

TIGHTENING FRAMES USING SOME ACTIONS ON THE FRAME OPERATOR

Abolhassan Fereydooni¹

In this paper, letting S be a frame operator, we show that there is a sequence of polynomials $\{p_n(S)\}_{n \in \mathbb{N}}$, without the constant term, converging to the identity operator. We can choose $n \in \mathbb{N}$ such that the reconstruction formula induced by $p_n(S)$ is as tight as desired. The first degree polynomial with optimal bounds and a second degree polynomial are introduced.

Keywords: frame, tight frame, spectral mapping theorem, frame algorithm.
Primary 42C15; Secondary 46L05.

1. Preliminaries

Although Duffin and Schaeffer [8] introduced frames in studying nonharmonic Fourier series, their importance was recognized some decades later, when Young wrote his book entitled *Nonharmonic Fourier series* [15]. Thereafter, Daubechies, Grossmann and Meyer extended and expanded frames [7]. The interested readers are referred to [5] for studying about frame theory.

The art of frames theory [2] is its flexibility under perturbations and permutations (unconditional convergence) in presenting functions using a *single* summation(\sum) (1.2). In the present paper, we slightly deviate from this old tradition, single summation (3.17), in order to obtain some reconstruction formulas with some better bounds (3.16).

In this paper, \mathcal{H} denotes a separable Hilbert space, $\mathcal{B}(\mathcal{H})$ is the set of bounded linear operators on \mathcal{H} and \mathbb{N} is the set of natural numbers. For $T \in \mathcal{B}(\mathcal{H})$, T is said to be positive if $0 \leq \langle Tf, f \rangle$ for all $f \in \mathcal{H}$. A partial order on $\mathcal{B}(\mathcal{H})$ is defined as follows. We write $T \leq S$ if $\langle Tf, f \rangle \leq \langle Sf, f \rangle$ for all $f \in \mathcal{H}$. For $A, B \in \mathbb{R}$, by $A \leq S \leq B$, we mean that $AI \leq S \leq BI$, where I denotes the identity operator.

A sequence of vectors $\{f_i\}_{i \in \mathbb{N}} \subset \mathcal{H}$ is called a **frame** if there are positive constants A, B such that

$$A\|f\|^2 \leq \sum_{i \in \mathbb{N}} |\langle f, f_i \rangle|^2 \leq B\|f\|^2, \quad f \in \mathcal{H}. \quad (1.1)$$

When $A = B$, $\{f_i\}_{i \in \mathbb{N}}$ is called a tight frame. If the right inequality is satisfied, $\{f_i\}_{i \in \mathbb{N}}$ is said to be a Bessel sequence with bound B . It is proven in [5] that the operator

$$S : \mathcal{H} \rightarrow \mathcal{H}, \quad Sf = \sum_{i \in \mathbb{N}} \langle f, f_i \rangle f_i,$$

is well-defined, positive and invertible and

$$f = \sum_{i \in \mathbb{N}} \langle f, S^{-1}f_i \rangle f_i = \sum_{i \in \mathbb{N}} \langle f, f_i \rangle S^{-1}f_i. \quad (1.2)$$

¹Department of Basic Sciences, Ilam University, Ilam, Iran. e-mail: a.fereydooni@ilam.ac.ir, fereydooniman@yahoo.com.

Also $A \leq S \leq B$ and consequently [5],

$$\left\| I - \frac{1}{B} S \right\| \leq 1 - \frac{A}{B} < 1. \quad (1.3)$$

Suppose that for some $\alpha, \beta \in (0, \infty)$,

$$\|I - \alpha S\| \leq \beta < 1.$$

Then we have $1 - \alpha S \leq \beta < 1$, $\alpha S - 1 \leq \beta < 1$ and $0 < 1 - \beta < 1$. So

$$0 < \frac{1 - \beta}{\alpha} \leq S \leq \frac{1 + \beta}{\alpha}.$$

Inverting conclusions above proves that for $\alpha, \beta \in (0, \infty)$,

$$\|I - \alpha S\| \leq \beta < 1 \iff 0 < \frac{1 - \beta}{\alpha} \leq S \leq \frac{1 + \beta}{\alpha}. \quad (1.4)$$

Letting $\alpha = \frac{2}{B+A}$ and $\beta = 1 - \frac{2A}{B+A}$,

$$\|I - \frac{2}{B+A} S\| \leq 1 - \frac{2A}{B+A} < 1 \iff 0 < A \leq S \leq B. \quad (1.5)$$

2. Tightening Frames

In practise, computing the inverse of frame operators is hard and we should find some efficient numerical methods to compute the inverse of the frame operators [3, 4]. When the frame is tight, the frame operator becomes $S = AI$ and every $f \in \mathcal{H}$ has the representation $f = \frac{1}{A} \sum_{i \in \mathbb{N}} \langle f, f_i \rangle f_i$.

In comparison with (1.2), this reconstruction is more desirable since it is not necessary to calculate the inverse of the frame operator. Since $\|I - \frac{1}{B} S\| \leq 1 - \frac{A}{B} < 1$, in [6] and [5, Theorem A.5.3] it is shown that the inverse of the frame operator can be written in the form of Neumann series

$$S^{-1} = \frac{1}{B} \sum_{n=0}^{\infty} \left(I - \frac{1}{B} S \right)^n. \quad (2.1)$$

By closing A and B , S tends to the identity operator (up to constant), and hence the series (2.1) converges more quickly. For closing A and B some concepts have been introduced: *controlled frames* [1, 14] and *scalable frames (weighted frames)* [1, 9, 10]. The idea of controlled frames is multiplying the frame operator by a positive invertible operator C in order to obtain some better frame bounds A' and B' , i.e.,

$$0 < A < A' \leq SC \leq B' < B < \infty.$$

The aim of studying scalable frames is to find a sequence of nonnegative scalars $\{c_i\}_{i \in \mathbb{N}}$ and some constants A' and B' such that

$$A\|f\|^2 < A'\|f\|^2 \leq \sum_{i \in \mathbb{N}} c_i |\langle f, f_i \rangle|^2 \leq B'\|f\|^2 < B\|f\|^2, \quad 0 \neq f \in \mathcal{H}.$$

In the methods described, letting S' be the new frame operator associated with a controlled or scalable frame, by (1.3) we have

$$\left\| I - \frac{1}{B'} S' \right\| \leq 1 - \frac{A'}{B'} \leq 1 - \frac{A}{B}.$$

For this purpose, we follow another way. We look for a polynomial p such that

$$0 < A < A' \leq p(S) \leq B' < B < \infty.$$

for some constant A' and B' (3.16). Our method strongly depends on some results in the operator theory which are established in the next section.

3. Polynomial Actions on the Frame Operator

Let $T \in \mathcal{B}(\mathcal{H})$ be a self-adjoint operator and h be a continuous function over

$$\sigma(T) := \{\lambda \in \mathbb{C} \mid \lambda I - T \text{ is not invertible}\},$$

the so-called spectrum of T . The spectral mapping theorem [6, VIII.2.7] states that $\sigma(h(T)) = h(\sigma(T))$. Let S be the frame operator of a frame with bounds A, B . Then $\sigma(S) \subset [A, B]$ and $\sup\{x \mid x \in \sigma(S)\} = \|S\| \leq B$, [13, Proposition 5.1.1]. Putting S^{-1} instead S we have $\sigma(S^{-1}) \subset [B^{-1}, A^{-1}]$, and by above equation

$$\begin{aligned} \|S^{-1}\| &= \sup\{x \mid x \in \sigma(S^{-1})\} = \sup\{x \mid x \in \sigma(S)^{-1}\} \\ &= (\inf\{x \mid x \in \sigma(S)\})^{-1} \leq A^{-1}. \end{aligned}$$

In the second equality we used the function $h(x) = x^{-1}$ in the formula $\sigma(h(T)) = h(\sigma(T))$, which h is continuous on $\sigma(S^{-1}) \subset [B^{-1}, A^{-1}]$. So $A \leq \|S^{-1}\|^{-1} = \inf\{x \mid x \in \sigma(S)\}$. Therefore,

$$A \leq \|S^{-1}\|^{-1} = \inf\{x \mid x \in \sigma(S)\} \leq \sup\{x \mid x \in \sigma(S)\} = \|S\| \leq B. \quad (3.1)$$

Assuming p is a polynomial with real coefficients so that $p([A, B]) \subset (0, \infty)$, we have

$$\sigma(p(S)) = p(\sigma(S)) \subset p([A, B]) \subset (0, \infty). \quad (3.2)$$

Since $[A, B]$ is compact and p is a continuous function, $p([A, B])$ is compact and there are $A', B' \in (0, \infty)$ such that $p([A, B]) \subset [A', B']$. Since by (3.2) $\sigma(p(S)) \subset [A', B']$, 0 is not in $\sigma(p(S))$. Hence $p(S)$ is invertible and using $p(S)$ instead S in (3.1),

$$A' \leq \|p(S)^{-1}\|^{-1}, \quad \|p(S)\| \leq B'.$$

In other words, $A' \leq p(S) \leq B'$. The arguments above motivate the use of polynomials p such that $p(S)$ induces some better frame bounds, i.e.,

$$A < A' \leq p(S) \leq B' < B, \quad \left\| I - \frac{1}{B'} p(S) \right\| \leq 1 - \frac{A'}{B'} \leq 1 - \frac{A}{B}.$$

First, we consider the simplest polynomials of the form $p(x) = x^n, x \in \mathbb{R}, n \in \mathbb{N}$. For every $n \in \mathbb{N}$, $A^n \leq S^n \leq B^n$, and hence for $f \in \mathcal{H}$,

$$A^n \|f\|^2 \leq \sum_{i_1 \in \mathbb{N}} \sum_{i_2 \in \mathbb{N}} \cdots \sum_{i_n \in \mathbb{N}} \langle f, f_{i_1} \rangle \langle f_{i_1}, f_{i_2} \rangle \cdots \langle f_{i_{n-1}}, f_{i_n} \rangle \langle f_{i_n}, f \rangle \leq B^n \|f\|^2. \quad (3.3)$$

The reconstruction formulas

$$\begin{aligned} f &= \sum_{i_1 \in \mathbb{N}} \sum_{i_2 \in \mathbb{N}} \cdots \sum_{i_n \in \mathbb{N}} \langle f, S^{-n} f_{i_1} \rangle \langle f_{i_1}, f_{i_2} \rangle \cdots \langle f_{i_{n-1}}, f_{i_n} \rangle f_{i_n}, \\ &= \sum_{i_1 \in \mathbb{N}} \sum_{i_2 \in \mathbb{N}} \cdots \sum_{i_n \in \mathbb{N}} \langle f, f_{i_1} \rangle \langle f_{i_1}, f_{i_2} \rangle \cdots \langle f_{i_{n-1}}, f_{i_n} \rangle S^{-n} f_{i_n}, \end{aligned} \quad (3.4)$$

hold for all $f \in \mathcal{H}$. But, $\left\| I - \frac{1}{B^n} S^n \right\| \leq 1 - \frac{A^n}{B^n} \rightarrow 1$; the situation even became worse. We try the n -root of S , $\sqrt[n]{S}$; then $\sqrt[n]{A} \leq \sqrt[n]{S} \leq \sqrt[n]{B}$, and by (1.3)

$$\left\| I - \frac{1}{\sqrt[n]{B}} \sqrt[n]{S} \right\| \leq 1 - \frac{\sqrt[n]{A}}{\sqrt[n]{B}} \rightarrow 0.$$

For sufficiently large values of n , $\sqrt[n]{B}I \cong \sqrt[n]{S}$. Apparently, everything is good, but, the basic problem is finding a well-known representation for $\sqrt[n]{S}$ by summations (\sum). Therefore, again we have to return to the polynomials.

Theorem 3.1. *Let $\{f_i\}_{i \in \mathbb{N}}$ be a frame for \mathcal{H} with frame operator S and frame bounds A, B . Then there is a sequence of real polynomials $\{p_n\}_{n \in \mathbb{N}}$, without the constant term, such that $p_n(S) \rightarrow I$, in the strong operator topology.*

Proof. Since $\mathcal{B}(\mathcal{H})$ is a C^* -algebra for $T \in \mathcal{B}(\mathcal{H})$, $\|TT^*\| = \|T\|^2$ [6]. If $T = T^*$ then $\|T^2\| = \|T\|^2$ and consequently for $n \in \mathbb{N}$,

$$\|T^{2n}\| = \|T\|^{2n}. \quad (3.5)$$

Now, by putting $T = I - \frac{1}{B}S$,

$$\left\| \left(I - \frac{1}{B}S \right)^{2n} \right\| = \left\| I - \frac{1}{B}S \right\|^{2n} \leq \left(1 - \frac{A}{B} \right)^{2n} \leq 1. \quad (3.6)$$

Obviously $\left(I - \frac{1}{B}S \right)^{2n}$ can be written in the form of $I - p_n(S)$, where p_n is a polynomial without the constant term. Therefore, (3.6) implies that

$$\|I - p_n(S)\| = \left\| \left(I - \frac{1}{B}S \right)^{2n} \right\| \leq \left(1 - \frac{A}{B} \right)^{2n} \rightarrow 0.$$

□

Notice that the theorem above is valid for all positive operators S whenever $\|I - S\| < 1$. The polynomial p_n in the proceeding theorem is a polynomial of degree $2n$.

As seen in the relations (3.3), (3.4) the reconstruction formulas involve computing $2n$ nested summations. For this, from now on, we will focus on polynomials of degree 2 (or 1) in the form of $p(x) = bx - ax^2$, $a, b \in \mathbb{R}$, satisfying $\|I - p(S)\| < 1$. We need to prove a key lemma.

Lemma 3.1. *Let T be a self-adjoint operator and $p(x)$ be a real polynomial. Then*

$$\|p(T)\| = \sup \{|p(x)| \mid x \in \sigma(T)\} =: \|p(x)\|_{\infty, \sigma(T)},$$

and

$$\|I - p(T)\| = \sup \{|1 - p(x)| \mid x \in \sigma(T)\} =: \|1 - p(x)\|_{\infty, \sigma(T)}.$$

Furthermore, if S is a frame operator with bounds A, B , then

$$\|I - p(S)\| \leq \|1 - p(x)\|_{\infty, [A, B]}. \quad (3.7)$$

Proof. We know that [6],

$$\sup \{|x| \mid x \in \sigma(T)\} = \lim_{n \rightarrow \infty} \|T^n\|^{\frac{1}{n}} = \lim_{n \rightarrow \infty} \|T^{2n}\|^{\frac{1}{2n}} = \lim_{n \rightarrow \infty} \|T\|^{2n \frac{1}{2n}} = \|T\|;$$

the fact that T is a self-adjoint operator was used in the third equation. So $\|T\| = \sup \{|x| \mid x \in \sigma(T)\}$. Since $p(x)$ is real $\sigma(p(T)) = p(\sigma(T)) \subset \mathbb{R}$. Therefore, $p(T)$ is self-adjoint and thus

$$\|p(T)\| = \sup \{|x| \mid x \in \sigma(p(T))\} = \sup \{|x| \mid x \in p(\sigma(T))\}.$$

If we put $1 - p(x)$ instead of $p(x)$ in the previous equation, we get

$$\begin{aligned} \|I - p(T)\| &= \sup \{|x| \mid x \in (1 - p(.))(\sigma(T))\} \\ &= \sup \{|x| \mid x \in (1 - p(\sigma(T)))\} \\ &= \sup \{|1 - p(x)| \mid x \in \sigma(T)\} \\ &= \|1 - p(x)\|_{\infty, \sigma(T)}. \end{aligned}$$

The last assertion of the theorem follows from the fact that $\sigma(S) \subset [A, B]$:

$$\|I - p(S)\| \leq \|1 - p(x)\|_{\infty, \sigma(T)} \leq \|1 - p(x)\|_{\infty, [A, B]}.$$

□

Proposition 3.2. Let $\{f_i\}_{i \in \mathbb{N}}$ be a frame for \mathcal{H} with the frame operator S and the frame bounds A and B . The polynomial $p_{\frac{2}{B+A}}(x) := \frac{2}{B+A}x$, minimizes $\|1 - p(x)\|_{\infty, [A, B]}$, where p ranges over the family of polynomials of the form $p(x) = bx$, $b \in (0, \infty)$. In this situation,

$$\left\| I - \frac{2}{B+A}S \right\| \leq \frac{B-A}{B+A}. \quad (3.8)$$

Proof. See the following figure: It is clear that $\inf_{b \in (0, \infty)} \|1 - bx\|_{\infty, [A, B]}$, occurs when

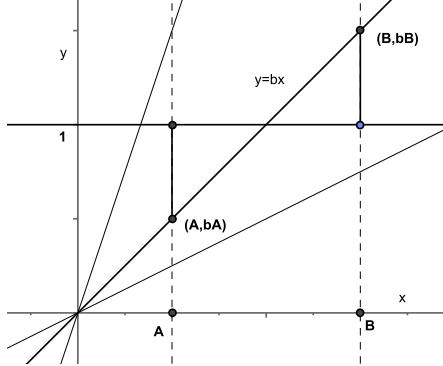


FIGURE 1

$\frac{1}{B} < b < \frac{1}{A}$. Thus

$$\inf_{b \in (0, \infty)} \|1 - bx\|_{\infty, [A, B]} = \inf_{\frac{1}{B} \leq b \leq \frac{1}{A}} \|1 - bx\|_{\infty, [A, B]}. \quad (3.9)$$

Define

$$\psi(b) := \|1 - bx\|_{\infty, [A, B]}. \quad (3.10)$$

Observe that

$$\psi(b) = \max\{bB - 1, 1 - bA\}. \quad (3.11)$$

From Figure 2 it is obvious that $\psi(b)$ gets its infimum when $bB - 1 = 1 - bA$. So $b = \frac{2}{B+A}$ and

$$\inf_{\frac{1}{B} \leq b \leq \frac{1}{A}} \psi(b) = \psi\left(\frac{2}{B+A}\right) = \max\left\{\frac{2}{B+A}B - 1, 1 - \frac{2}{B+A}A\right\} = \frac{B-A}{B+A}. \quad (3.12)$$

Relations (3.9)-(3.12) imply that

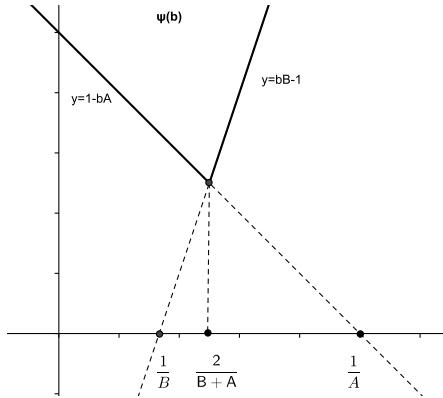


FIGURE 2

$$\inf_{b \in (0, \infty)} \|1 - bx\|_{\infty, [A, B]} = \inf_{\frac{1}{B} \leq b \leq \frac{1}{A}} \|1 - bx\|_{\infty, [A, B]} = \inf_{\frac{1}{B} \leq b \leq \frac{1}{A}} \psi(b) = \frac{B - A}{B + A}.$$

□

In what follows, two families of polynomials of degree 2 are described. Let $p_{ab}(x) = bx - ax^2$ with $a, b \geq 0$. For polynomials of this form the points $x = \frac{b}{2a}$ and $x = \frac{b}{a}$ are optimal point and zero point of p_{ab} , respectively. Assume that \mathcal{P}_1 is the family of polynomials p_{ab} such that

- (1) $0 \leq p_{ab}\left(\frac{b}{2a}\right) \leq 1$,
- (2) $0 \leq p_{ab}(A) \leq p_{ab}(B) \leq 1$,

Also, let \mathcal{P}_2 be the family of polynomials $p_{ab}(x)$ such that

- (1) $1 \leq p_{ab}\left(\frac{b}{2a}\right) \leq 2$,
- (2) $p_{ab}(A) \leq p_{ab}(B)$,

The possible infimum value for $\|I - p(S)\|$ will be considered in Theorem 3.3, where p belongs to one of these families, $\mathcal{P}_1, \mathcal{P}_2$. The proof of the following theorem will be given in the last section.

Theorem 3.3. Suppose that $\{f_i\}_{i \in \mathbb{N}}$ is a frame for \mathcal{H} with the frame operator S and the frame bounds A and B . Then

- (1) Let $a_1 = \frac{4}{B+A}$, $b_1 = \frac{4}{(B+A)^2}$. The polynomial $p_1(x) = p_{a_1 b_1}(x)$ belongs to \mathcal{P}_1 and

$$\|I - p_1(S)\| \leq \left(\frac{B - A}{B + A}\right)^2. \quad (3.13)$$

- (2) Let $a_2 = \frac{8}{(B+A)^2+4AB}$, $b_2 = \frac{8(B+A)}{(B+A)^2+4AB}$. The polynomial $p_2(x) = p_{a_2 b_2}(x)$ belongs to \mathcal{P}_2 and

$$\|I - p_2(S)\| \leq \frac{(B - A)^2}{(B + A)^2 + 4AB}. \quad (3.14)$$

For every $p \in \mathcal{P}_1 \cup \mathcal{P}_2$,

$$\begin{aligned} p(S)f &= (bS - aS^2)f \\ &= \sum_{i \in \mathbb{N}} b \langle f, f_i \rangle f_i - \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} a \langle f, f_j \rangle \langle f_j, f_i \rangle f_i, \quad f \in \mathcal{H}. \end{aligned} \quad (3.15)$$

The theorem above has an interesting corollary.

Corollary 3.1. For $p_2 = p_{a_2 b_2}$ in Theorem 3.3 the operator $p_2(S)$ is a positive invertible operator and there are positive constants A', B' such that

$$A < A' \leq \frac{B + A}{2} p_2(S) \leq B' < B. \quad (3.16)$$

We can take $A' = \frac{B+A}{2}(1 - \beta)$, $B' = \frac{B+A}{2}(1 + \beta)$ where $\beta = \frac{(B-A)^2}{(B+A)^2+4AB}$. Also, the reconstruction formulas

$$\begin{aligned} f &= \sum_{i \in \mathbb{N}} b_2 \left\langle f, p(S)^{-1} f_i \right\rangle f_i - \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} a_2 \left\langle f, p(S)^{-1} f_i \right\rangle \langle f_i, f_j \rangle f_j, \\ &= \sum_{i \in \mathbb{N}} b_2 \langle f, f_i \rangle p(S)^{-1} f_i - \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} a_2 \langle f, f_i \rangle \langle f_i, f_j \rangle p(S)^{-1} f_j, \quad f \in \mathcal{H}, \end{aligned} \quad (3.17)$$

hold.

Proof. Consider relation (1.4). Let $\alpha = \frac{2}{B+A}$ in (1.4) and use $\frac{B+A}{2}p_2(S)$ instead of S and $\beta = \frac{(B-A)^2}{(B+A)^2+4AB}$ instead of β . Thus $0 < \beta < 1$ and

$$\frac{B+A}{2}(1-\beta) = \frac{1-\beta}{\alpha} \leq \frac{B+A}{2}p_2(S) \leq \frac{1+\beta}{\alpha} = \frac{B+A}{2}(1+\beta). \quad (3.18)$$

Let $\gamma = \frac{B-A}{B+A}$. Obviously, $0 < \gamma < 1$ and

$$\beta = \frac{(B-A)^2}{(B+A)^2+4AB} < \left(\frac{B-A}{B+A}\right)^2 = \gamma^2 < \gamma < 1. \quad (3.19)$$

Hence

$$1-\gamma < 1-\beta < 1+\beta < 1+\gamma.$$

Using (3.18) and (3.19), we compute

$$\begin{aligned} A &= \frac{B+A}{2} \frac{2A}{B+A} = \frac{B+A}{2} \left(1 - \frac{B-A}{B+A}\right) \\ &= \frac{B+A}{2}(1-\gamma) < \frac{B+A}{2}(1-\beta) \\ &\leq \frac{B+A}{2}p_2(S) \\ &\leq \frac{B+A}{2}(1+\beta) < \frac{B+A}{2}(1+\gamma) \\ &= \frac{B+A}{2} \left(1 + \frac{B-A}{B+A}\right) \\ &= \frac{B+A}{2} \left(\frac{2B}{B+A}\right) \\ &= B. \end{aligned}$$

In short,

$$A < \frac{B+A}{2}(1-\beta) \leq \frac{B+A}{2}p_2(S) \leq \frac{B+A}{2}(1+\beta) < B.$$

Since $0 < \beta < 1$, $\frac{B+A}{2}(1-\beta) > 0$. Then $\frac{B+A}{2}p_2(S)$ is a positive invertible operator. The reconstruction formulas are easily followed by (3.15) for $p = p_2$. \square

For $p \in \mathcal{P}_1$, a similar reasoning implies that $p(S)$ is positive and invertible. For every $f \in \mathcal{H}$, the sequences

$$\{\langle f, f_i \rangle\}_{i \in \mathbb{N}}, \{\langle f_j, f_i \rangle\}_{i \in \mathbb{N}}, \left\{ \left\langle f, p(S)^{-1} f_i \right\rangle \right\}_{i \in \mathbb{N}} \in \ell^2,$$

participate in the reconstructions introduced in Corollary. The sequence $\{\langle f_j, f_i \rangle\}_{i,j \in \mathbb{N}}$ is fixed and $\{\langle f, f_i \rangle\}_{i,j \in \mathbb{N}}, \left\{ \left\langle f, p(S)^{-1} f_i \right\rangle \right\}_{i \in \mathbb{N}}$ needed to be computed.

In the following theorem we derive a generalized version of frame algorithm by using the method of polynomial actions on the frame operator.

Theorem 3.4. (Frame Algorithm of degree 2) *The frame $\{f_i\}_{i \in \mathbb{N}}$ with bounds A, B is given. Let $p(x) = bx - ax^2$ be the polynomial defined in Theorem 3.3(2). For $f \in \mathcal{H}$ define $g_0 = 0$ and*

$$g_n = g_{n-1} + bSf - bSg_{n-1} - aS^2f + aS^2g_{n-1}, \quad n > 0.$$

Then $\{g_n\}_{n=0}^\infty$ converges to f and

$$\|f - g_n\| \leq \left(\frac{(B-A)^2}{(B+A)^2+4AB} \right)^n \|f\|.$$

\mathcal{P}_1	$0 \leq p_{ab} \left(\frac{b}{2a} \right) \leq 1 \iff 0 \leq b \leq 2\sqrt{a}$
$\mathcal{P}_1, \mathcal{P}_2$	$p_{ab}(A) \leq p_{ab}(B) \iff bA - aA^2 \leq bB - aB^2 \iff (B + A)a \leq b, \frac{(B+A)}{2} \leq \frac{b}{2a}$
\mathcal{P}_1	$p_{ab}(B) \leq 1 \iff b \leq Ba + \frac{1}{B}$
\mathcal{P}_2	$1 \leq p_{ab} \left(\frac{b}{2a} \right) \leq 2 \iff 2\sqrt{a} \leq b \leq 2\sqrt{2a}$

TABLE 1. Conditions of $\mathcal{P}_1, \mathcal{P}_2$ and their equivalences.

Proof. Observe that

$$\begin{aligned} f - g_n &= (I - (bS - aS^2))(f - g_{n-1}) \\ &= (I - p(S))(f - g_{n-1}). \end{aligned}$$

By induction,

$$f - g_n = (I - p(S))^n(f - g_0).$$

Thus (3.14) implies that

$$\begin{aligned} \|f - g_n\| &= \|(I - p(S))^n\| \|f - g_0\| \\ &\leq \|I - p(S)\|^n \|f - g_0\| \\ &\leq \left(\frac{8(B - A)}{(B + A)^2 + 4AB} \right)^n \|f\|. \end{aligned}$$

□

4. Proof of Theorem 3.3

Every polynomial p_{ab} defined on $[A, B]$ takes it's extermums at A, B and $\frac{b}{2a}$, because $p'_{ab} \left(\frac{b}{2a} \right) = 0$. We compute

$$p_{ab} \left(\frac{b}{2a} \right) = \frac{b^2}{4a}, \quad p_{ab}(A) = bA - aA^2, \quad p_{ab}(B) = bB - aB^2. \quad (4.1)$$

Fix $x_0, y_0 \in \mathbb{R}^+$. If $x_0 \leq p_{ab} \left(\frac{b}{2a} \right) \leq y_0$, then $2\sqrt{x_0a} \leq b \leq 2\sqrt{y_0a}$. The cases $x_0, y_0 = 0, 1, 2$ can be found in Table 1. When $p_{ab}(A) \leq p_{ab}(B)$ it can easily be seen that

$$\begin{aligned} bA - aA^2 &\leq bB - aB^2 \iff (B^2 - A^2)a \leq b(B - A) \\ &\iff (B + A)a \leq b \iff \frac{(B + A)}{2} \leq \frac{b}{2a}. \end{aligned}$$

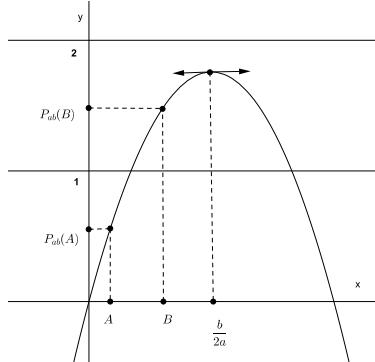
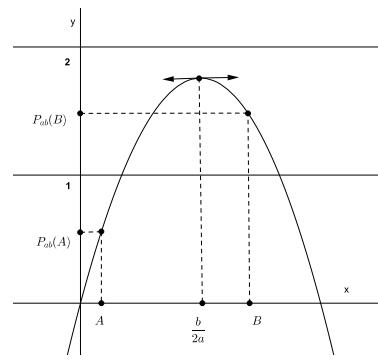
The properties of classes $\mathcal{P}_1, \mathcal{P}_2$ and their equivalences are listed in Table 1. The reader can readily check them.

Proof of part (1). In Relation (3.6) put $n = 1$ and apply $\frac{2}{B+A}$ instead of $\frac{1}{B}$ to derive

$$\begin{aligned} \|I - p_1(S)\| &= \left\| I - \left(\frac{4}{B+A}S - \frac{4}{(B+A)^2}S^2 \right) \right\| = \left\| \left(I - \frac{2}{B+A}S \right)^2 \right\| \leq \left\| I - \frac{2}{B+A}S \right\|^2 \\ &\leq \left(1 - \frac{2A}{B+A} \right)^2 = \left(\frac{B-A}{B+A} \right)^2. \end{aligned}$$

On the other hand, we prove that $p_{a_1b_1}$ satisfies the conditions of \mathcal{P}_1 :

$$p_{a_1b_1} \left(\frac{b_1}{2a_1} \right) = \frac{\left(\frac{4}{B+A} \right)^2}{4 \frac{4}{(B+A)^2}} = 1 \Rightarrow 0 \leq p_{a_1b_1} \left(\frac{b_1}{2a_1} \right) \leq 1.$$

FIGURE 3. $\mathcal{P}_2 : A \leq B \leq \frac{b}{2a}$.FIGURE 4. $\mathcal{P}_2 : A \leq \frac{b}{2a} \leq B$.

Also,

$$\begin{aligned} p_{a_1 b_1}(A) &= b_1 A - a_1 A^2 = \frac{4}{(B+A)} A - \frac{4}{(B+A)^2} A^2 = \frac{4AB}{(B+A)^2}, \\ p_{a_1 b_1}(B) &= b_1 B - a_1 B^2 = \frac{4}{(B+A)} B - \frac{4}{(B+A)^2} B^2 = \frac{4AB}{(B+A)^2}. \end{aligned}$$

Since

$$0 \leq (B-A)^2 \Rightarrow 2AB \leq B^2 + A^2 \Rightarrow 4AB \leq B^2 + A^2 + 2AB \Rightarrow 4AB \leq (B+A)^2 \Rightarrow \frac{4AB}{(B+A)^2} \leq 1,$$

then

$$0 \leq p_{a_1 b_1}(A) = p_{a_1 b_1}(B) \leq 1. \quad (4.2)$$

Proof of part (2). Under conditions of \mathcal{P}_2 , it is obvious that (see Figures 3 and 4)

$$\|1 - p_{ab}(x)\|_{\infty, [A, B]} = \max\{l(a, b), k(a, b)\}, \quad (4.3)$$

where

$$l(a, b) := 1 - p_{ab}(A), \quad k(a, b) := p_{ab}\left(\frac{b}{2a}\right) - 1. \quad (4.4)$$

Use (4.1) to get $l(a, b) = 1 - bA + aA^2$, $k(a, b) = \frac{b^2}{4a} - 1$. We show that $p_2 = p_{a_2 b_2}$ satisfies the conditions of \mathcal{P}_2 :

$$p_{a_2 b_2}\left(\frac{b_2}{2a_2}\right) = \frac{b_2^2}{4a_2} = \left(\frac{8(B+A)}{(B+A)^2 + 4AB}\right)^2 \frac{(B+A)^2 + 4AB}{4 \times 8} = 2 \frac{(B+A)^2}{(B+A)^2 + 4AB} \leq 2.$$

Hence $0 \leq p_{a_2 b_2}\left(\frac{b_2}{2a_2}\right) \leq 2$.

We see that

$$p_{a_2 b_2}(A) = b_2 A - a_2 A^2 = \frac{8(B+A)}{(B+A)^2 + 4AB} A - \frac{8}{(B+A)^2 + 4AB} A^2 = \frac{8AB}{(B+A)^2 + 4AB},$$

and

$$p_{a_2 b_2}(B) = b_2 B - a_2 B^2 = \frac{8(B+A)}{(B+A)^2 + 4AB} B - \frac{8}{(B+A)^2 + 4AB} B^2 = \frac{8AB}{(B+A)^2 + 4AB}.$$

Thus

$$\begin{aligned} 0 \leq (B-A)^2 &\Rightarrow 2AB \leq B^2 + A^2 \Rightarrow 8AB \leq B^2 + A^2 + 2AB + 4AB \\ &\Rightarrow 8AB \leq (B+A)^2 + 4AB \Rightarrow \frac{8AB}{(B+A)^2 + 4AB} \leq 1. \end{aligned}$$

Consequently, $0 \leq p_{a_2 b_2}(A) = p_{a_2 b_2}(B) \leq 1$. We compute

$$\begin{aligned} l(a_2, b_2) &= 1 - p_{a_2 b_2}(A) = 1 - (b_2 A - a_2 A^2) \\ &= 1 - \left(\frac{8(B+A)}{(B+A)^2 + 4AB} A - \frac{8}{(B+A)^2 + 4AB} A^2 \right) \\ &= \frac{(B+A)^2 + 4AB - 8A(B+A) + 8A^2}{(B+A)^2 + 4AB} \end{aligned}$$

and by (??),

$$k(a_2, b_2) = p_{a_2 b_2} \left(\frac{b_2}{2a_2} \right) - 1 = 2 \frac{(B+A)^2}{(B+A)^2 + 4AB} - 1 = \frac{(B-A)^2 - 4AB}{(B+A)^2 + 4AB}.$$

$$\text{So } \max \{l(a_2, b_2), k(a_2, b_2)\} = \frac{(B-A)^2}{(B+A)^2 + 4AB}.$$

Relations (3.7), (4.3) and the previous equation give

$$\begin{aligned} \|I - p_2(S)\| &\leq \|1 - p_2(x)\|_{\infty, [A, B]} = \|1 - p_{a_2 b_2}(x)\|_{\infty, [A, B]} \\ &= \max \{l(a_2, b_2), k(a_2, b_2)\} = \frac{(B-A)^2}{(B+A)^2 + 4AB}. \end{aligned}$$

Acknowledgement. We would like to thank the reviewer of this article for his/her careful review and useful comments which led to the enhancement of the paper. The author has been sponsored for this article by the Ilam University.

REFERENCES

- [1] Balazs, Peter, Jean-Pierre Antoine, and Anna Grybo. "Weighted and controlled frames: Mutual relationship and first numerical properties." *Int. J. Wavelets Multiresolut. Inf. Process.* 8.01 (2010): 109-132.
- [2] Casazza, Peter G. "The art of frame theory." *Taiwanese J. Math.* 4.2 (2000): 129-201.
- [3] Casazza, Peter G., and Ole Christensen. "Approximation of the inverse frame operator and applications to Gabor frames." *J. Approx. Theory* 103.2 (2000): 338-356.
- [4] Christensen, Ole, and Alexander M. Lindner. "Frames of exponentials: lower frame bounds for finite subfamilies and approximation of the inverse frame operator." *Linear Algebra Appl.* 323.1 (2001): 117-130.
- [5] Christensen, Ole. *An introduction to frames and Riesz bases*. Springer Science and Business Media, 2003.
- [6] Conway, John B. *A course in functional analysis*. Vol. 96. Springer Science and Business Media, 2013.
- [7] Daubechies, Ingrid, Alex Grossmann, and Yves Meyer. "Painless nonorthogonal expansions." *J. Math. Phys.* 27.5 (1986): 1271-1283.
- [8] Duffin, Richard J., and Albert C. Schaeffer. "A class of nonharmonic Fourier series." *Trans. Amer. Math. Soc.* 72.2 (1952): 341-366.
- [9] Kutyniok, Gitta, et al. "Scalable frames." *Linear Algebra Appl.* 438.5 (2013): 2225-2238.
- [10] Kutyniok, Gitta, Kasso A. Okoudjou, and Friedrich Philipp. "Scalable frames and convex geometry." *Contemp. Math* 626 (2014): 19-32.
- [11] Fereydooni, Abolhassan, and Ahmad Safapour. "Pair frames." *Results Math.* 66.1-2 (2014): 247-263.
- [12] Grochenig, Karlheinz. "Acceleration of the frame algorithm." *IEEE Trans. Signal Process.* 41.12 (1993): 3331-3340.
- [13] Grochenig, Karlheinz. *Foundations of Time-frequency analysis*. Springer Science and Business Media, 2013.
- [14] Rahimi, Asghar, and Abolhassan Fereydooni. "Controlled G-Frames and Their G-Multipliers in Hilbert spaces." *An. Stiint. Univ. Ovidius" Constanta Ser. Mat.* 21.2 (2013): 223-236.
- [15] Young, Robert M. *An Introduction to Non-Harmonic Fourier Series*, Revised Edition, 93. Academic Press, 2001.