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FURTHER RESULTS ON DISTANCE-BALANCED GRAPHS

M. Tavakoli1, F. Rahbarnia2, A. R. Ashrafi3

Distance-balanced graphs are graphs in which for every edge e = uv
the number of vertices closer to u than to v is equal to the number of vertices
closer to v than to u. In this paper, we study this property under some graph
operations. Also, we obtain lower and upper bounds on some topological indices
of distance-balanced graphs.
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1. Introduction

The distance d(u, v) between the vertices u and v of a graph G is equal to
the length of a shortest path that connects u and v. For an edge e = ab of G, let
nG
a (e) be the number of vertices closer to a than to b. In other words, nG

a (e) =
|{u ∈ V (G)|d(u, a) < d(u, b)}|. In addition, let nG

0 (e) be the number of vertices with
equal distances to a and b, i. e., nG

0 (ab) = |{u ∈ V (G)|d(u, a) = d(u, b)}|. A graph
G is said to be distance-balanced, if nG

a (e) = nG
b (e), for each edge e = ab ∈ E(G),

see [1, 7, 17] for details. These graphs first studied by Handa [6] who considered
distance-balanced partial cubes. In [9], Jerebič, Klavžar and Rall studied distance-
balanced graphs in the framework of various kinds of graph products.

The Wiener index, W , is the first distance-based graph invariant to be used
in chemistry [18]. For a graph G, it is equal to the count of all shortest distances
in G. In other words, W (G) = 1

2

∑
{u,v}⊆V (G) d(u, v). Suppose f = ab and g = uv

are arbitrary edges of G. Define de(u, ab) = Min{d(u, a), d(u, b)} and D(f, g) =
Min{de(u, f), de(v, f)} = Min{de(b, g), de(a, g)}. The edge Wiener index of a graph
G is given by We(G) = 1

2

∑
{e,f}⊆E(G)D(e, f), see [11, 21] for details.

Following Yan et al. [19], the graph R(G) is obtained from G by adding a new
vertex corresponding to each edge of G, then joining each new vertex to the end
vertices of the corresponding edge.

The disjunction G∨H of graphs G and H is the graph with vertex set V (G)×
V (H) such that (u1, v1) is adjacent to (u2, v2) whenever u1u2 ∈ E(G) or v1v2 ∈
E(H), see [10]. A regular graph is a graph where each vertex has the same number
of neighbors. A regular graph with vertices of degree k is called a k−regular graph
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or regular graph of degree k. The eccentricity of a vertex v is the greatest geodesic
distance between v and any other vertex. The diameter of a graph is the maximum
eccentricity of any vertex in the graph. The diameter of the graph G is denoted by
diam(G). A graph G is called nontrivial if |V (G)| > 1. Our other notations are
standard and taken mainly form [3, 8, 15, 16, 20].

2. Main Results

All graphs considered here are finite and simple. In this section, we study the
conditions under which some graph operations produce a distance-balanced graph.

Proposition 2.1. Let G be a nontrivial connected graph. Then R(G) is distance-
balanced if and only if G is a path with |V (G)| = 2.

Proof. Let G be a path with |V (G)| = 2. Then it is clear that R(G) is distance-
balanced. Conversely, we assume that R(G) is a distance-balanced graph, where
|V (G)| > 2. Then, there exists an edge e = uv of G such that degG(u) > 1 or
degG(v) > 1. Without loss of generality, we my assume that u is the end vertex of
e with degG(u) > 1. Also, we assume that x is a new vertex corresponding to edge

e of G. Then, n
R(G)
x (xu) = 1 and n

R(G)
u (xu) > 1. Thus n

R(G)
x (xu) ̸= n

R(G)
u (xu).

Therefore R(G), |V (G)| > 2, is not a distance-balanced graph and hence G is a path
with |V (G)| = 2. �

In what follows, t(e), e ∈ E(G), denotes the number of triangles containing
edge e.

Proposition 2.2. Let G and H be arbitrary, nontrivial and connected graphs. Then
G ∨H is distance-balanced if and only if G and H are regular graphs.

Proof. We first assume that G and H are regular graphs. It is clear that, the
diameter of G∨H is equal to 2. Therefore, for every edge e = (a, x)(b, y) ∈ E(G∨H),
we have:

nG∨H
(a,x) (e) = degG∨H((a, x))− t(e), nG∨H

(b,y) (e) = degG∨H((b, y))− t(e).

On the other hand, it follows from the structure of G ∨ H that for each
vertex (a, b) ∈ V (G ∨ H), degG∨H((a, b)) = |V (H)|degG(a) + |V (G)|degH(b) −
degG(a)degH(b). Since G andH are regular graphs, for every (a, x)(b, y) ∈ E(G∨H),
we have nG∨H

(a,x) (e) = nG∨H
(b,y) (e) and thus G ∨H is distance-balanced. Conversely, as-

sume that G ∨ H is distance-balanced. It is clear that, for x ∈ V (H) and every
ab ∈ E(G), e = (a, x)(b, x) ∈ E(G ∨ H). Since G ∨ H is distance-balanced this
implies that nG∨H

(a,x) (e) = nG∨H
(b,y) (e). On the other hand, it follows from the structure

of G ∨H that

nG∨H
(a,x) (e) = degG∨H((a, x))− t(e) = |V (H)|degG(a)

+ |V (G)|degH(x)− degG(a)degH(x)− t(e),

nG∨H
(b,x) (e) = degG∨H((b, x))− t(e) = |V (H)|degG(b)

+ |V (G)|degH(x)− degG(b)degH(x)− t(e).
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The two above equations imply degG(a) = degG(b). Since G is connected
this implies that G is r-regular for some r. In a similar way we can see that H is
k-regular, for some k. �

Suppose G and H are graphs with disjoint vertex sets. Following Doslic [4],
for given vertices y ∈ V (G) and z ∈ V (H) a splice of G and H by vertices y and
z, (G · H)(y; z), is defined by identifying the vertices y and z in the union of G
and H. Similarly, a link of G and H by vertices y and z is defined as the graph
(G ∼ H)(y; z) obtained by joining y and z by an edge in the union of these graphs.

Proposition 2.3. Suppose G and H are rooted graphs with respect to the rooted
vertices of a and b, respectively. The graph (G ·H)(a; b) is distance-balanced if and
only if for each e = uv ∈ E(G) and f = xy ∈ E(H) the following conditions are
satisfied:

nG
u (e)− nG

v (e) =

{
|V (H)| − 1 if d(v, a) < d(u, a)

0 if d(v, a) = d(u, a)
, (1)

nH
x (f)− nH

y (f) =

{
|V (G)| − 1 if d(y, b) < d(x, b)

0 if d(y, b) = d(x, b)
. (2)

Proof. In the graph (G·H)(a; b), we put r = a = b. We partition edges of (G·H)(a; b)
into the following two subsets:

A = {e = uv ∈ E(G.H)|d(v, r) < d(u, r)},
B = {e = uv ∈ E(G.H)|d(v, r) = d(u, r)}.

We first assume that (G ·H)(a; b) is distance-balanced. Suppose e = uv is an
arbitrary edge of G. Then e ∈ A or e ∈ B and not both. If e ∈ A then by our
hypothesis, nG·H

u (e) = nG·H
v (e). On the other hand, by definition of splice, nG·H

v (e) =
nG
v (e) + |V (H)| − 1 and nG.H

u (e) = nG
u (e). Thus, nG

u (e) = nG
v (e) + |V (H)| − 1 and

so nG
u (e) − nG

v (e) = |V (H)| − 1. Next we assume that e ∈ B. Again by our
hypothesis, nG·H

u (e) = nG·H
v (e) and by definition of splice we have, nG·H

v (e) = nG
v (e)

and nG.H
u (e) = nG

u (e). This implies that nG
u (e) = nG

v (e). Therefore, the equation (1)
is satisfied. In a similar way we can see that, for every edge e of H the equation (2)
is satisfied.

Conversely, suppose that Eqs. (1,2) are satisfied and e = uv ∈ A is arbitrary.
Then e ∈ E(G) or e ∈ E(H) and not both. If e ∈ E(G) then nG.H

u (e) = nG
u (e)

and nG.H
v (e) = nG

v (e) + |V (H)| − 1. This implies that nG.H
u (e)− nG.H

v (e) = nG
u (e)−

(nG
v (e) + |V (H)| − 1). Since nG

u (e) − nG
v (e) = |V (H)| − 1, nG.H

u (e) − nG.H
v (e) = 0,

as desired. Suppose that e ∈ E(H). Then nG.H
u (e) = nH

u (e) and nG.H
v (e) = nH

v (e) +
|V (G)| − 1, so nG.H

u (e) − nG.H
v (e) = nH

u (e) − (nH
v (e) + |V (G)| − 1). But by the

hypothesis, nH
u (e)−nH

v (e) = |V (G)|− 1, so nG.H
u (e)−nG.H

v (e) = 0. We now assume
that e ∈ B is arbitrary. If e ∈ E(G) then by nG.H

u (e) = nG
u (e) and nG.H

v (e) = nG
v (e)

we have nG.H
u (e) − nG.H

v (e) = nG
u (e) − nG

v (e) = 0. If e ∈ E(H) then by nG.H
u (e) =

nH
u (e) and nG.H

v (e) = nH
v (e) we have nG.H

u (e) − nG.H
v (e) = nH

u (e) − nH
v (e) = 0.

Therefore, for every edge e = uv ∈ B, nG.H
u (e) = nG.H

v (e) and for every edge
e = uv ∈ E(G ·H), nG.H

u (e) = nG.H
v (e). This completes the proof. �
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Corollary 2.1. Suppose G1, G2, . . . , Gn are connected rooted graphs with root ver-
tices r1, . . . , rn, respectively. Then

(G1 ·G2 · · · · ·Gn)(r1; r2; · · · ; rn)

is distance-balanced if and only if for each i, 1 ≤ i ≤ n, and for each e = uv ∈ E(Gi)
the following system of equations are satisfied:

nGi
u (e)− nGi

v (e) =

{∑n
j=1,j ̸=i |V (Gj)| − (n− 1) if d(v, ri) < d(u, ri)

0 if d(v, ri) = d(u, ri)
.

Proof. Induct on n. �

Proposition 2.4. Suppose G and H are rooted graphs with respect to the rooted
vertices of a and b, respectively. The graph (G ∼ H)(a; b) is distance-balanced if
and only if |V (G)| = |V (H)| and for each e = uv ∈ E(G) and f = xy ∈ E(H) the
following conditions are satisfied:

nG
u (e)− nG

v (e) =

{
|V (H)| if d(v, a) < d(u, a)

0 if d(v, a) = d(u, a)
,

nH
x (f)− nH

y (f) =

{
|V (G)| if d(y, b) < d(x, b)

0 if d(y, b) = d(x, b)
.

Proof. The proof is similar to Proposition 2.3 and so omitted. �

Corollary 2.2. Suppose G1, G2, . . . , Gn are connected rooted graphs with root ver-
tices r1, . . . , rn, respectively. Then (G1 ∼ G2 ∼ · · · ∼ Gn)(r1; r2; · · · ; rn) is distance-
balanced if and only if for each i, 1 ≤ i ≤ n, |V (Gi)| = |V (G1)| and for each
e = uv ∈ E(Gi) the following system of equations are satisfied:

nGi
u (e)− nGi

v (e) =

{∑n
j=1,j ̸=i |V (Gj)| if d(v, ri) < d(u, ri)

0 if d(v, ri) = d(u, ri)
.

Proof. Induct on n. �

We denote the complete graph and the cycle of order n by Kn and Cn, respec-
tively. The complement or inverse of a graph G is a graph Ḡ on the same vertices
such that two vertices of Ḡ are adjacent if and only if they are not adjacent in G.

Proposition 2.5. Let G be a distance-balanced graph and let e be an edge of Ḡ.
Then G+ e is not distance-balanced.

Proof. Let G be a distance-balanced graph and let e be an edge of Ḡ. Set H = G+e.
Suppose H is distance-balanced graph. Then by Proposition 3.1 of [9], H − e is not
distance-balanced, which is a contradiction with the fact that G = H−e is distance-
balanced. �
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We now obtain lower and upper bounds for distance-balanced graphs under
some graph invariants. The Narumi-Katayama index was the first graph invariant
defined by the product of some graph theoretical quantities applicable in chemistry.
The Narumi-Katayama index of a graph G is given by NK(G) =

∏
v∈V (G) deg(v),

[5, 13].

Proposition 2.6. Let G be a connected distance-balanced graph with n > 2 vertices.
Then

2n 6 NK(G) 6 (n− 1)n,

where the left equality holds if and only if G ∼= Cn and the right equality holds if and
only if G ∼= Kn.

Proof. Since G is a connected distance-balanced graph with n > 2 vertices. Then
for every vertex v ∈ V (G), we have 2 6 deg(G) 6 n − 1. Thus 2n 6 NK(G) 6
(n− 1)n. �

Proposition 2.7. Let G be a connected distance-balanced graph with n > 2 vertices
and G � Kn, Cn. Then

2n−2 × 32 6 NK(G) 6 (n− 2)n,

where the right equality holds if and only if G is a (n− 2)-regular graph.

Proof. The left inequality is clear. On the other hand, there is not a connected
distance-balanced graph with n vertices that has k vertices of degree (n − 1), (0 <
k < n). Therefore, if G is a connected distance-balanced graph and G � Kn, then
for each v ∈ V (G), deg(v) 6 (n− 2). Also note that, every (n− 2)-regular graph is
a connected distance-balanced graph and this completes the proof. �

Proposition 2.8. Let G be a connected distance-balanced graph with n vertices.
Then

n(n− 1)

2
6 W (G) < [

n

2
]
((n

2

)
− |E(G)|

)
+ |E(G)|,

where the left equality holds if and only if G ∼= Kn.

Proof. It is clear that W (Kn) 6 W (G). Let G be a connected distance-balanced
graph with n vertices. If, there are two vertices a and b ofG such that d(a, b) = [n2 ]+1
and a = a0, a1, a2, ..., a[n

2
], a[n

2
]+1 = b is the shortest path connecting a and b, then,

for the edge aa1 of G, we have na1(aa1) > [n2 ] + 1. Therefore, na(aa1) < na1(aa1)
which is contradict by the fact that G is distance-balanced. Thus, diam(G) 6 [n2 ].
This completes the proof. �

Proposition 2.9. Let G be a connected distance-balanced graph with n vertices and

G � Kn. Then n2

2 6 W (G) with equality if and only if G is a (n− 2)-regular graph.

Proof. The proof is similar to Proposition 2.7 and so it is omitted. �

Our calculations on graphs with a small number of vertices suggest the fol-
lowing conjecture:
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Conjecture 2.1. If G be a connected distance-balanced graph with n > 2 vertices.
Then

W (G) 6 W (Cn).

Suppose G is a graph. The first Zagreb index of G is defined as M1(G) =∑
v∈V (G) deg

2(v) and the second Zagreb of G is given by

M2(G) =
∑

uv∈E(G)

deg(u)deg(v),

see for details [2, 12, 14].

Proposition 2.10. Let G be a connected distance-balanced graph with n > 2 ver-
tices. Then

4n 6 M1(G) 6 n(n− 1)2,

and the lower and upper bounds are attained if and only if G ∼= Cn or G ∼= Kn,
respectively.

Proof. Since G is a connected distance-balanced graph with n > 2 vertices, for every
vertex v ∈ V (G), we have 2 6 deg(G) 6 n− 1. Summing over all vertices, we get

4|V (G)| 6
∑

u∈V (G)

deg2(u) 6 n(n− 1)2,

which proves the result. �

Proposition 2.11. Let G be a connected distance-balanced graph with n > 2 vertices
and G � Kn, Cn. Then

18 + 4(n− 2) 6 M1(G) 6 n(n− 2)2,

where the right equality holds if and only if G is a (n− 2)-regular graph.

Proof. The proof is similar to Proposition 2.7 and so omitted. �

Proposition 2.12. Let G be a connected distance-balanced graph with n > 2 ver-
tices. Then

4n 6 M2(G) 6 n(n− 1)3

2
,

and the lower bound is attained if and only if G ∼= Cn, for some n. Moreover, the
upper bound is attained if and only if G ∼= Kn.

Proof. Since G is a connected distance-balanced graph with n > 2 vertices, for every
vertex v ∈ V (G), we have 2 6 deg(G) 6 n−1 and |V (G)| 6 |E(G)| 6

(
n
2

)
. Summing

over all edges, we get

4|V (G)| 6
∑

uv∈E(G)

deg(u)deg(v) 6 n(n− 1)3

2
,

which proves the result. �
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Proposition 2.13. Let G be a connected distance-balanced graph with n vertices and

G � Kn. Then M2(G) 6 n(n−2)3

2 , with equality if and only if G is a (n− 2)-regular
graph.

Proof. The proof is similar to the proof of Proposition 2.7. �

Proposition 2.14. Let G be a connected distance-balanced graph with n vertices.
Then

We(G) 6 1

2
[
n

2
]
(
|E(G)|(|E(G)|+ 1)−M1(G)

)
.

Proof. Suppose G is a connected distance-balanced graph with n vertices. Then
diam(G) 6 [n2 ] and hence maxf,g∈E(G){D(e, f)} 6 [n2 ]. On the other hand, the

number of edge-pairs which have zero distance is equal to
∑n

i=1

(
deg(vi)

2

)
and this

completes the proof. �

Corollary 2.3. Let G be a connected distance-balanced graph with n vertices. Then

We(G) 6 1

2
[
n

2
]
(
|E(G)|(|E(G)|+ 1)− 4n

)
.

Proof. The proof follows from Propositions 2.10 and 2.14. �
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