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FINANCIAL SAVINGS BASED SELECTION OF OPTIMAL
BUSES AND CAPACITY FOR RPIs IN REDS

M. LAVANYA!, G. SRINIVASANZ*

The current research article suggests a framework to solve the Reactive
Power Injections (RPIs) in Radial Electric Distribution Systems (REDS) using the
Dingo Optimization Algorithm (DOA) to maximize Financial Savings (FSs). This
article formulates the objective function by considering three significant factors:
maximizing the reduction in Real and Reactive Power Losses (RRPL) while
minimizing capacitor investment costs with weight factor considerations and
adhering to bus voltage profile enhancement. Notably, this work does not employ a
Sensitivity Based Index (SBI) to identify critical nodes for Reactive Power Injection
(RPI). The emphasis lies on showcasing the Fitness Scores (FSs) achieved by the
proposed method through Optimal Capacitor placement and sizing (OCPS) under
three scenarios. Simulation results demonstrate the superior solutions in terms of
maximum FSs, RRPL reduction, and minimal bus voltage deviations obtained by the
proposed method.

Keywords: Dingo Optimization Algorithm, Financial Savings, Radial Electric
Distribution System, Reactive Power Injections, Real and Reactive Power Losses

1. Introduction

It is a common practice adopted by the distribution engineers to Integrate
Shunt Capacitors (ISC) in Radial Electric Distribution Systems (REDS) to
consume negative VARs, which reflects some of the lagging components of
inductive VARs at the buses of integration which in turn changes the
characteristics of the inductive load. For the last five decades, many researchers
focused on ISC with proper capacity along the distribution networks to improve
the node voltage enrichment, apparent power loss reduction, reduce lagging
component of branch current, free-up the feeder capacity, enhancement in voltage
stability, apparent power demand decrease, sub-station transformer power factor
enhancement, etc. Thus, more real power output is available for delivery [1]. It is
well known from the literature that the REDS share major power losses around
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70% of the total losses which needs special interest in reducing the power losses
[2]. Around 15% to 18% of electrical energy generated in India has been wasted
as heat loss (I1°R). On the other hand, the power deficit in India is around 18%. It
is achievable to reduce the Real and Reactive Power Losses (RRPL) from roughly
18% to below 8% in the electric utility sector, increasing the Financial Savings
(FSs). Hence it is mandatory to find suitable nodes and the appropriate reactive
power capacities in REDS. ISCs at non-optimal nodes will increase the RRPL
reduction and reduction in node voltage deviation. From the literature, it is
apparent that optimal ISC is a complex, complicated, non-linear, combinatorial,
and mixed integer optimization problem that must be addressed using different
optimization techniques and algorithms that have been presented earlier.

In [3], Reactive Power Injection (RPI) has been performed in Radial
Electric Distribution Systems (REDSs) using the Artificial Electric Field
Algorithm (AEFA) as an optimization tool to reduce energy loss and capacitor
investment cost. The paper employs two scenarios: The first scenario involves
utilizing the Loss Sensitivity Factor (LSF) for optimal node selection, while
AEFA performs optimal sizing. In the second scenario, AEFA is responsible for
both Optimal Capacitor placement and sizing (OCPS). The efficacy of the
proposed method has been validated using the PG&E 69 bus and Indian 118 bus
test systems. Modified Particle Swarm Optimization Algorithm (MPSO) based
optimization of RPI in REDS with three objective functions comprising of
power/energy loss minimization with capacitor investment cost (fixed and
switchable) under three load levels has been performed in [4]. In this work,
normalized LSF-based identification of most potential nodes has been adopted.
Stochastic Fractal Search Optimization (SFSO) technique as an optimization
method, OCPS from single to three optimal locations to minimize power loss has
been proposed in [5]. Apart from capacitor allocation and sizing, one PV type DG
injecting real power equal to 20% and less than 100% of real power injection
considering with and without geographical constraints after reactive power
injection has been proposed in this paper. Modified LSF-based selection of most
prospective nodes for RPI has been engaged in [6] and optimal capacity of
capacitor has been done by Multi-verse Optimizer. The objective function
revolves around minimizing both power loss and capacitor investment costs.

Reference [7] presents the integration of quasi-opposition-based learning
(QOBL) and chaotic local search (CLS) with the original SFS algorithm. This
combined approach is implemented in REDS to determine the optimal number of
nodes while considering appropriate sizing for both fixed and switchable
capacitors under various loading conditions. This paper considers two objective
functions. The first one deals with energy loss minimization and capacitor
investment cost minimization considering 24 hours and 365 days. In the second
objective function, fourteen-hour-based load levels are adopted to evaluate the
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objective function. PG&E 69 bus, Indian 118 bus, and a Real 152 bus test system
have been taken for assessment of the proposed method. The optimal number,
optimal allocation, and capacity determination of multiple capacitors in REDS to
maximize the overall power loss reduction based on total cost savings using
Analytical closed-form expressions have been addressed in [8]. In this work, two
analytical closed-form expressions have been proposed under four different cases
comprising a total number of compensation nodes, optimal nodes, and the optimal
sizing of capacitors.

In [9], a hybridization of Permutated Oppositional Differential Evolution -
Sine Cosine Algorithm (HPODESCA) and Sensitivity-Based Decision-Making
Technique (SBDMT) is proposed to maximize the Fitness Scores (FSs) in
addressing the ISC problem. The Quasi-Oppositional Technique (QOT) is
employed at initialization and within the main loop stages to generate the initial
population. Additionally, four sensitivity-based approaches are used to identify
potential nodes for reactive power compensation, ranked via a multi-criteria
decision-making (MCDM) approach based on their similarity to the ideal solution.
On the other hand, [10] introduces a Remora Optimization Algorithm (ROA) for
minimizing the power loss and capacitor investment cost. It resolves the OCPS
problem, with and without the Power Loss of Network Lines Index (PLNLI). The
IEEE 33 and PG&E 69 bus test systems are employed to validate the effectiveness
of this approach.

Ref. [11] Implements a Mixed-Integer Second-Order Cone Programming
model (MI-SOCP) to optimize the OCPS problem in REDS, aiming to minimize
power loss. Ref. [12] Utilizes the Hybrid Grey Wolf Optimizer (HGWO) to
minimize the power or energy loss and capacitor purchase cost by optimizing
OCPS. The study validates the method across various test systems but does not
employ sensitivity indices to identify critical compensation nodes.

In [13], the Chu and Beasley Genetic Algorithm (CBGA) coupled with the
General Algebraic Modelling System (GAMS) has been employed as an
optimization technique. This approach focuses on achieving OCPS in REDS,
aiming to minimize operational and investment costs. Ref. [14] focuses on the DG
and OCPS problem in REDS with the target to minimize power loss, and
maximization of voltage stability index (VSI) using the BAT algorithm. LSF-
based identification of the most critical buses for real and reactive power
compensation has been adopted in this paper. BAT algorithm will carry out
appropriate sizing of DGs / capacitors. Commercial, Residential, Industrial, and
Constant power loads are considered in this work and three load variations such as
50%, 100%, and 160% are considered.

Proposed Work: In this study, the utilization of a novel, superior, and
robust Nature Inspired Metaheuristics Optimization Algorithm (NIMOA) known
as the Dingo Optimization Algorithm (DOA) [15] has been introduced. DOA
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employs dynamic adjustments to update the alpha, beta, and other member
dingoes. It has been employed for the optimal allocation and capacity
determination of RPI. DOA has been recognized as a potent NIMOA that can
address a wide range / diverse array of optimization challenges and effectively
overcome the aforementioned difficulties. The primary aim of this study is to
attain the highest possible FSs through the concurrent optimization of RRPL
reduction with capacitors and their associated costs. This NIMOA has been tested
and validated on two sinusoidal REDSs such as an 18-bus (extended version of
the 15-bus system) and a PG&E 69-bus. The performance of the suggested
NIMOA has been assessed by concluding simulation results and comparative
studies.

2. Statement of Problem

This work aims to maximize the FSs by ISCs optimally in three REDS
while satisfying both equality and inequality constraints. Before discussing the
objective function, it is better to focus on the REDS Load Flow (REDSLF)
adopted in this work.

2.1  Radial Electric Distribution System Load Flow (REDSLF)

To assess the REDS's performance, Load Flow (LF) analysis is regularly
conducted to ensure power supply sufficiency, reactive power support, and
voltage profile enrichment. Traditional LF methods like Gauss-Seidel, Newton-
Raphson, and Fast-Decoupled are inadequate for radial DN due to high R/X ratios
and radial topology by nature. Instead, a swift and robust REDSLF method
developed in 2003 [16], based on recursive functions and a linked-list data
structure, has been employed to optimize the reactive power injection. This
approach has been identified as an efficient one in handling power losses across
the entire DS, including laterals and sub-laterals.

NB

I:)Loss(T) - 21 I:)Loss(g) (1)
g:
NB

QLoss(T) = 2 QLoss(g)
9=t e

Where
PGy + QG and P2 1 +Q2 1
PLosS(g) =& FVZ 0 R(g, g+1) QLoss(g) =g+ ~ <lg+) 2 (0+1) X(g, g+1)
(g)‘ ’V(g)‘

where pLOSS(g)and QLOSS(g) are the total real and reactive power losses of
the REDS. Pg, Qqg, Ry, and Xq are the real power, reactive power demand at node
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‘g’, and resistance and reactance of the branch ‘g’ (g to g+1) in kW, kVAR, and in
Q respectively. NB indicates the total number of branches.

2.2 Objective Function

A single objective function comprising total RRPL reduction (OF: and
OF) in REDS and capacitor investment cost reduction (OF3) using weighing
factors has been presented in this work.

Maximize OF =[OF, +OF, +OF;] (3)
pACI
Where OF, = 1 x Loss(T)]
Loss(T)
OF, = g, [QI'_AOCSIS(T)}
Loss(T)

OF; = ﬂsXHJ/ X[(C(I:ap QC(m)J ( cap X NcN ))}+ (C[%hg XN CN):I

Subject to Equality constraint

8 ~Qor + 3 Qe ~QLhm) = @
Subject to an Inequality constraint
Q™" <Qc =QE™ (%)
':i: Qc(my < (Qpt + Qlses(ry) (6)
\VALLUESA VRS VALY (7)

where C'”V, cégSp and cov are the buying cost of the capacitor (discrete

capacity in steps of 50 KVAR), installation cost, and Operation and maintenance
cost of capacitors in $/kVAR and $/node respectively. IC, ACI, Ncn, MPS, and
Qor refer to the initial condition of the DS, After Capacitor Installation
Optimization, total number of capacitor nodes, main power supply, and total
reactive power demand in KVAR respectively. QC(m) indicates the capacity of the
capacitor in kVAR. B1, B2 and B3 indicate the weighing factor given to the
individual objective functions.

3. Overview of Dingo Optimization Algorithm (DOA):

The Dingo Optimization Algorithm (DOA) is an innovative approach for
global optimization inspired by the hunting behaviors of dingoes. The DOA
operates through two key phases: exploration and exploitation. Exploration, akin
to the encircling phase, aims to broadly navigate the problem space, whereas
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exploitation, like the attack phase, converges towards the best solution in later
algorithmic iterations. In this algorithm, one search agent represents the targeted
prey, while others adjust their strategies to approach the prey while exploring the
search space comprehensively.

3.1 Mathematical Models:

The Dingo Optimization Algorithm (DOA) strategically models the
hunting actions of dingoes searching, encircling, and attacking prey through
mathematical representations to conduct optimization which is discussed below.

3.1.1 Chasing and approaching:

In DO, the dingo's search for prey is translated into a mathematical
exploration within the solution space. Like the dingo's random exploration to
locate potential prey, the algorithm employs stochastic processes to explore
various areas in search of an optimal solution. This phase involves updating
potential solutions using random variations or perturbations.

3.1.2 Encircling:

Dingoes possess remarkable hunting skills, adept at locating prey. Once
the location is traced, the pack, led by the alpha, surrounds the prey. To simulate
the dingo's social structure, the prevailing strategy involves the best agent aiming
for the prey, like an optimal approach, given the unknown quest area. Meanwhile,
other members continue refining their strategies for potential future approaches.
During the encircling phase, dingoes move based on specific equations (8)-(12) in
their pursuit of optimization.

D, =|AP»(x)—P(i) ®)
P(i+1) =P, (i) - B.D(d) 9)
A=2a (10)
B=2ba,-b (12)

() e

Where Dq represents the dingoes distance from the prey, ISp implies the position

vector for prey, P is the vector indicating the dingo's position, A and Bare

coefficient vectors, ai and azrepresent random variables within the range of
[0,1] and I represents the iteration with | as the maximum iteration count.

Equations (1) and (2) enable dingoes to navigate within the quest area around the
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prey by changing their locations randomly. These equations can also be applied to
explore a search space with N dimensions, allowing the dingo to move within
hypercubes around the best-known result obtained thus far.

In the provided formulas, D signifies the distance vector, and vector P
represents the position vector. The subscript d pertains to the dingoes, while the
subscript ‘p’ refers to the prey, denoting the best search agent among them. The

vectors A and B play a crucial role in guiding dingoes toward a specific portion
of the solution space around the prey. Notably, determines whether the prey is
moving away from or being pursued by the dingoes. Values less than -1 indicate
the former, while values above 1 denote the latter.

3.1.3 Hunting:

During the hunting phase, it's commonly assumed in these biologically
inspired algorithms that the pack members possess a strong intuition about the
prey's location. The alpha dingo typically leads the hunting endeavors, yet there
are occasions where beta and other members of the pack may also join in the
hunting process. In this phase, the alpha and beta, representing the two best
solutions within the dingo pack, guide the movements of other dingoes. Equations
(13)-(21) outline the equations governing their positional updates.

D, =|A.P.—P| (13)
5, —|A.F, — P (14
D, = |A.P. — P (15)
B =|P. - B.D.| (16)
B =[P, —B.D,| 17
P, =|P. —B.5,| (18)

The following formula is used to determine each dingo's intensity:

1. =log ;+1 (19)
F, —(1E —100)
15 =log ;+1 (20)
F, —(1E —100)
- 1 (21)
lo=log| ———=————+1
N E —@E -100) " j

3.1.4 Attacking the prey:
If the positions remain unchanged, signaling the end of the hunt, the
dingoes transition into the attack phase aimed at the prey. During this phase, the



398 M. Lavanya, G. Srinivasan

value of undergoes linear reduction across iterations. The parameter D—a spans

within the range of [-3b, 3b]. Consequently, as iterations progress, this range
gradually contracts, causing the dingoes to gradually halt their movement. The
suggested encircling method contributes to exploration to a certain degree.
However, to enhance exploration further, DOA needs additional operators. DOA
supports its quest agents in adjusting their positions by factoring in the locations
of o, B, other pack members, and the targeted prey. Despite utilizing these
operators, DOA retains the capability to deactivate local solutions.

3.1.5. Searching:

Dingoes rely on their pack's movements for hunting, consistently
advancing to pursue and confront prey. Using Band A for random values, values
below -1 indicate prey moving away, while those above 1 show the pack closing
in. These aid DOA in global scanning targets. Another crucial DOA element is
generating random numbers in [0, 3] for prey weights. It operates stochastically,
giving precedence to vector values <1 over >1 to navigate equation (1)'s gap
influence. This enhances effective search and avoids local optima. Depending on a
dingo's location, it randomly determines prey values, essential for meeting
requirements or exceeding them. offers stochastic exploration values from initial
to final iterations, preventing local optima. DOA concludes upon fulfilling
termination criteria. Fig. 1 reveals the pseudo-code for the proposed algorithm

1. Generate initial search agents

. Set b, Aand Bvalues

While termination conditions are not met do

Estimate the fitness and intensity cost of each dingo
Da:Dingo with finest search

D =Dingo with the second-finest search
B

D0=Dingoes search results afterward

Iteration 1
. Repeat
For i=1 to D,, do

=
© VWO N O UhWwWN

11. Update the latest search agent status
12. End for
13. Evaluate the fitness cost and intensity of dingoes

14. Record the value of Eﬁ,FﬂandFD.

15. Record the value ofb, AandB.
16. It= It+1

17. Check if It > stopping criteria
18. Output

19. End while

Fig. 1 Pseudocode for the proposed optimization algorithm — DOA
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4. Case Study Details, Simulation Results and Discussions:

To substantiate the effectiveness of the DOA in optimizing the objective function
(discussed in section 2), two sinusoidal test REDSs have been taken, and
simulations have been carried out for RPI considering single to three locations for
PG&E 69-bus system and two to four locations for the 18-bus sinusoidal test
system. The details of the two sinusoidal REDSs and the simulation results are
discussed under Art. 4.1 and 4.2.

Node number 1 has been taken as a substation/slack bus for all the
sinusoidal REDS. All nodes, except bus no. 1, are considered as load nodes. The
voltage for bus number 1 has been fixed as 1 p.u. RPI has been expected to be
applied from node 2 through the end node of the REDS. The proposed algorithm
using REDSLF has been developed and executed in MATLAB software, running
on an i5 Intel processor with 8 GB RAM. The solution vector size and the number
of iterations has been set to 800 and 100, respectively. For each node of the RPI,
two variables are assigned (optimal node and optimal sizing).

The cost of real power is taken as $120 / kW [17]. According to ref. [18],
the cost of reactive energy loss (kVARNh) is one-third of the cost of real power.
The purchase cost of the capacitor is $2.5 / kVAr and the cost of installation and
maintenance has been considered as $460 / node [19]. For all the REDSs, the base
MVA has been taken as 100 MVA. The base kV for PG&E 69-bus and 18-bus
REDS are taken as 12.66 kV and 11 kV respectively. To ascertain the impact of
RPIs on two sinusoidal REDSs, ISCs as mentioned in scenarios 1 to 3 have been
carried out. Capacitor investment cost related to heavy load variation has only
been considered for cost evaluation.

Scenario 1: Effect of RPIs at two optimal locations for 18-bus system /
Single optimal location for PG&E 69-bus system.

Scenario 2: Effect of RPIs at three optimal locations for 18-bus system /
Two optimal locations for PG&E 69-bus system

Scenario 3: Effect of RPIs at four optimal locations for 18-bus system /
Three optimal locations for PG&E 69-bus

4.1  18-bus test system — Results and discussions:

The first sinusoidal test system taken for evaluation is the 18-bus REDS
which is the extension of renowned 15-bus sinusoidal REDS. It has 18 buses, and
17 branches with a total apparent power demand of (1506.4+j 1536.8) kVA. The
apparent power loss under the Initial Condition (IC) for this test system is
(105.2268+j 98.0618) kVA. The minimum bus voltage under IC is 0.9171p.u. The
data about 18-Bus REDS can be viewed in [20]. The single line diagram for the
18-bus test system is shown in Fig. 2. The total RRPL cost under IC is
$12627.216 and $3922.47 per annum respectively.
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From Table 1 it is evidenced that RPIs under scenarios 1 to 3 yield RRPL
reductions between 44% and 52% respectively with reactive power penetration
between 81% and 91%. The difference in minimum bus voltage recorded after
RPI (i.e.) After Optimization (AO) is 0.0359 p.u. 0.038 p.u. and 0.0383 p.u.
respectively considering scenarios 1 to 3. From Table 1, it is also apparent that the
net FSs yielded by DOA under scenario 2 have been recorded as the highest
compared to scenario 1. However, scenario 3 reduces the net FS by $320.816
compared to scenario 2 because of the increased capacitor investment cost. Fig. 3
shows the performance of DOA in bus voltage enhancement under three
scenarios.

18 BUS TEST SYSTEM
T T

093 F

— 106 17 1s .
091 L L s L ! " L s
2 4 6 3 10 12 14 16 18
BUS NUMBER

Fig. 2 — One line diagram of 18-bus REDS [32] Fig. 3- Bus Voltage profile (IC / AO)
— 18-bus system — Scenarios 1 to 3

Table 1
Performance of DOA — 18-bus system — Scenario 1 to 3.
Parameters Cap. @ two |Cap. @ three| Cap. @ four
nodes nodes nodes
58.2304 / 52.3359 / 50.5913/
PLoss (AO) / Pross (IC) (KW) 105.2268 | 105.2268 105.2268
% P oss reduction 44.662 50.26372 51.9217
52.7143/ 48.064 / 46.6932 /
Quoss (A0) /Quoss (IC) (KVAR) | g5 0618 | 98.0618 98.0618
% Quoss reduction 46.2438 50.986 52.384
400 (6)
. . 600 (6) 400 (6) 400 (11)
Capacitor details (kVAR) 450 (11)
650 (16) 500 (16) 200 (15)
400 (16)
% Cap. Penetration 81.338 87.845 91.098
A Pross Cost ($) 5639.568 6346.908 6556.26
A Quoss Cost ($) 1813.9 1999.912 2054.744
Cap. Cost ($) 4045 4755 5340
Net F Ss ($) 3408.47 3591.82 3271.004
Vmin (p.U) 0.953 0.9551 0.9554

4.2. PG&E 69-bus test system — Results and discussions:

The next test system considered here is the PG&E 69-bus sinusoidal
REDS which has 69 buses 68 sectionalizing switches and five tie-switches. The
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total real and reactive power demand under nominal load is 4903.0477 kVA at
0.821365 power factor lagging. The RRPL and minimum bus voltage under IC are
(225 +j102.14) kVA and 0.90919 p.u. respectively. The RRPL costs under IC are
$27000 and $4085.6 per year respectively. Figure 4 shows the single-line diagram
of the PG&E 69-bus test system.

PLEE #9 BLS TEST SYSTEM
T T |
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Fig. 4. One-line diagram of PG&E
69-bus REDS
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Fig. 5. Bus Voltage profile (IC/AO)
— PG&E 69-bus REDS- Scenarios 1 to 3

Table 2 reveals the performances of the PG&E 69-bus test system under
three scenarios mentioned previously. From Table 2 it is clear that the RRPL
reduction is found to be between 31% to 35.5% with reactive power penetration
between 50% and 67%. The differences in minimum bus voltage recorded are
0.02111 p.u., 0.02161 p.u., and 0.02191 p.u. respectively considering scenarios 1
to 3. By calculating the net FSs after scenarios 1 to 3, it is noticeable that the
difference between scenarios 2 and 3 and scenarios 1 to 3 are $902.84 and
$1215.4 respectively. From Table 2, it is understandable that the net FSs after
scenario 1 are better than scenarios 2 and 3. Figure 5 reveals the performance of
bus voltages under IC and AO for all the three scenarios.

Table 2
Performance of DOA — PG&E69-bus system — Scenario 1 to 3
Parameters Cap. @ single | Cap. @ two |Cap. @ three
node nodes nodes
PLoss (AQ) /PLoss (IC) (KW) 150.9 /225 146.41 /225 | 145.09/ 225
% P\ oss reduction 32.93333 34.93 35.51555
69.961 / 67.245/ 66.651 /
Quoss (A0)/ Quoss (IC) (KVAR) | 157 1155 102.14 102.1155
% QLoss reduction 31.488 34.1481 34.7298
350 (11)
Capacitor details (KVAT) 1350 (61) 1320000((1681)) 250 (20)
1200 (61)
% Cap. Penetration 50.1188 57.544 66.825
A Pioss Cost ($) 8892 9430.8 9589.2
A Quoss Cost ($) 1286.18 1395.8 1418.58
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Cap. Cost ($) 3835 4670 5880
Net FSs ($) 6343.18 6156.6 5127.78
N min (p.U) 0.9303 0.9309 0.9317

Tables 3 to 5 expose the comparison of the performance of other
optimization techniques with DOA considering three scenarios. From Table 3, it
is witnessed that the performance of DOA under scenario 1 yields a better
performance (RRPL reduction, bus voltage enhancement, and net FS) than [3,4,5].
Though the real power loss reduction achieved by DOA is better than [8], it is to
be noted that due to the lower capacitor value optimized by [8], the net FS is
better than DOA.

The performance of DOA under scenario 2 has been compared with [4 —
10]. It is visible from Table 4 that the real power loss reduction achieved by DOA
is better than [5 — 10]. The capacitor penetration optimized by DOA is better than
[4-6, 10]. The minimum bus voltage enhanced by DOA is better than [4 — 9] and
equals [10]. The net FSs achieved by DOA are better than [4,5,6,8,10]. Though
the real power loss reduction realized by MPSO [4] is more than DOA, the net FS
by [4] is $363.2 less than DOA. On the other hand, it is apparent from Table 4 that
the real power loss reduction attained by [7,9] is less than DOA. While calculating
net FS, [7,9] yields a better FS than DOA because of the less cap. investment cost.

Table 3
Comparison of performance of DOA — PG&E69-bus system — Scenario 1
AEFA [3] |AEFA [3]

Parameters (Strategy 1)|(Strategy 2) MPSO [4]|SFSOA [5]| ACE [8] | DOA

175.92/ [152.02/ 150.9/ | 152.04/ | 152.4/ | 151.12/
PLoss (AO)/ PLoss (IC)KW | "50406  D24.96 225 225 225 | 225
% Puoss reduction 21.8  [32.42354 |32.93333| 32.42666 | 32.2666 |32.835555

79.86/ [70.48/ 69.961/
QLoss (AO)/ QLoss (|C) kVAR 102.15 102.15 102.14
% Quoss reduction 21.82 31.01 31.488
Capacitor details (kVAr) 1100 (57) [1350 (61) [1400 (61)] 1330 (61) |1239 (61)| 1350 (61)
AP oss Cost ($) 5884.8 [8752.8 8892 8755.2 8712 8865.6
AQLoss Cost ($) 891.6 |1266.8 1287.16
Cap. Inv. Cost ($) 3210 3835 3960 3785 3557.5 3835
Net Profit ($) —considering | 57,8 L9178 4932 | 49702 | 51545 | 5030.6
Only Pl_oss COSt
Net Profit ($) — considering 35664  16184.6 6317.76
both cost
Vmin (p.U) 0.921 (65) 10.931 (65) | 0.9291 093 | -------- 0.931

Table 5 compares the effect of RPIs at three optimal locations with [4,8,10
— 14]. The real power loss reduction attained by the proposed method is better
than [8,10 — 13]. It is to be noted that the capacitor penetration achieved by DOA
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is better than [10,14] and equals [11,12,13]. However, the capacitor penetration by
[4,8] is less than DOA which is found to be minuscule [4]. The minimum bus
voltage enhancement achieved by DOA is better than [4,8,10-13]. Finally, the
FSs accomplished by DOA are better than [10-14]. The FS difference between
DOA and [4,8] seems to be $161 and $430.8 respectively.

Table 4
Comparison of performance of DOA — PG&EG9-bus system — Scenario 2
Parameters MESO SF[SE?A MVO [6] ISSFFSS[/7] ACE [8] POD[S]S CA Tl%']A DOA
PLoss (AO) / Pross| 145.27 / | 146.44  |146.6294 |147.762 /| 146.9/ | 147.78/ |146.43/| 146.41/
(1C) (kw) 225 225 |/224.895|225.0006| 225 225.02 | 224.97 225
% Puoss reduction| 35.44 |34.91555| 34.801 | 34.33 |34.7111| 343 34.91 34.93
Capacitor details| 300 (18) | 361 (17) | 600 (18) | 250 (20) {299 (18) | 250 (20) |350 (17)| 300 (18)
(KVAr) 1400 (61)[1275 (61)[1200 (61)|1150 (61)[1193 (61)| 1150 (61) [1262 (61)]1200 (61)
APoss Cost ($) | 9567.6 | 9427.2 | 9391.86 | 9268.62 | 9372 9268.8 | 9424.8 | 9430.8
Cap. Inv. Cost | $5170 | $5010 | $5420 | $4420 | $4650 | $4420 | $4950 | $4670
Net Profit ($) | 4397.6 | 4417.2 | 3971.86 | 4848.62 | 4722 4848.8 | 4474.8 | 4760.8
Viin (p.U) 0.93 0.9303 | 0.9308 | 0.9289 | ----- 0.9302 | 0.9309 | 0.9309
Table 5
Comparison of performance of DOA — PG&E69-bus system — Scenario 3
Prow (AO)| gy p | Capacitor ) ), Cap. Inv.| Net Profit
Parameters /PEﬁssV\f)IC) reduction ((lj(e\t/ag\lrs) Cost ($) |Cost ($) ($) Vinin (p-)
144.79 / 320 (21)
MPSO [4] 225 35.63 1200 (61) | 9625.2 5755 3870.2 | 0.9311
230 (64)
146/ 201 (12)
ACE [8] 295 35.1111 | 207 (21) 9480 5340 4140 | --------
1176(61)
244 (62)
145.08 / 373 (11)
ROA [10] 294 97 35.51 230 (21) 9586.8 | 5947.5 | 3639.3 | 0.93125
980 (61)
145.397 300y | | e
M'ifgcp / 3539978 | 300 (18) | 9561 | 5880 | 3681
225.072 1200 (61)
145.22 / 300 (11)
HGWO [12] 225 35.457777 | 300 (17) | 9573.6 5880 3693.6 | 0.9308
1200 (61)
14558 / 4002
GAMS [13] 224'9352 35.27914 | 150 (22) | 9524.784 | 5880 | 3644.784
' 1200 (61)
145.37 / 450 (12)
CBGA [13] 224'9532 35.37767 | 150 (22) | 9549.984 | 5880 | 3669.984 | ---------
' 1200 (61)
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144.96 / 400 (12)

BoA[14] | M2 3557 | 230(19) | 9604.8 |6047.5 | 35573 | 0.9327
1237 (61)
145,09 / 350 (11)

DOA 20! | 3551555 | 250 (20) | 9589.2 | 5880 | 37092 | 09317
1200 (61)

5. Conclusion

This work emphasizes mainly the RPIs in sinusoidal REDS using a new,
durable, and robust NIMOA called Dingo Optimization Algorithm (DOA) to
identify the optimal variations in penetration of SCs to achieve maximum RRPL
reduction with a reduction in capacitor investment cost thereby more FSs while
ensuring that all equality and inequality constraints are met. The major advantage
of DOA s the efficient handling of discrete, complicated, non-linear, and large-
dimensional optimization problems. Two renowned sinusoidal REDSs such as 18-
bus and PG&E 69-bus have been utilized to demonstrate the usefulness of DOA.
The following are the observations:

(i) In general, all the reactive power optimization-based research work in
REDS considers reduction in real power loss reduction with capacitor investment
cost. However, this work focuses on the minimization of both RRPL reduction
with capacitor investment costs.

(if) No SBIs have been adopted in this work to select the most appropriate
nodes for RPI. Instead, DOA has to identify the most possible nodes and the
proper reactive power capacity of the capacitor.

(if) Considering 18-node REDS, the RRPL reduction has been identified
between 45% and 53% considering all three scenarios with FSs between $3.2K to
$3.4K /year is evidenced.

(iii) Regarding PG&E 69-bus REDS, the reductions in RRPL are found to
be between 31% and 36%, with the reactive power penetration between 50% and
67% is noticed. The FSs considering all three scenarios vary between $5.1K and
6.35K. The performances have been compared with the recent NIMOAs presented
in the literature. The difference in RRPL reduction achieved by DOA is found to
be better and significant.

Based on the simulation results and the preceding discussions, it is evident
that DOA consistently outperforms other methods in achieving a reduction in
RRPL net FSs. Hence, DOA has been recommended to be another strong and
efficient technique for solving optimal RPI.
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