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SELF-ADAPTIVE ALGORITHMS FOR SOLVING FIXED POINT
PROBLEMS OF PSEUDOCONTRACTIVE OPERATORS
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In this paper, fized point problems of pseudocontractive operators are inves-
tigated. We present a self-adaptive algorithm for finding a fixed point of a Lipschitz
pseudocontractive operator in a real Hilbert space. Our algorithm has no need to know a
priori the Lipschitz constant of pseudocontractive operators. Strong convergence result
is obtained under some additional assumptions.
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1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H.
Let T : C — C be a nonlinear mapping. In this paper, we devote to solve the following
interesting problem of finding x € C' such that

x=Tx. (1)

Now, we know that problem (1) is an important topic because many nonlinear problems can
be reformulated as fixed point equation (1). Many methods have been proposed for solving
(1), see [1, 3, 10, 13, 15, 20, 23, 30]. There are four common methods ([7-9, 12, 14]) for
approximating a fixed point of T":

Picard: z, € C, zpy1 =Txp, n > 1, (2)
Krasnoselskii-Mann: 21 € C, 41 = (1 — an)xn + T, n > 1, (3)
where a, € (0,1),
Ishikawa: 21 € C,y, = anp + (1 — apnTxp, Tnt1 = Bun + (1 — Bn)Tyn,n > 1, (4)
where a,, € (0,1) and 8, € (0,1) for all n > 1 and
Halpern: 21 € C, 2p11 = apu+ (1 — ap)Tzp,n > 1, (5)

where u € C' is a fixed point and a,, € (0,1).

Remark 1.1. (i) If T is contractive, then the sequence {x,} generated by Picard’s method
(2) converges to the unique fized point of T. (i) If T is nonexpansive (not contractive),
then the sequence {x,} generated by (2) does not converge and the sequence {x,} gener-
ated by Krasnoselskii-Mann’s method (3) converges weakly to a fixed point of T. However,
Krasnoselskii-Mann’s method does not converge in the strong topology. (iii) The sequence
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{xn} generated by Halpern’s method (5) converges strongly to a fized point of a nonexpansive
mapping T.

The importance of pseudocontractive operators depends on their relation with mono-
tone operators. Browder and Petryshyn ([2]) studied weak convergence of Krasnoselskii-
Mann’s method for strictly pseudocontractive operators. However, Krasnoselskii-Mann’s
method fails to converge for pseudocontractive operators ([4]). Consequently, Ishikawa’s
method introduced in [1] is more attractive than that of Krasnoselskii-Mann’s method and
which converges to a fixed point of a pseudocontractive operator. Unfortunately, strong
convergence of Ishikawa’s method has not been obtained without compactness assumption
on C' or T. Construction of iterative algorithms for finding fixed points of nonlinear oper-
ators is still an interesting work and has attracted so much attention, see [5, 6, 1619, 24—
29, 31, 33, 34].

The main purpose of this paper is to construct iterative algorithm for approximating
fixed points of pseudocontractive operators. We present a self-adaptive algorithm for finding
a fixed point of a Lipschitz pseudocontractive operator in a real Hilbert space. Our algorithm
has no need to know a priori the Lipschitz constant of pseudocontractive operators. Strong
convergence result is obtained under some additional assumptions.

2. Preliminaries

In this section, we collect some definitions and lemmas. Let H be a real Hilbert
space with inner product (-,-) and norm || - ||. Let C' be a nonempty closed convex subset
of H. Throughout, the symbols “ — ” and “ — ” denote weak convergence and strong
convergence, respectively. Use Fiz(T') to denote the set of fixed points of a mapping T'.

Definition 2.1. A mapping T : C — C is said to be L-Lipschitz if there is a nonnegative
constant L such that

[Tz —Ty|| < Lllz — y||, v,y € C.
T is said to be nonerpansive when L =1 and T is said to be contractive if L < 1.
Definition 2.2. A mapping T : C — C is said to be pseudocontractive if
(Tz —Ty,z —y) < |z —y|? Va,y € C. (6)
Recall that the metric projection Po : H — C' is defined by

Po(z) := argmin ||z — y||, Va € H.
yel

It is well known that Pc has the following property: for given x € H,
(2 — Po(a), Pe(x) —y) > 0, ¥y € C.
The following results are well known:
lrz + (1= T)yl* = 7llz]* + (L = D)lyl* = 71 = )]z —y|*, Yo,y € H,T R, (7)
and
lz +yl* < ll2[* + 2(y, @ +y), Yz, y € H. 8)

Lemma 2.1 ([32]). Let C' be a nonempty closed convex subset of a real Hilbert space H.
If T : C = C is a continuous pseudocontractive operator, then I — T is demiclosed at the
origin.

Lemma 2.2 ([11]). Let {w,} be a real number sequence. Suppose that there is a subsequence
{wn;} C {wn} such that w,, < wn,11,Yi > 0. For every n > ng, set ¢(n) = max{ng < i <
N Wy, < Wnig1)f. Then lim, o ¢(n) = oo and max{w (), wn} < Weny+1, YN > no.
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Lemma 2.3 ([22]). Let {a,} be a real number sequence. If ap, > 0 and apy1 < (1—7,)an +
by, where v, and by, satisfy (i) 0 <y, <1, (ii) > oo vn = 00 and (iii) limsup,,_, o :— <0,
then lim,, .. a,, = 0.

3. Main results

In this section, we present a self-adaptive algorithm for finding a fixed point of a
Lipschitz pseudocontractive operator. Assume that: (i) H is a real Hilbert space and C C H
is a nonempty closed convex set; (ii) T : C — C'is an L-Lipschitz pseudocontractve mapping
with Fixz(T) # 0 and [ C — Cis a o-contractive mapping. Let 7 and A be two constants in
(0,1) and p € (0, —) Suppose that {v,}, {¢,} and {d,,} are three real number sequences
in [0, 1] satisfying the following assumptions

(C]-): Yn + 5n + Cn < ]-7 limy, o0 Tn = 07 and Zzozl Yn = OC;
(c2): 6 > 1 — min{pu, @} and 0 < liminf,_, ¢, <limsup,,_, . (n < 1;

3): limy,_yoo =22 =0=Cn — (),
’YTL

Algorithm 3.1. For any initial point o € C, let {x,,} be a sequence generalized by

= (1 =m)zn + 00 Ton, (9)
where N, = pr™ and m = min{0,1,2,---} such that
Ml Tyn = Tanll < Alyn — znl, (10)
and
Tnt1 = YnP(Tn) + OnZn + GuTYn, n = 0. (11)

Remark 3.1. The search rule (10) is well-defined and p > n, > min{y, @},n > 0.
Next, we show the convergence of the sequence defined by Algorithm 3.1.
Theorem 3.1. The sequence {x,} generalized by (11) converges strongly to p = Ppiy(ry@(p).
Proof. Let p* € Fiz(T). From (11), we have
1201 = "Il = Iy ((@n) = P) + 6n(@n — ") + Gu(Tyn — p*) = (1 = Y0 — 0 — )P |
< lle(@n) = p*l| + 160 (20 = P) + Cu(Tyn — Pl (12)
+ (1 =7 = 6n = G)lIp"|-
According to equality (7), we have
180 (25 = D) + Ca(Tyn — P = 80 (00 + Ga)llzn — P71 + Ca (6 + Ca) I Tyn — P77

(13)
= 6nCallzn — Ty
Since T is pseudocontractive and p* € Fiz(T), we obtain
1Tyn =217 < llym = 2" 17 + llyn — Tynll*, (14)
and
I T2n = p*II* < llwn — p" 1 + lon — Tn*. (15)

From (7), (9) and (14), we have
lym = "1 = 11 = 1) (@0 = p*) + 10 (T2 = p7)II?
= (1 =na)llen = 1P + mal|T2n — p*|* = 10 (1 = na) 2 — Ty ?
< (1= na)llzn = 0 [1* + 0 (lon = p*I° + llzn — Taa|) (16)

= Nn(1 =) |20 — Tmn”z

= |lzn _p*HQ "‘Wi”xn - Tmn”Q-
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Similarly, we have

||yn - Tyn||2 = H(l =) (@n — Tyn) + (T, — Tyn)||2

(17)
=1 =na)llzn - Tyn||2 + || T — Tyn||2 = (L =) |20 — Txn”Q’

Note that 7, ||Tyn — Txn || < Ay — 24| and ||z, — ynl| = M l|2n — Ty ||. This together with
(17) implies that

[yn = Tynll* < (1= na)l2n = Tynll? + 00220 = T )|* = 0u(1 = o)l — Taa|®. (18)
Combining (14), (16) and (18), we have

1Tyn = p* 1> < llan — "> + nil|lzn — Tanl® + (1 = na)ll2n — Tynl?
+ 77n>‘2||xn - TQ:n”2 = (L =) |20 — Tanz (19)
= |lzn = P17 + (1= nn) 20 = Tyall® = mn(1 = 2 = 20,) |20 — Ty ||

Since 1, < g, 1 — A2 — 21, > 1 — A2 —2u > 0. It follows from (19) that
1 Tyn = "1 < llzn = p*1* + (1 = 1) |20 — Tyl*. (20)

Since 6, > 1 —n, and 0 < 0, + ¢y < 1, (1 — 0,) (0 + Cn) — I, < 0. Substituting (20) to
(13), we have

18n(@n = 1) + Ca(TYn = P < 00(8n + Ca)llzn = P*I1% + CaBn + Ca) (lzn — p* |7
+ (1= nn)llzn = Tynll?) = 0nCallzn — Tyal®
= (0n + G)llzn = P"I1% + Cal(1 = 90) (G0 + Ga) = Sulllzn — Tynll?
< (On + ) ?llwn —p7|.

(21)

It follows from (12) and (21) that

[Zn+1 = "l < Anlle(@n) = @) +vnllo@) = p*[| + (90 + CGa)llzn — P
+ (L =n = = G)IIP"|l
< (0 + 0n + Go) |2 = 7|+ Yallo(@™) = Pl + (1 =35 = 60 — G lIp” |l
<=1 =) =0y = C)lllwn — |
+ (1= 6n — Gu) max{|le(p*) —p" ||, Ip*[}

« max p*) —p*|,|lp*
< ma{{la, — pe|, o) —p L Il

l1-0
xp Max @p* -, ||lp*
< max{||zo — p*|, il (1)_0 I I ||}}

This implies that the sequence {z,} is bounded.
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Take into account of (8) and (11), we have

|5+1 _p*HQ = [lvm(e(zn) = p*) + 0n(zn — p*) + G (Tyn — ")

— (1= =8 = G)p"|I

< |8n(@n = p*) + Ca(TYn _p*)”2 + 27 {p(Tn) — P*, Tns1 — D7)
= 2(1 =0 = On = )P, Tng1 — P°)

< (0n + Cn)2||xn _p*H2 = Gul0nnn — (1 = nn)Calllzn — Tyn||2
+ 2900 ||lzn — P |l|2n41 — P + 270 {p(P") — P*, Tn+1 — P7)
= 2(1 = yn = On = Gu)(P", Tng1 — P°)

<(1- 7n)2||xn _p*”2 = Gul0nnn — (1 = nn)Calllzn — Tyn||2
+ ollzn — p*||2 + o l|Tn1 — p*Hz
+ 29 (e (p*) = P Tn1 — P7)
=2(1 =y = 00 =GP Tt — D).

Therefore,

7%1]”%71 -D ”2 +

_x2
1—o0v, 1—J'yn”xn al

1 =PI < [1 =

Cn 2
_7571 n 1- n)sn n_T n
1_0%[ M = (1= 1n)Galll2 Yul
bl g
1 _O_,yn’)/n pp D s Tnt1 p
2
- 1- n_(sn_ n *7 n —p*
(1= = 0 = G s =) (22)
2(1—o0) 5
<1_7n n_* 1- n_én_nM
<[ 1_0%v]llx Pl +1_a%( gt Cn)
O ot — (1= 1)l — Tyl + 2
I —ovm 1—omm
2 " * *
+1_O_’_Yn’7n<90(p )_p y Tn+1 p >7

where M > sup,, {[lzn — ul]?, [lp*[[|zn41 — p*|}-
If there is some integer m > 0 such that {||z, — p*|, |e(®*) — p*|Illxn+1 — P*||} is
decreasing for all n > m, then lim,_, ||z, — p*|| exists. Thanks to (22), we have

Cn 2
571 n — 1_ n)Sn n_T n
170%[ N — (1= ma) G|z Yull
2 — o . . "
<1 222 e — 1P~ s — 7+ M (23)
— 0n 1—0ov,

2
+7’7nM+ (1 _’Yn_én_Cn)M

L—omm L —ovm
Observe that liminf,,_, o lfT"%[(Snnn — (1 =mn)Cn] > 0. This together with (23) implies that

nll)rr;o |z, — Tyn|| = 0. (24)



52 Yang Chao, Yeong-Cheng Liou, Lu Zheng

By (8), (9) and (10), we have
lyn _TynH2 ||(1 _nn)(xn _Tyn)"‘nn(Txn _Tyn)Hz
=1 =n)llzn — Tyn||2 + || Tz — Tyn||2 = (L =) |20 — Tfanz
<(1- 77n)||mn - Tyn||2 + nn)‘QHxn - T$7L||2 - nn(l - %)H% - TanQ (25)
=(1 nn)Hxn_Tyn”Q _nn(l_nn_/\2)||xn_Txn||2
<(1- 77n)||xn - Tyn||2
which together with (24) yields ||y, — Tyn|| — 0. By (25), we conclude that

N (1 —nn — /\2)”5”71 - Txn”Q <1 —n)lln — Tyn||2 = [lyn — Tyn||2 -0,

and hence
nh_)n(go |z — Tzy|| = 0. (26)
Since {z,} is bounded, there is {x,,} C {z,} such that x,, — p and
limsup(p(p) — p,zn — p) = lim (p(p) — p, Tn, — p), (27)
n—00 1—>00

where p = Ppiz(1)¢(p)-

From (26), we have ||z, — Tzp,|| — 0. Using Lemma 2.1, we deduce p € Fiz(T). It
follows from (27) that

limsup(p(p) = p, @ —p) = lim (p(p) = p, 20, —p) = {p(p) = p:p —p) < 0.

n— 00 100

Note that ||zpt+1 — znll < Yalle(@n) — zull + CullTn — Tyn|| — 0. Thus,

limsup(p(p) — p, Tnt1 —p) < 0. (28)
n— o0
Thanks to (22), we obtain
2(1—o V2
lzne =l < (1= 2= = pl2 4 2
1— oy, 1—0ov (29)
2 2
n — Pydn - —(1 n (sn — Sn M7
T g o) = prtnis —p) g (1 Gn)

According to Lemma 2.3, (28) and (29), we conclude that x,, — p.
Suppose that there is an integer k such that ||z — p|| < ||zk41 — p||. Let w, =
{llz, — pl|?}. Hence, wi, < wyy1. For all n >k, set ¢(n) = max{l € N[k <1 < n,w; < w1}
Then, ¢(n) is non-decreasing, lim,, o 5(n) = 00 and w¢(,) < Wen)41 for all n > k.
Similarly, based on (26), we have limy, o [|Z¢(n) — T%c(n)|| = 0 which results in that
Wu (Zs(ny) C Fiz(T). So,

lim Sup<g0(p) — Dy Tg(n)+1 — p> <0. (30)
n—oo
By (29), we have
2(1—-o0)
<pn- 2T — s —p, _
Wom1 < [1= 7= p— Vemwsm) + 7= e Yo {o(p) =P, Ze(ny41 — P)
) @1
+ (1= Yem) = Octn) — Ce()) M + —=2— M
1- 0%s(n) ( <) <) . )) 1- T%s(n)
This together with (30) leads to
lim sup we(ny4+1 < limsup we(y)- (32)

n—oo n—oo
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Since we(n) < We(n)+1, it follows from (31) that

Ys(n 1
wﬁ'(”) S g( ) M + <Q0(p) - D, Ig’(n)+1 *P)
2(1—o0) l1-0 (33)
1
t1 o 0(1 = Ye(n) = Oc(n) = Ce(n)) M,

Combining (30) and (33), we have limsup,,_, ., W) < 0 and hence lim,, oo W¢(n) = 0 which
together with (32) implies that lim,, o We(n)+1 = 0. Applying Lemma 2.2 to get 0 < w,, <
max{we(n); We(n)+1} Which indicates w, — 0, i.e., x, — p. The proof is completed. O

4. Conclusion

Krasnoselskii-Mann’s method fails to converge for a pseudocontractive operator T'.
At the same time, strong convergence of Ishikawa’s method has not been obtained without
compactness assumption on C' or T'. In this paper, we construct a self-adaptive algorithm for
finding a fixed point of a Lipschitz pseudocontractive operator. Our algorithm has no need
to know a priori the Lipschitz constant of pseudocontractive operators. Strong convergence
result is obtained under some standard conditions.
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