

s− lim
t→0

(Tℓ)t (x) = (Tℓ)0 (x) = x, ∀x ∈ eℓX, and (Tℓ)0 = Iℓ, for ℓ = 1, 2 respectively, where

I1 the identity operator on e1X and I2 the identity operator on e2X.

Also, for the infinitesimal generator A, if the limits exist, we will have the idempotent

representation

A = e1A1 + e2A2,

with the idempotent components

Aℓ := s− lim
h→0+

h−1 ((Tℓ)h − Iℓ)

defined pointwise. As usual, the corresponding domains of definition will be the sets D(Aℓ),

consisting of all elements x ∈ eℓX such that the limit lim
h→0+

h−1 ((Tℓ)h (x)− Iℓ(x)) exists,

for ℓ = 1, 2 respectively. Further, we will have that D(A) = e1D(A1) + e2D(A2).

We also refer to our paper [18] where we have studied linear operators and semigroups

of linear operators on bicomplex Banach modules, with results on the mean ergodic theorem.

At this point we recall the norm of a bounded bicomplex linear operator T and for

standard concepts and results we also refer in [1].

Also, the operator T is called D-bounded, if there is a Λ ∈ D+ so that for every x ∈ X

it holds, ∥T (x)∥D ⪯ Λ ∥x∥D.
The D-infimum with respect to these Λ is called the D-valued norm of the operator

T , and is denoted by ∥T∥D. It follows that the operator T is D-bounded if and only if the

operators T1 and T2 are bounded.

Then, combining and applying the known results for bounded and bicomplex linear

operators (cf. [1], p. 75), we have that for the case of a bicomplex group {Tt}t∈R of class
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(C0) yields ∥Tt∥D = e1 ∥(T1)t∥1 + e2 ∥(T2)t∥2, where ∥(T1)t∥1 and ∥(T2)t∥2 are the usual

norms of the idempotent components (T1)t and (T2)t respectively.

3. Solution for the wave equation in the bicomplex setting

3.1. The case of bicomplex-valued wave equation

Following the usual practice (cf. Yosida [40], Pazy [29]), denoting by O and I the

zero and identity operators, we observe that also in the bicomplex case the wave equation

(1) is rewritten equivalently in the form:

∂

∂t

(
u

v

)
=

(
O I

∆ O

)(
u

v

)
, x ∈ Rn, t > 0, (2)

where v := ∂u
∂t , with the initial condition

(
u(x, 0)

v(x, 0)

)
=

(
f(x)

g(x)

)
.

Then, in the idempotent representation for the problem (2), writing u = e1u1 + e2u2,

f = e1f1 + e2f2 and g = e1g1 + e2g2, and due to the linearity of the operators, we will have:

∂

∂t

(
e1u1 + e2u2

e1v1 + e2v2

)
=

(
e1O1 + e2O2 e1I1 + e2I2
e1∆1 + e2∆2 e1O1 + e2O2

)(
e1u1 + e2u2

e1v1 + e2v2

)
,

or equivalent

e1
∂

∂t

(
u1

v1

)
+ e2

∂

∂t

(
u2

v2

)
= e1

(
O1 I1
∆1 O1

)(
u1

v1

)
+ e2

(
O2 I2
∆2 O2

)(
u2

v2

)
.

Thus,
∂

∂t

(
uℓ

vℓ

)
=

(
Oℓ Iℓ
∆ℓ Oℓ

)(
uℓ

vℓ

)
, (3)

where vℓ =
∂uℓ

∂t , with the initial condition

(
uℓ(x, 0)

vℓ(x, 0)

)
=

(
fℓ(x)

gℓ(x)

)
, ∆ℓ = eℓ∆, Iℓ = eℓI, and

Oℓ = eℓO, for ℓ = 1, 2 respectively.

Then, as in the classical case following Yosida [40], Pazy [29], Engel and Nagel [11],

we will have in our case as well that an operator Aℓ can be associated with the differential

operator

(
Oℓ eℓI

∆ℓ Oℓ

)
, for ℓ = 1, 2 respectively, as follows.

Let D(Aℓ) = H2(Rn, eℓBC) × H1(Rn, eℓBC) and for Uℓ = (fℓ, gℓ) ∈ D(Aℓ) with

AℓUℓ = Aℓ(fℓ, gℓ) = (gℓ,∆ℓfℓ).

Then, we will show that the operator Aℓ is the infinitesimal generator of a (C0)-

group on the Hilbert space Hℓ = H1(Rn, eℓBC) × L2(Rn, eℓBC) which is the completion of

C∞
c (Rn, eℓBC)× C∞

c (Rn, eℓBC) under the norm

|||Uℓ|||ℓ := |||(fℓ, gℓ)|||ℓ =
(∫

Rn

(
||fℓ||2eℓBC + ||∇fℓ||2eℓBC + ||gℓ||2eℓBC

)
dx

) 1
2

,

for ℓ = 1, 2 respectively.

We start with the next Proposition, which collects the preliminary results, in order

to arrive at the infinitesimal generator Aℓ, for ℓ = 1, 2 respectively.

Proposition 3.1. (i) Let ν > 0 and fℓ ∈ Hk(Rn, eℓBC), k ≥ 0. Then, there is a unique

function uℓ ∈ Hk+2(Rn, eℓBC) satisfying uℓ − ν∆ℓuℓ = fℓ, for ℓ = 1, 2 respectively.

(ii) For every Fℓ = (ϕℓ, θℓ) ∈ C∞
c (Rn, eℓBC)×C∞

c (Rn, eℓBC) and real λ ̸= 0 the equa-

tion Uℓ−λAℓUℓ = Fℓ has a unique solution Uℓ = (fℓ, gℓ) ∈ Hk(Rn, eℓBC)×Hk−2(Rn, eℓBC),
for every k ≥ 2. Moreover, |||Uℓ|||ℓ ≤ (1− 2|λ|)−1|||Fℓ|||ℓ, for ℓ = 1, 2 respectively.
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(iii) For every Fℓ = (ϕℓ, θℓ) ∈ H1(Rn, eℓBC)×L2(Rn, eℓBC) and real λ satisfying 0 <

λ < 1
2 the equation Uℓ − λAℓUℓ = Fℓ has a unique solution Uℓ = (fℓ, gℓ) ∈ H2(Rn, eℓBC)×

H1(Rn, eℓBC), and |||Uℓ|||ℓ ≤ (1− 2λ)−1|||Fℓ|||ℓ, for ℓ = 1, 2 respectively.

Proof. (i) Let f̂ℓ = (2π)−
n
2

∫
Rn e−ixξfℓ(x)dx be the Fourier transform of fℓ and ũℓ(ξ) =

(1 + ν|ξ|2)−1f̂ℓ. Since fℓ ∈ Hk(Rn, eℓBC) and (1 + |ξ|2) k
2 f̂ℓ ∈ L2(Rn, eℓBC) follows (1 +

|ξ|2) k+2
2 ûℓ ∈ L2(Rn, eℓBC). Then, for uℓ(x) := (2π)

n
2

∫
Rn eixξũℓ(ξ)dξ follows that uℓ ∈

Hk+2(Rn, eℓBC) and uℓ is a solution of uℓ − ν∆ℓuℓ = fℓ, for ℓ = 1, 2 respectively.

(ii) Let λ ̸= 0 be real and wℓ;1, wℓ;2 be solutions of wℓ;1 − λ2∆ℓwℓ;1 = ϕℓ and

wℓ;2 − λ2∆ℓwℓ;2 = θℓ, for ℓ = 1, 2 respectively.Then, wℓ;1, wℓ;2 ∈ Hk(Rn, eℓBC) for every

k ≥ 0, and setting fℓ = wℓ;1 + λwℓ;2 and gℓ = wℓ;2 + λ∆ℓwℓ;1 we verify that Uℓ = (fℓ, gℓ) is

a solution of Uℓ − λAℓUℓ = Fℓ. Hence, fℓ − λgℓ = ϕℓ and gℓ − λ∆ℓfℓ = θℓ.

Moreover, Uℓ ∈ Hk(Rn, eℓBC)×Hk−2(Rn, eℓBC), for every k ≥ 2, and for ⟨⟨⟨·, ·⟩⟩⟩L2(Rn,eℓBC)
the scalar product in L2(Rn, eℓBC) we have:

|||Fℓ|||ℓ = ⟨⟨⟨ϕℓ −∆ℓϕℓ, ϕℓ⟩⟩⟩L2(Rn,eℓBC) + ⟨⟨⟨θℓ, θℓ⟩⟩⟩L2(Rn,eℓBC)

= ⟨⟨⟨fℓ − λgℓ −∆ℓfℓ + λ∆ℓgℓ, fℓ − λgℓ⟩⟩⟩L2(Rn,eℓBC)

+ ⟨⟨⟨gℓ − λ∆ℓfℓ, gℓ − λ∆ℓfℓ⟩⟩⟩L2(Rn,eℓBC)

≥ ⟨⟨⟨fℓ −∆ℓfℓ, fℓ⟩⟩⟩L2(Rn,eℓBC) + ||gℓ||20,2;ℓ − 2|λ|Re(⟨⟨⟨fℓ, gℓ⟩⟩⟩L2(Rn,eℓBC)).

Finally, for 0 < λ < 1
2 follows |||Fℓ|||2ℓ ≥ (1 − 2|λ|)2|||Uℓ|||2ℓ , that is, it holds |||Uℓ|||ℓ ≤

(1− 2|λ|)−1|||Fℓ|||ℓ.
(iii) For every Fℓ = (ϕℓ, θℓ) ∈ H1(Rn, eℓBC)×L2(Rn, eℓBC) and real λ satisfying 0 <

λ < 1
2 the equation Uℓ − λAℓUℓ = Fℓ has a unique solution Uℓ = (fℓ, gℓ) ∈ H2(Rn, eℓBC)×

H1(Rn, eℓBC), and |||Uℓ|||ℓ ≤ (1− 2λ)−1|||Fℓ|||ℓ, for ℓ = 1, 2 respectively. □

Theorem 3.1. The operator Aℓ is the infinitesimal generator of a (C0)-group on Hℓ =

H1(Rn, eℓBC)× L2(Rn, eℓBC) satisfying ||(Tℓ)t||ℓ ≤ e2|t|, for ℓ = 1, 2 respectively.

Proof. The domain of Aℓ, H
2(Rn, eℓBC)×H1(Rn, eℓBC) is dense in Hℓ. Also, (µIℓ −Aℓ)

−1

exists for |µ| > 2 and holds ||(µIℓ − Aℓ)
−1||ℓ ≤ 1

|µ|−2 . Hence, Aℓ (applying Theorem 6.3, p.

23 in [29]) is the infinitesimal generator of a (C0)-group (Tt)ℓ satisfying ||(Tℓ)t||ℓ ≤ e2|t|. □

Proposition 3.2. For every fℓ ∈ H2(Rn, eℓBC) and gℓ ∈ H1(Rn, eℓBC) there exists a

unique uℓ ∈ C1([0,+∞), H2(Rn, eℓBC)) satisfying the initial value problem ∂2uℓ

∂t2 = ∆ℓuℓ,

uℓ(x, 0) = fℓ(x),
∂uℓ

∂t

∣∣
t=0

= gℓ(x), for ℓ = 1, 2 respectively.

Proof. Let (Tℓ)t be the (C0)-group generated by Aℓ and set (fℓ(x, t), gℓ(x, t)) = (Tℓ)t(ϕℓ, θℓ).

Then, ∂
∂t (fℓ, gℓ) = Aℓ(fℓ, gℓ) = (gℓ,∆ℓfℓ), and thus we have the desired solution. □

In closing, we mention that by standard arguments and Sobolev’s Theorem (cf. p.

222; Theorem 4.7 in [29]), if the initial data fℓ, gℓ in the above initial value problem are

smooth for ℓ = 1, 2 respectively so is the solution.

Finally, we have that the operator A = e1A1 + e2A2 is the infinitesimal generator of

a bicomplex (C0)-group Tt, with Tt = e1(T1)t + e2(T2)t on the bicomplex Hilbert module

H = e1H1 + e2H2, and the idempotent combination of the solutions uℓ, ℓ = 1, 2 respec-

tively, i.e. u := e1u1 + e2u2, is the desired unique solution of the original problem on

the bicomplex module C1([0,+∞), H2(Rn,BC)) with idempotent components for ℓ = 1, 2

eℓC
1([0,+∞), H2(Rn, eℓBC)).



68 Panagiotis N. Koumantos

3.2. The case of the wave equation in compact bicomplex Kähler manifolds

Let X be a compact bicomplex Kähler manifold. Then, we have the wave equation

written in the compact bicomplex Kähler manifold X, in the homogeneous form ∂2

∂t2u(x, t) =

∆u(x, t), x ∈ X, t ∈ R+, and with the corresponding conditions we have set.

Equivalently, we then have the idempotent decomposition ∂2

∂t2uℓ(x, t) = ∆ℓuℓ(xℓ, t) =

0, xℓ ∈ Xℓ, t ∈ R+, for the homogeneous problem, formulated in the compact Kähler

manifolds Xℓ := eℓX, where ∆ℓ = eℓ∆, for ℓ = 1, 2 respectively.

That is, again we can consider the corresponding forms of equations (2) and (3) for

the problem, now formulated in the compact bicomplex Kähler manifold X = e1X1 + e2X2.

Then, corresponding to the previous case, we have the following results.

Proposition 3.3. The operator Aℓ is the infinitesimal generator of a (C0)-group on Hℓ =

H1(Xℓ, eℓBC)× L2(Xℓ, eℓBC) satisfying ||(Tℓ)t||ℓ ≤ e2|t|, for ℓ = 1, 2 respectively.

Proposition 3.4. For every fℓ ∈ H2(Xℓ, eℓBC) and gℓ ∈ H1(Xℓ, eℓBC) there exists a

unique uℓ ∈ C1([0,+∞), H2(Xℓ, eℓBC)) satisfying the initial value problem ∂2uℓ

∂t2 = ∆ℓuℓ,

uℓ(x, 0) = fℓ(x),
∂uℓ

∂t

∣∣
t=0

= gℓ(x), for ℓ = 1, 2 respectively.

Corollary 3.1. The operator A = e1A1 + e2A2 is the infinitesimal generator of a bi-

complex (C0)-group Tt, with Tt = e1(T1)t + e2(T2)t on the bicomplex Hilbert module H =

e1H1 + e2H2, and u := e1u1 + e2u2, is the unique solution of the problem on the bicomplex

module C1([0,+∞), H2(X,BC)) with idempotent components eℓC
1([0,+∞), H2(Xℓ, eℓBC)),

ℓ = 1, 2.

In conclusion, under the conditions we have set, we can propose new results of non-

trivial and generalized solutions in this case for the wave equation formulated in the bicom-

plex setting.
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