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ELECTRON EIGENSTATES IN MAGNETOELECTRONIC
SUBBANDS

Ecaterina NICULESCU”"

In lucrare sunt calculate starile uniparticuli pentru electroni i goluri grele
intr-un fir cuantic cilindric din Gads, in prezenta unui cdmp magnetic extern
paralel cu axa firului. Metoda originala propusa conduce la valori ale energiei
starii fundamentale §i ale extinderii radiale a functiei de unda care sunt in bund
concordantd cu cele obtinute prin metoda variationald, utilizatd uzual in astfel de
calcule. Metoda necesitd un timp de calcul redus si poate fi extinsd pentru studierea
starilor excitate in heterostructuri semiconductoare sub actiunea unor campuri
externe

The single-particle states of electron and heavy-hole in a quantum wire in the
presence of an axial magnetic field are calculated by an analytical method
introduced herein. The quantum wire is assumed to be a cylinder of GaAs material
surrounded by Aly3Gay ;As, with finite confinement potentials. It is significant that a
comparison of the ground-state energies and of the radial widths of the wave
Sfunction with those computed by a variational method shows good quantitative
agreement for varying wire radii and magnetic field strengths. The method is fast
computationally and can be readily extended to calculate energies of higher excited
states.

Introduction

In recent years, there has been great interest in investigating quantum-well

wires (QWWSs) both theoretically and experimentally. In such systems, the
electron is confined to move along the length of the wire while the motion is
quantised in the two transverse directions. Due to the strong confinement of
QWW’s, the optical and electron transport characteristics are quite different from
those of 3D and 2D systems, leading to novel optoelectronic devices.
This has motive extensive research in nanowire technology [1-3] and in study of
their electronic properties [4-9]. The optical spectra of semiconductor quantum
wires can be dramatically modified by the application of external static electric
and / or magnetic fields. In particular, the magnetic field modifies the symmetry
of the electronic states and increases the confining energies of the carriers.

The first step towards understanding the optoelectronic properties of a
quantum wire device is to calculate the quantum-confined electron and hole states
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in the structure. Previously, Tsetseri et al. [8] reported a study of the ground state
of quantum wires using the finite difference method, in the absence of the external
fields. The energy levels of a shallow impurity in GaAs-AlGaAs QWWs under
the action of the magnetic field were theoretically studied using variational
methods for the infinite potential barriers [10,11].

In the present paper we investigate the effect of an axial magnetic field on
the electron and heavy hole ground states in GaAs-AlGaAs QWWs with a finite
height of the confinement potential.

Theory

We consider a cylinder of radius R, which is composed of GaAs embedded
in AlyGa;.xAs under the action of a magnetic field applied in the axial direction,
B=BZ. In the effective mass approximation, the Hamiltonian describing the

electron (hole) motion is given by
1
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Here i = (e,h) denotes electron and hole, respectively, A, is the vector

1

potential, and the confining potentials for the electrons (holes), V, (1) depend on
the band offsets, taken here to be O, =0.57, Q, =0.43. In cylindrical coordinates

the components of the vector potential are 4, =4.=0, 4, :%Bp, (Landau

gauge), and
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The eigenenergies and eigenstates of the electron confined in the quantum wire
are obtained by solving the Schrddinger equation
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In zero magnetic field case, the problem can be solved exactly. The
electron wave function for a confined state ®(p,p,z) with corresponding energy

eigenvalue E| is given by
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where J is the Bessel function of the first kind and K is the modified Bessel
function of the second kind,
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A4,, and B, are the normalization factors and the energy Ej is get by applying

the boundary conditionsat p=R.

When a magnetic field is applied the problem can no longer be solved
analitically. We will proceed by relying on a variational calculation of the energy.
We propose the following variational wave function

¥(p,0,2)=0(p,p,z)e " (7)
where « is the variational parameter. For the ground state energy, (m =0,k =0),
A (kp) e p<R
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and « is obtained by minimizing the energy
E:<IPO|HTO>. (9)
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The method presented above is also quite applicable to holes. For our
analysis we used the simplest approximation of parabolic valence band,
neglecting any mixing between heavy and light holes. This approximation is
reasonable good for quantum wires in magnetic fields; as pointed out Goldoni et
al. [12] and Vouilloz et al. [2] even in strongly confined two-dimensional systems
the ground state in the valence band is almost a pure heavy hole (hh) state (92%).
Thus, for the study of the hole’s ground state the Hamiltonian can be obtained
from (3) by exchanging the index e <>/, and changing the sign of the
elementary charge (in Eq. (3), e > 0).

However, the calculation of the band structure of quantum wires in
magnetic field can be done analitically if we use structures with infinite potential

barrier heights and the effective radius, Res .. Rep p, SO that we obtain the

correct zero-field energies. Thus, Reﬁf ’s are so chosen that for each i =(e, 1h),
Jolky R )=0 (10)

s0 kg R,y is the first zero of the spherical Bessel function with k,, = k,(k. =0).

Of course, the effective radius, R, fr » are greater than the physical radius because

in real structure there is significant penetration of the wave functions into the
barriers.
For the infinite-barrier case,
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0, <R,
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The Schrodinger equation for the ground s-like state of the electron is rewritten as

v, 14¥v, 1 ,, 2m E
24— Y = ¥ 12

with y = % . By letting &= %;fpz and g = % Eq. (12) becomes

d°Y, d¥ £
= Z 4| -2 Y =0. 13
e (13)

The eigenfunctions are written as follows
V6 p)=CeE[ - o ] 19

where Fl(—ﬂ+%, 1 5) is the confluent hypergeometric function, which remains

finite at £=0 and C, the normalization factor. The value of £ is determined by
the boundary condition

Fl(—ﬁ+1,1; lny,fj:o. (15)
If [— B +%J is the first zero of Eq. (15), the eigenvalue are given by

E(R,.B)= B, h%B.

This effective infinite-barrier (EIB) model is also applicable to heavy (light)-
holes.

(16)

Results and Discussion

We have studied the electron and heavy hole ground states in cylindrical
GaAs-Aly3Gag7As quantum wires in the presence of an axial uniform magnetic
field. We assumed an electron (heavy hole) effective mass constant for the entire

structure:  m, =0.067m, and m,, =0.34m,. The finite potential barriers are
taken as
V, = 0, (1.155x +0.37x%) (eV),

where x is the Al concentration.
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The single-particle confined wire states are calculated using our effective
infinite-barrier model and compared with those obtained from the variational
method. In Fig. 1. is plotted the energy shift, AE = E(B)— E(0), as a function of

the magnetic field for electrons in QWW.
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Fig. 1. The electron energy shift, AE = E(B)— E(0), as a function of magnetic field. Solid
lines: EIB method,; dotted lines: variational method.

It is significantly that there is a remarkably good agreement in the ground-
state energies for all studied wire sizes and magnetic field strengths. Even for
small values of the radius, when the geometric confinement determines the

behavior of the electronic states and the difference Reﬁ — R is appreciable
(Table 1), the confining energies calculated with the infinite-model are less than

1% lower than the values obtained using the variational method. Similar results
are obtained for heavy holes.

Table 1
R (nm) Reff e (nm) Reff hh (nm)
5 6.716 5.835
10 11.647 10.823
20 21.632 20.820

In Fig. 2 we present the single-particle energies obtained with EIB method
as a function of the magnetic field for different values of the wire radius.
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Fig. 2. Variation of single-particle 1s-energies with magnetic field in a GaAs QWW with different
wire radii.

It is seen that for high magnetic fields such that the quantum confinement
energy is smaller than the magnetic energy, the ground-state energies approach
1ngB

m;

1

, the » =0 Landau level. This high-field limit is reached if the wire

effective radius, R, , exceeds the cyclotron radius, R, = \/z , plotted in Fig. 3.
4
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Fig. 3. Cyclotronic radius versus magnetic field

In the magnetic field presence, the wave functions become more
compressed and the lateral width of the wave function, given by

(p)=(¥,|p¥,), is decreased. This is shown in Fig. 4, where the results scaled

by the cyclotron radius are presented. The changeover from low-field to high-field
behavior occurs when the average radial position <p> becomes comparable to

Reﬁp, and in high-field limit the lateral width of the wave function approach R,..
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Fig. 4. Magnetic field dependence of average radial position scaled with the cyclotron radius.
Electron: solid lines; heavy hole: dotted lines.

Note that the values obtained from the two methods are again in
quantitative agreement, as observed in Fig. 5.
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Fig. 5. The electron average radial position for different wire radii using EIB method (solid lines)

and variational method (dotted lines).

Conclusion

We have been studied single-particle states of electron and heavy hole in a
quantum wire with finite potential barrier in the presence of a uniform magnetic
field. The calculation has been performed using an original analytical method,
whose results agree fairly well with corresponding variational ones. As expected,
in quantum wires with large radii at high magnetic fields the single-particle
ground states go over into the » = 0 Landau levels.
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