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TIGHTENING FRAMES USING SOME ACTIONS ON THE FRAME
OPERATOR

Abolhassan Fereydooni®

In this paper, letting S be a frame operator, we show that there is a sequence of
polynomials {pn(S)}, cn, without the constant term, converging to the identity operator.
We can choose n € N such that the reconstruction formula induced by pn(S) is as tight as
desired. The first degree polynomial with optimal bounds and a second degree polynomial
are introduced.
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1. Preliminaries

Although Duffin and Schaeffer [3] introduced frames in studying nonharmonic Fourier
series, their importance was recognized some decades later, when Young wrote his book
entitled Nonharmonic Fourier series [15]. Thereafter, Daubechies, Grossmann and Meyer
extended and expanded frames [7]. The interested readers are referred to [5] for studying
about frame theory.

The art of frames theory [2] is its flexibility under perturbations and permutations
(unconditional convergence) in presenting functions using a single summation(}) (1.2). In
the present paper, we slightly deviate from this old tradition, single summation (3.17), in
order to obtain some reconstruction formulas with some better bounds (3.16).

In this paper, H denotes a separable Hilbert space, B(H) is the set of bounded linear
operators on H and N is the set of natural numbers. For T' € B(H), T is said to be positive
if 0 < (Tf, f) forall f € H. A partial order on B(H) is defined as follows. We write T' < S if
(Tf, Y <(Sf,f) forall feXH. For A,Be€R, by A< S < B, we mean that AT < S < BI,
where I denotes the identity operator.

A sequence of vectors {f;};en C H is called a frame if there are positive constants
A, B such that

AIFIP <N P < BIIP, fed (1.1)
i€N
When A = B, {f;}ien is called a tight frame. If the right inequality is satisfied, {f;}ien is
said to be a Bessel sequence with bound B. It is proven in [5] that the operator

S:H—=H, Sf=> (f.f)f
i€N
is well-defined, positive and invertible and

F=Y L8 =D ()87 i (1.2)

IS 1€EN
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Also A < S < B and consequently [5],

1 A
I—=5||<1- = 1. 1.3
BH 4 < (1.3)

Suppose that for some «, 5 € (0, 00),
I —aS||<B <1
Then we have 1 —aS << 1l,aS—-1<f<land0<1—-p<1. So

1- 1
0< =8 g 1th
a «

Inverting conclusions above proves that for a, 8 € (0, 00),

1- 1
I—aS|<B<1 < 0< aﬁgsg%ﬂ. (1.4)
Lettinga:%ﬁandﬁz *327_15_4,47
2 2A
(17— S€1-=——<1 <= 0<A<L<S<B. (1.5)

B+ A B+ A

2. Tightening Frames

In practise, computing the inverse of frame operators is hard and we should find some
efficient numerical methods to compute the inverse of the frame operators [3, 4]. When the
frame is tight, the frame operator becomes S = Al and every f € H has the representation
f=%Yienlfs fi) fi

In comparison with (1.2), this reconstruction is more desirable since it is not necessary
to calculate the inverse of the frame operator. Since ||I — £S|| < 1— 4 < 1, in [6] and [5,
Theorem A.5.3] it is shown that the inverse of the frame operator can be written in the form

of Neumann series
1 & 1 .\"
-1
= — I—— . 2.1
s BZ%< 55) (2.1)

By closing A and B, S tends to the identity operator (up to constant), and hence the series
(2.1) converges more quickly. For closing A and B some concepts have been introduced:
controlled frames [1, 141] and scalable frames (weighted frames) [1, 9, 10]. The idea of
controlled frames is multiplying the frame operator by a positive invertible operator C' in
order to obtain some better frame bounds A’ and B’, i.e.,

0<A< A <SC<LKB <B<o.

The aim of studying scalable frames is to find a sequence of nonnegative scalars {c; };cn and
some constants A’ and B’ such that

ANFIP < ANFIP < Do allh P < BISIP < BISIP, 0# f €3t
1€EN
In the methods described, letting S’ be the new frame operator associated with a controlled
or scalable frame, by (1.3) we have
A’ A
Sl-Z 512
For this purpose, we follow another way. We look for a polynomial p such that
0<A<A <p(S)<B' <B<oo.

for some constant A’ and B’ (3.16). Our method strongly depends on some results in the
operator theory which are established in the next section.

1
Ir- 5




Tightening frames using some actions on the frame operator 171

3. Polynomial Actions on the Frame Operator

Let T' € B(H) be a self-adjoint operator and h be a continuous function over
o(T) :={X € C| A\ — T is not invertible},

the so-called spectrum of T'. The spectral mapping theorem [6, VIIL.2.7] states that o (h(T)) =
h(o(T)). Let S be the frame operator of a frame with bounds A, B. Then o(S) C [4, B|
and sup{x | z € o(S)} = ||S|| < B, [13, Proposition 5.1.1]. Putting S~! instead S we
have o(S~1) C [B~!, A71], and by above equation

187 = sup{a | = € o(S7H)} = sup{z | z € o(5) 7'}
= (inf{z |z € a(9)}) " <A

In the second equality we used the function h(x) = =% in the formula o(h(T)) = h(o(T)),
which & is continuous on o(S71) C [B71,A7Y. So A < [|S7Y7! = inf{x | x € o(5)}.
Therefore,

<|IS7HT! =inf{z |2 € 0(8)} <sup{a |z € o(S)} = |I5] < (3.1)
Assuming p is a polynomial with real coefficients so that p([A4, B]) C (0, ) we have
a(p(5)) = p(a(5)) C p([4, B]) € (0, 00). (3-2)

Since [A, B] is compact and p is a continuous function, p([A, B]) is compact and there are
A’,B" € (0,00) such that p([A, B]) C [A’, B']. Since by (3.2) o(p(S)) C [A’, B'], 0 is not in
a(p(S)). Hence p(S) is invertible and using p(S) instead S in (3.1),

_1—1
A< lpS)7H T, IS < B
In other words, A’ < p(S) < B’. The arguments above motivate the use of polynomials p
such that p(S) induces some better frame bounds, i.e.,

A
A< A" <p(S)< B <B, I——p H —E.
First, we consider the simplest polynomials of the form p(z) = 2™,z € R,n € N. For every

neN A" < 8™ < B™, and hence for f € H,
AP <IN S U fa ) Fas fi) - s i) (i £) S BPIFIP. (33)
11 EN i eN in €N

The reconstruction formulas

F=Y3 0 Y ST i) Fins fin) -+ (oo fin) fi

i1ENi2eN in €N

=YD A i F) e (i Fi)S T i (3.4)

11ENi2EN in €N

I — ﬁS”H <1 ﬁ — 1; the situation even became worse. We

try the n-root of S,3/S; then /A < {”/§ /B, and by (1.3)

I

For sufficiently large values of n, {’F BI = 3/S. Apparently, everything is good, but, the basic
problem is finding a well-known representation for /S by summations (7). Therefore, again
we have to return to the polynomials.

—>O

Theorem 3.1. Let {f;}ien be a frame for H with frame operator S and frame bounds A,B.
Then there is a sequence of real polynomials {py }nen, without the constant term, such that
pn(S) = I, in the strong operator topology.
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Proof. Since B(H) is a C*-algebra for T € B(H), |TT*| = |T||* [6]. If T = T* then
HTQH = ||T||* and consequently for n € N,
[ 72| = 7" (3.5)

Now, by putting T'= I — %S,

1 2n 2n A 2n
_ = <(1-2) <1 .
‘ (I Bs) < (1 B) <1 (3.6)

Obviously (I — %S)zn can be written in the form of I — p,(S), where p,, is a poly-
nomial without the constant term. Therefore, (3.6) implies that

1 2n A2n
I——= <|1-—= .
(1-55) |<(-35) -

Notice that the theorem above is valid for all positive operators S whenever ||[I—S|| <
1. The polynomial p,, in the proceeding theorem is a polynomial of degree 2n.

As seen in the relations (3.3),(3.4) the reconstruction formulas involve computing 2n
nested summations. For this, from now on, we will focus on polynomials of degree 2 (or 1)
in the form of p(x) = bxr — az?, a,b € R, satisfying || — p(S)|| < 1. We need to prove a key
lemma.

1
= || — —
e

11 = pa(S)I| = |

O

Lemma 3.1. Let T be a self-adjoint operator and p(x) be a real polynomial. Then
Ip(T)|| = sup{lp(z)| |z € o(T)} =: [|p(@)|o0,0(1),

and
1 —p(T)|| = sup {[1 = p(z)| |z € o(T)} =: |1 — p(@)|lo0,0(T)-

Furthermore, if S is a frame operator with bounds A, B, then

I =p(9)I <11 = p(@) o, a,5)- (3.7)
Proof. We know that [6],
: nit . il . nt
sup{la [« € o(T)} = lim [T+ = lim |72% = lim |75 = 7]

the fact that T is a self-adjoint operator was used in the third equation. So ||T| =
sup{|z| |z € o(T)}. Since p(x) is real o(p(T)) = p(c(T)) C R. Therefore, p(T) is self-
adjoint and thus

Ip(T)]| = sup {|z| |z € o(p(T))} = sup {|z| [z € p(o(T))} .
If we put 1 — p(z) instead of p(z) in the previous equation, we get
11 = p(T)|| = sup{|z| [z € (1 = p() (o(T))}
= sup {[z] |z € (1 = p(o(T))}
= sup {[1 —p(z)| |z € o(T)}
=1 = p(@)lo.o(r)-
The last assertion of the theorem follows from the fact that o(S) C [4, B]:

I =p(S) <1 = p@) o0y < 1= P(@)llo0 14,8
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Proposition 3.2. Let {f;}ien be a frame for H with the frame operator S and the frame
bounds A and B. The polynomial p 2 (z) := ﬁx, manimizes ||1 — p(z)||oo,(4,3), where p

BT
ranges over the family of polynomials of the form p(x) = bx, b € (0,00). In this situation,
2 B-A
I— < . .
|- 5539 < 5 39

Proof. See the following figure: It is clear that infyec(o,o0) |1 — b%||lo,4,5), Occurs when

| (B,bB)
y |
: y=bx
1 T
Y (AbA) 3
A‘:’ :YB
Ficure 1
% <b< %. Thus
= bl oy =, inE 1=l (3.9)
Define
Y(b) := [|1 = bz[co,(4,B)- (3.10)
Observe that
¥(b) = max{bB — 1,1 — bA}. (3.11)

From Figure 2 it is obvious that t(b) gets its infimum when bB —1=1—bA. So b = BLM
and

2 2 2 B-A
inf = = — 2 B-1,1- Al = .
%i%<%¢(b) ¢(B+A) maX{B+A =572 } BT A (3.12)

Relations (3.9)-(3.12) imply that

\ wib)

y=bB-1
1 y=1-bA

|
'
s

2
B+A

e N
e

FIGURE 2
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inf 11— bellooap = | 1= bellooan) = 1221 b0 = g

(700 B\\A

In what follows, two families of polynomials of degree 2 are described. Let pgp(x) =
bx —ax? with a,b > 0. For polynomials of this form the points x = % and z = 3 are optimal
point and zero point of pgp, respectively. Assume that P; is the family of polynomials pgp
such that

( ) O<pab( a)é]"
(2) 0 <pab( ) <pab( ) < 1;
Also, let P, be the family of polynomials p,,(z) such that
(1) 1< pap ( )
(2) pa(A) < pab(B)

The possible infimum value for || — p(S)|| will be considered in Theorem 3.3, where
p belongs to one of these families, P, P2. The proof of the following theorem will be given
in the last section.

Theorem 3.3. Suppose that {fi}ien is a frame for H with the frame operator S and the
frame bounds A and B. Then

(1) Let ay = BiA, by = (BfA)Q. The polynomial p1(z) = pa,p, (x) belongs to Py and
B-A\?
— < . .
ir-m< (55 (3.13)
(2) Let az = (B-FA)%’ by = %. The polynomial pa(x) = pa,b, () belongs to
P2 and
(B A
I —pa(9)| < . 3.14
11— p2(S)|| B+ A7 1 4AB (3.14)
For every p € P1 U Py,
p(S)f = (bS — aSQ) f
=B L =D alf ) fa) fi f e (3.15)

ieN €N jEN
The theorem above has an interesting corollary.

Corollary 3.1. For ps = pa,p, in Theorem 5.3 the operator ps(S) is a positive invertible
operator and there are positive constants A’', B’ such that

B+ A

A< AL p2(S) < B' < B. (3.16)

Y]
We can take A’ = B34(1 — ), B' = BEA(1 + B) where B = (BJ(FBA)%. Also, the

reconstruction formulas

F=S b (Lo ) = D0 aa (£0(S) T )i ) fi

i€EN ieN jeN
= bl f f)p(S) T e = 30D anlf fi) iy £)(S) T s fE K, (3.17)
i€EN ieEN j

hold.
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Proof. Consider relation (1.4). Let a = =2+ in (1.4) and use ££4p,(9) instead of S and
B+A 2

o (B=A? .
B = (B1A+44B instead of 5. Thus 0 < 8 < 1 and
B+ A 1-— B+ A 1+ B+ A
2 Ofﬂ):Tﬂg 5 P2(9) < aﬁz 5 (L+5). (3.18)
Let'y:g—:g. Obviously, 0 < v < 1 and
__ B B-A\?
B_(B+A)2+4AB< Bra) —7 <7<t (3.19)

Hence
l—v<1-8<14+8<1+n.
Using (3.18) and (3.19), we compute

AﬁB—FA 24 B+A[( B-A
2 B+A 2 B+ A
B+ A B+ A
=2 20 <2 0-p)
B+ A
< 5 p2(5)
B+ A B+ A
S5 (1+p) < 5 (1+7)
B+ A - —A
2 B+ A
B+ A 2B
2 B+ A
= B.
In short,
B+ A B+ A B+ A
A<——Q1-9)< p2(S) < ——(1+p) < B.
Since 0 < B < 1, BTJFA(l — ) > 0. Then BTJFApg(S) is a positive invertible operator. The
reconstruction formulas are easily followed by (3.15) for p = ps. |

For p € Py, a similar reasoning implies that p(S) is positive and invertible. For every
f € 3, the sequences
. . . . . 71 . 2
(i biens (s fbbien {(Fp(S) M)} € 2,
participate in the reconstructions introduced in Corollary. The sequence {(f;, fi) }i jen is
fixed and {(f, f;)}iicn, {< £p(8) 7" fi>} _ needed to be computed.

i€
In the following theorem we derive a generalized version of frame algorithm by using
the method of polynomial actions on the frame operator.

Theorem 3.4. (Frame Algorithm of degree 2) The frame {f; }ien with bounds A, B is given.
Let p(x) = bx — ax? be the polynomial defined in Theorem 3.3(2). For f € H define go =0
and

gn = gn—1+bSf —bSgn—1 —aS2f+&529n_1, n > 0.
Then {gn 22, converges to f and

- B-4> \"
1f = gnll < <(B+A)2+4AB> Il £1I-
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Py 0<pa(£)<1 & 0<b<2Va

P, Pa | pan(A) < pap(B) © bA — aA®> <bB —aB? & (B + A)a < b, B £ b
P pa(B)<1 & b<Batyg
P, 1<pw (%) <2 & 2/a<b<2y20

TABLE 1. Conditions of P; , Py and their equivalences.

Proof. Observe that

f=gn= (I - (bS - CLSQ)) (f = gn-1)

= = p(S))(f = gn-1)-
By induction,
.f —Ggn = (I_p(S))n(f _90)'

Thus (3.14) implies that

If = gall = 11T = p(S)"I1I.f = goll

< =pS)N" I1f = goll

8SB-4) \
S ((B+A)2 +4AB> 111

4. Proof of Theorem 3.3

Every polynomial p,;, defined on [A, B] takes it’s extermums at A,B and %, because
Dl (%) = (0. We compute

b b2
— == A) = bA — aA? B) =bB — aB>. 41
ror(2) = e PslA) = A= 0%, () =00~ (@.1)

Fix 29,190 € RT. If 29 < pap (%) < 9o, then 2,/zga < b < 2,/yoa. The cases xg,y90 =0,1,2
can be found in Table 1. When pup(A) < pap(B) it can easily be seen that
bA —aA? <bB —aB?> <<= (B*—A%a<b(B-A)
(B+ A) < b .
2 2a
The properties of classes P1, Py and their equivalences are listed in Table 1. The reader can
readily check them.

— (B+Aa<d

Proof of part (1). In Relation (3.6) put n = 1 and apply ﬁ instead of % to derive
4 4 2 2
I- S — 2=~ S
(B—i—A (B + A)? )H |< B+ A >
24 \> [(B-4\°
<(1-") = (52— .
B+ A B+ A
On the other hand, we prove that p,,s, satisfies the conditions of P;:

2
4
b <B+A) b
Paby (1 ) =~""7 -1 = 0<pas (1 > <1

2@1 4@ 20;1

9 2

I— =
17 pu(S)] Y

S

<l
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Y y

2

Fu(B)

PulA) Pu(A)
FIGURE 3. (PZAngi FIGURE 4. inAg%SB
Also,
4 4 4AB
= — 2 = — 2 =
Pap (A) =bid = A" = A = e A = gy
4 4 4AB
B)=bB—-aB*= B - B* = :
Parpy (B) =01 B = ax (B+A4) (Bt A)?2 (B + A)2
Since
2 2 2 2 2 2 4AB
0<(B—A)"=2AB<B*°+A*=4AB< B*+ A°+2AB=4AB < (B+ A) :mg ,
+
then
0 < Payby (A) = Parp, (B) < 1. (4.2)
Proof of part (2). Under conditions of P, it is obvious that (see Figures 3 and 4)
11 = Pab(2) |00, 14,5) = max{l(a, b), k(a,b)}, (4.3)
where )
l(a,b) :=1—pap(A), E(a,b) = pap (2(1) —1. (4.4)

Use (4.1) to get l(a,b) = 1 —bA+aA?,  k(a,b) = % — 1. We show that ps = pa,», satisfies
the conditions of Py:
2
(bg)bg 8(B+ 4) (B+A)®+4AB _,  (B+4)°
Pazb: (B + A)* + 4AB 4x8 (B+ A +4AB

2@2 N 4CL2

Hence 0 < pa,p, (2%2) <2

We see that
8(B + A) 8 8AB
by (A) = by A — ag A? = A— A? = ,
Pagts (A) = bad —az (B+ A2 +4AB  (B+A) 1 4AB (B+A)? +4AB
and
8(B+A4) 8 8AB
asby (B) = b2B — agB% = B — B2 — .
Pzt (B) = 025 = az (B+ A +4AB  (B+ A 1 4AB (B+A)? +44B
Thus

0<(B—A)? = 24AB<B*>+A?= 8AB< B>+ A>+2AB +4AB
8AB
3 <
(B + A)* +4AB

= 8AB< (B+ A’ +4AB =
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Consequently, 0 < Payby (A) = Dagb, (B) < 1. We compute

l(a27b2> =1 — Pasbs (A) =1- (bgA — (J,QAQ)
1 (( 8(B+ A) A 8

2
B+ A)2 +4AB (B+A)2+4ABA>
(B+ A)? 4+ 4AB —8A(B + A) + 8A?
(B+ A)?2+4AB

and by (77?),

B+ A)? (B— A)?—4AB
E(az,bs) = Pag, | — | — 1= ( —1= .
(a2,b2) = Pa,b, (2(12) (B+A)2+4AB (B+ A)2 +4AB

So max {l(az, b2), k(az,b2)} = (B—A)?

(B+A)?+4AB*
Relations (3.7), (4.3) and the previous equation give

11 = p2 () < 11 = pa(@)lloo,ia,8) = 1 = Pasby ()l 4,5)
(B—4)
(B+ A)® +4AB’
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