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TIGHTENING FRAMES USING SOME ACTIONS ON THE FRAME

OPERATOR

Abolhassan Fereydooni1

In this paper, letting S be a frame operator, we show that there is a sequence of
polynomials {pn(S)}n∈N, without the constant term, converging to the identity operator.

We can choose n ∈ N such that the reconstruction formula induced by pn(S) is as tight as
desired. The first degree polynomial with optimal bounds and a second degree polynomial
are introduced.
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1. Preliminaries

Although Duffin and Schaeffer [8] introduced frames in studying nonharmonic Fourier
series, their importance was recognized some decades later, when Young wrote his book
entitled Nonharmonic Fourier series [15]. Thereafter, Daubechies, Grossmann and Meyer
extended and expanded frames [7]. The interested readers are referred to [5] for studying
about frame theory.

The art of frames theory [2] is its flexibility under perturbations and permutations
(unconditional convergence) in presenting functions using a single summation(

∑
) (1.2). In

the present paper, we slightly deviate from this old tradition, single summation (3.17), in
order to obtain some reconstruction formulas with some better bounds (3.16).

In this paper, H denotes a separable Hilbert space, B(H) is the set of bounded linear
operators on H and N is the set of natural numbers. For T ∈ B(H), T is said to be positive
if 0 6 ⟨Tf, f⟩ for all f ∈ H. A partial order on B(H) is defined as follows. We write T 6 S if
⟨Tf, f⟩ 6 ⟨Sf, f⟩ for all f ∈ H. For A,B ∈ R, by A 6 S 6 B, we mean that AI 6 S 6 BI,
where I denotes the identity operator.

A sequence of vectors {fi}i∈N ⊂ H is called a frame if there are positive constants
A,B such that

A∥f∥2 6
∑
i∈N

|⟨f, fi⟩|2 6 B∥f∥2, f ∈ H. (1.1)

When A = B, {fi}i∈N is called a tight frame. If the right inequality is satisfied, {fi}i∈N is
said to be a Bessel sequence with bound B. It is proven in [5] that the operator

S : H → H, Sf =
∑
i∈N

⟨f, fi⟩fi,

is well-defined, positive and invertible and

f =
∑
i∈N

⟨f, S−1fi⟩fi =
∑
i∈N

⟨f, fi⟩S−1fi. (1.2)
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Also A 6 S 6 B and consequently [5],∥∥∥∥I − 1

B
S

∥∥∥∥ 6 1− A

B
< 1. (1.3)

Suppose that for some α, β ∈ (0,∞),

∥I − αS∥ 6 β < 1.

Then we have 1− αS 6 β < 1, αS − 1 6 β < 1 and 0 < 1− β < 1. So

0 <
1− β

α
6 S 6 1 + β

α
.

Inverting conclusions above proves that for α, β ∈ (0,∞),

∥I − αS∥ 6 β < 1 ⇐⇒ 0 <
1− β

α
6 S 6 1 + β

α
. (1.4)

Letting α = 2
B+A and β = 1− 2A

B+A ,

∥I − 2

B +A
S∥ 6 1− 2A

B +A
< 1 ⇐⇒ 0 < A 6 S 6 B. (1.5)

2. Tightening Frames

In practise, computing the inverse of frame operators is hard and we should find some
efficient numerical methods to compute the inverse of the frame operators [3, 4]. When the
frame is tight, the frame operator becomes S = AI and every f ∈ H has the representation
f = 1

A

∑
i∈N⟨f, fi⟩fi.

In comparison with (1.2), this reconstruction is more desirable since it is not necessary
to calculate the inverse of the frame operator. Since ∥I − 1

BS∥ 6 1 − A
B < 1, in [6] and [5,

Theorem A.5.3] it is shown that the inverse of the frame operator can be written in the form
of Neumann series

S−1 =
1

B

∞∑
n=0

(
I − 1

B
S

)n

. (2.1)

By closing A and B, S tends to the identity operator (up to constant), and hence the series
(2.1) converges more quickly. For closing A and B some concepts have been introduced:
controlled frames [1, 14] and scalable frames (weighted frames) [1, 9, 10]. The idea of
controlled frames is multiplying the frame operator by a positive invertible operator C in
order to obtain some better frame bounds A′ and B′, i.e.,

0 < A < A′ 6 SC 6 B′ < B <∞.

The aim of studying scalable frames is to find a sequence of nonnegative scalars {ci}i∈N and
some constants A′ and B′ such that

A∥f∥2 < A′∥f∥2 6
∑
i∈N

ci|⟨f, fi⟩|2 6 B′∥f∥2 < B∥f∥2, 0 ̸= f ∈ H.

In the methods described, letting S′ be the new frame operator associated with a controlled
or scalable frame, by (1.3) we have∥∥∥∥I − 1

B′S
′
∥∥∥∥ 6 1− A′

B′ � 1− A

B
.

For this purpose, we follow another way. We look for a polynomial p such that

0 < A < A′ 6 p(S) 6 B′ < B <∞.

for some constant A′ and B′ (3.16). Our method strongly depends on some results in the
operator theory which are established in the next section.
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3. Polynomial Actions on the Frame Operator

Let T ∈ B(H) be a self-adjoint operator and h be a continuous function over

σ(T ) := {λ ∈ C| λI − T is not invertible},
the so-called spectrum of T . The spectral mapping theorem [6, VIII.2.7] states that σ(h(T )) =
h(σ(T )). Let S be the frame operator of a frame with bounds A,B. Then σ(S) ⊂ [A,B]
and sup{x | x ∈ σ(S)} = ∥S∥ 6 B, [13, Proposition 5.1.1]. Putting S−1 instead S we
have σ(S−1) ⊂ [B−1, A−1], and by above equation

∥S−1∥ = sup{x | x ∈ σ(S−1)} = sup{x | x ∈ σ(S)−1}

= (inf{x | x ∈ σ(S)})−1 6 A−1.

In the second equality we used the function h(x) = x−1 in the formula σ(h(T )) = h(σ(T )),
which h is continuous on σ(S−1) ⊂ [B−1, A−1]. So A 6 ∥S−1∥−1 = inf{x | x ∈ σ(S)}.
Therefore,

A 6 ∥S−1∥−1 = inf{x | x ∈ σ(S)} 6 sup{x | x ∈ σ(S)} = ∥S∥ 6 B. (3.1)

Assuming p is a polynomial with real coefficients so that p([A,B]) ⊂ (0,∞), we have

σ(p(S)) = p(σ(S)) ⊂ p([A,B]) ⊂ (0,∞). (3.2)

Since [A,B] is compact and p is a continuous function, p([A,B]) is compact and there are
A′, B′ ∈ (0,∞) such that p([A,B]) ⊂ [A′, B′]. Since by (3.2) σ(p(S)) ⊂ [A′, B′], 0 is not in
σ(p(S)). Hence p(S) is invertible and using p(S) instead S in (3.1),

A′ 6
∥∥p(S)−1

∥∥−1
, ∥p(S)∥ 6 B′.

In other words, A′ 6 p(S) 6 B′. The arguments above motivate the use of polynomials p
such that p(S) induces some better frame bounds, i.e.,

A < A′ 6 p(S) 6 B′ < B,

∥∥∥∥I − 1

B′ p(S)

∥∥∥∥ 6 1− A′

B′ � 1− A

B
.

First, we consider the simplest polynomials of the form p(x) = xn, x ∈ R, n ∈ N. For every
n ∈ N, An 6 Sn 6 Bn, and hence for f ∈ H,

An∥f∥2 6
∑
i1∈N

∑
i2∈N

· · ·
∑
in∈N

⟨f, fi1⟩⟨fi1 , fi2⟩ · · · ⟨fin−1 , fin⟩⟨fin , f⟩ 6 Bn∥f∥2. (3.3)

The reconstruction formulas

f =
∑
i1∈N

∑
i2∈N

· · ·
∑
in∈N

⟨f, S−nfi1⟩⟨fi1 , fi2⟩ · · · ⟨fin−1 , fin⟩fin ,

=
∑
i1∈N

∑
i2∈N

· · ·
∑
in∈N

⟨f, fi1⟩⟨fi1 , fi2⟩ · · · ⟨fin−1 , fin⟩S−nfin , (3.4)

hold for all f ∈ H. But,
∥∥I − 1

BnS
n
∥∥ 6 1− An

Bn −→ 1; the situation even became worse. We

try the n-root of S, n
√
S; then n

√
A 6 n

√
S 6 n

√
B, and by (1.3)∥∥∥∥1− 1

n
√
B

n
√
S

∥∥∥∥ 6 1−
n
√
A

n
√
B

−→ 0.

For sufficiently large values of n, n
√
BI ∼= n

√
S. Apparently, everything is good, but, the basic

problem is finding a well-known representation for n
√
S by summations (

∑
). Therefore, again

we have to return to the polynomials.

Theorem 3.1. Let {fi}i∈N be a frame for H with frame operator S and frame bounds A,B.
Then there is a sequence of real polynomials {pn}n∈N, without the constant term, such that
pn(S) → I, in the strong operator topology.



172 A. Fereydooni

Proof. Since B(H) is a C∗-algebra for T ∈ B(H), ∥TT ∗∥ = ∥T∥2 [6]. If T = T ∗ then∥∥T 2
∥∥ = ∥T∥2 and consequently for n ∈ N,∥∥T 2n

∥∥ = ∥T∥2n. (3.5)

Now, by putting T = I − 1
BS,∥∥∥∥∥

(
I − 1

B
S

)2n
∥∥∥∥∥ =

∥∥∥∥I − 1

B
S

∥∥∥∥2n 6
(
1− A

B

)2n

� 1. (3.6)

Obviously
(
I − 1

BS
)2n

can be written in the form of I − pn(S), where pn is a poly-
nomial without the constant term. Therefore, (3.6) implies that

∥I − pn(S)∥ =

∥∥∥∥∥
(
I − 1

B
S

)2n
∥∥∥∥∥ 6

(
1− A

B

)2n

→ 0.

�

Notice that the theorem above is valid for all positive operators S whenever ∥I−S∥ <
1. The polynomial pn in the proceeding theorem is a polynomial of degree 2n.

As seen in the relations (3.3),(3.4) the reconstruction formulas involve computing 2n
nested summations. For this, from now on, we will focus on polynomials of degree 2 (or 1)
in the form of p(x) = bx− ax2, a, b ∈ R, satisfying ∥I − p(S)∥ < 1. We need to prove a key
lemma.

Lemma 3.1. Let T be a self-adjoint operator and p(x) be a real polynomial. Then

∥p(T )∥ = sup {|p(x)| |x ∈ σ(T )} =: ∥p(x)∥∞,σ(T ),

and

∥I − p(T )∥ = sup {|1− p(x)| |x ∈ σ(T )} =: ∥1− p(x)∥∞,σ(T ).

Furthermore, if S is a frame operator with bounds A,B, then

∥I − p(S)∥ 6 ∥1− p(x)∥∞,[A,B]. (3.7)

Proof. We know that [6],

sup{|x| |x ∈ σ(T )} = lim
n→∞

∥Tn∥
1
n = lim

n→∞
∥T 2n∥ 1

2n = lim
n→∞

∥T ∥2n 1
2n = ∥T∥;

the fact that T is a self-adjoint operator was used in the third equation. So ∥T∥ =
sup{|x| |x ∈ σ(T )}. Since p(x) is real σ(p(T )) = p (σ(T )) ⊂ R. Therefore, p(T ) is self-
adjoint and thus

∥p(T )∥ = sup {|x| |x ∈ σ(p(T ))} = sup {|x| |x ∈ p (σ(T ))} .

If we put 1− p(x) instead of p(x) in the previous equation, we get

∥I − p(T )∥ = sup {|x| |x ∈ (1− p(.)) (σ(T ))}
= sup {|x| |x ∈ (1− p(σ(T ))}
= sup {|1− p(x)| |x ∈ σ(T )}
= ∥1− p(x)∥∞,σ(T ).

The last assertion of the theorem follows from the fact that σ(S) ⊂ [A,B]:

∥I − p(S)∥ 6 ∥1− p(x)∥∞,σ(T ) 6 ∥1− p(x)∥∞,[A,B].

�
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Proposition 3.2. Let {fi}i∈N be a frame for H with the frame operator S and the frame
bounds A and B. The polynomial p 2

B+A
(x) := 2

B+Ax, minimizes ∥1− p(x)∥∞,[A,B], where p

ranges over the family of polynomials of the form p(x) = bx, b ∈ (0,∞). In this situation,∥∥∥∥I − 2

B +A
S

∥∥∥∥ 6 B −A

B +A
. (3.8)

Proof. See the following figure: It is clear that infb∈(0,∞) ∥1 − bx∥∞,[A,B], occurs when

Figure 1

1
B < b < 1

A . Thus

inf
b∈(0,∞)

∥1− bx∥∞,[A,B] = inf
1
B6b6 1

A

∥1− bx∥∞,[A,B]. (3.9)

Define
ψ(b) := ∥1− bx∥∞,[A,B]. (3.10)

Observe that
ψ(b) = max{bB − 1, 1− bA}. (3.11)

From Figure 2 it is obvious that ψ(b) gets its infimum when bB − 1 = 1− bA. So b = 2
B+A

and

inf
1
B6b6 1

A

ψ(b) = ψ

(
2

B +A

)
= max

{
2

B +A
B − 1, 1− 2

B +A
A

}
=
B −A

B +A
. (3.12)

Relations (3.9)-(3.12) imply that

Figure 2
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inf
b∈(0,∞)

∥1− bx∥∞,[A,B] = inf
1
B6b6 1

A

∥1− bx∥∞,[A,B] = inf
1
B6b6 1

A

ψ(b) =
B −A

B +A
.

�

In what follows, two families of polynomials of degree 2 are described. Let pab(x) =
bx−ax2 with a, b > 0. For polynomials of this form the points x = b

2a and x = b
a are optimal

point and zero point of pab, respectively. Assume that P1 is the family of polynomials pab
such that
(1) 0 6 pab

(
b
2a

)
6 1,

(2) 0 6 pab(A) 6 pab(B) 6 1,
Also, let P2 be the family of polynomials pab(x) such that

(1) 1 6 pab
(

b
2a

)
6 2,

(2) pab(A) 6 pab(B),
The possible infimum value for ∥I − p(S)∥ will be considered in Theorem 3.3, where

p belongs to one of these families, P1,P2. The proof of the following theorem will be given
in the last section.

Theorem 3.3. Suppose that {fi}i∈N is a frame for H with the frame operator S and the
frame bounds A and B. Then
(1) Let a1 = 4

B+A , b1 = 4
(B+A)2

. The polynomial p1(x) = pa1b1(x) belongs to P1 and

∥I − p1(S)∥ 6
(
B −A

B +A

)2

. (3.13)

(2) Let a2 = 8
(B+A)2+4AB

, b2 = 8(B+A)

(B+A)2+4AB
. The polynomial p2(x) = pa2b2(x) belongs to

P2 and

∥I − p2(S)∥ 6 (B −A)
2

(B +A)
2
+ 4AB

. (3.14)

For every p ∈ P1 ∪ P2,

p(S)f =
(
bS − aS2

)
f

=
∑
i∈N

b⟨f, fi⟩fi −
∑
i∈N

∑
j∈N

a⟨f, fj⟩⟨fj , fi⟩fi , f ∈ H. (3.15)

The theorem above has an interesting corollary.

Corollary 3.1. For p2 = pa2b2 in Theorem 3.3 the operator p2(S) is a positive invertible
operator and there are positive constants A′, B′ such that

A < A′ 6 B +A

2
p2(S) 6 B′ < B. (3.16)

We can take A′ = B+A
2 (1 − β), B′ = B+A

2 (1 + β) where β = (B−A)2

(B+A)2+4AB
. Also, the

reconstruction formulas

f =
∑
i∈N

b2

⟨
f, p(S)

−1
fi

⟩
fi −

∑
i∈N

∑
j∈N

a2

⟨
f, p(S)

−1
fi⟩⟨fi , fj

⟩
fj ,

=
∑
i∈N

b2⟨f, fi⟩p(S)−1
fi −

∑
i∈N

∑
j

a2⟨f, fi⟩⟨fi , fj⟩p(S)−1
fj , f ∈ H, (3.17)

hold.
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Proof. Consider relation (1.4). Let α = 2
B+A in (1.4) and use B+A

2 p2(S) instead of S and

β = (B−A)2

(B+A)2+4AB
instead of β. Thus 0 < β < 1 and

B +A

2
(1− β) =

1− β

α
6 B +A

2
p2(S) 6

1 + β

α
=
B +A

2
(1 + β). (3.18)

Let γ = B−A
B+A . Obviously, 0 < γ < 1 and

β =
(B −A)

2

(B +A)
2
+ 4AB

<

(
B −A

B +A

)2

= γ2 < γ < 1. (3.19)

Hence
1− γ < 1− β < 1 + β < 1 + γ.

Using (3.18) and (3.19), we compute

A =
B +A

2

2A

B +A
=
B +A

2

(
1− B −A

B +A

)
=
B +A

2
(1− γ) <

B +A

2
(1− β)

6 B +A

2
p2(S)

6 B +A

2
(1 + β) <

B +A

2
(1 + γ)

=
B +A

2

(
1 +

B −A

B +A

)
=
B +A

2

(
2B

B +A

)
= B.

In short,

A <
B +A

2
(1− β) 6 B +A

2
p2(S) 6

B +A

2
(1 + β) < B.

Since 0 < β < 1, B+A
2 (1 − β) > 0. Then B+A

2 p2(S) is a positive invertible operator. The
reconstruction formulas are easily followed by (3.15) for p = p2. �

For p ∈ P1, a similar reasoning implies that p(S) is positive and invertible. For every
f ∈ H, the sequences

{⟨f, fi⟩}i∈N, {⟨fj , fi⟩}i∈N,
{⟨
f, p(S)

−1
fi

⟩}
i∈N

∈ ℓ2,

participate in the reconstructions introduced in Corollary. The sequence {⟨fj , fi⟩}i,j∈N is

fixed and {⟨f, fi⟩}i,j∈N,
{⟨
f, p(S)

−1
fi

⟩}
i∈N

needed to be computed.

In the following theorem we derive a generalized version of frame algorithm by using
the method of polynomial actions on the frame operator.

Theorem 3.4. (Frame Algorithm of degree 2) The frame {fi}i∈N with bounds A,B is given.
Let p(x) = bx− ax2 be the polynomial defined in Theorem 3.3(2). For f ∈ H define g0 = 0
and

gn = gn−1 + bSf − bSgn−1 − aS2f + aS2gn−1, n > 0.

Then {gn}∞n=0 converges to f and

∥f − gn∥ 6
(

(B −A)
2

(B +A)
2
+ 4AB

)n

∥f∥.
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P1 0 6 pab
(

b
2a

)
6 1 ⇔ 0 6 b 6 2

√
a

P1 , P2 pab(A) 6 pab(B) ⇔ bA− aA2 6 bB − aB2 ⇔ (B +A)a 6 b, (B+A)
2 6 b

2a

P1 pab(B) 6 1 ⇔ b 6 Ba+ 1
B

P2 1 6 pab
(

b
2a

)
6 2 ⇔ 2

√
a 6 b 6 2

√
2a

Table 1. Conditions of P1 , P2 and their equivalences.

Proof. Observe that

f − gn =
(
I −

(
bS − aS2

))
(f − gn−1)

= (I − p(S))(f − gn−1).

By induction,

f − gn = (I − p(S))
n
(f − g0).

Thus (3.14) implies that

∥f − gn∥ = ∥(I − p(S))
n∥ ∥f − g0∥

6 ∥I − p(S)∥n ∥f − g0∥

6
(

8(B −A)

(B +A)
2
+ 4AB

)n

∥f∥.

�

4. Proof of Theorem 3.3

Every polynomial pab defined on [A,B] takes it’s extermums at A,B and b
2a , because

p′ab
(

b
2a

)
= 0. We compute

pab

(
b

2a

)
=
b2

4a
, pab(A) = bA− aA2, pab(B) = bB − aB2. (4.1)

Fix x0, y0 ∈ R+. If x0 6 pab
(

b
2a

)
6 y0, then 2

√
x0a 6 b 6 2

√
y0a. The cases x0, y0 = 0, 1, 2

can be found in Table 1. When pab(A) 6 pab(B) it can easily be seen that

bA− aA2 6 bB − aB2 ⇐⇒ (B2 −A2)a 6 b(B −A)

⇐⇒ (B +A)a 6 b ⇐⇒ (B +A)

2
6 b

2a
.

The properties of classes P1,P2 and their equivalences are listed in Table 1. The reader can
readily check them.

Proof of part (1). In Relation (3.6) put n = 1 and apply 2
B+A instead of 1

B to derive

∥I − p1(S)∥ =

∥∥∥∥∥I −
(

4

B +A
S − 4

(B +A)
2S

2

)∥∥∥∥∥ =

∥∥∥∥∥
(
I − 2

B +A
S

)2
∥∥∥∥∥ 6

∥∥∥∥I − 2

B +A
S

∥∥∥∥2
6
(
1− 2A

B +A

)2

=

(
B −A

B +A

)2

.

On the other hand, we prove that pa1b1 satisfies the conditions of P1:

pa1b1

(
b1
2a1

)
=

(
4

B+A

)2
4 4
(B+A)2

= 1 ⇒ 0 6 pa1b1

(
b1
2a1

)
6 1.
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Figure 3. P2 : A 6 B 6 b
2a .

Figure 4. P2 : A 6 b
2a 6 B.

Also,

pa1b1 (A) = b1A− a1A
2 =

4

(B +A)
A− 4

(B +A)2
A2 =

4AB

(B +A)2
,

pa1b1 (B) = b1B − a1B
2 =

4

(B +A)
B − 4

(B +A)2
B2 =

4AB

(B +A)2
.

Since

0 6 (B −A)
2 ⇒ 2AB 6 B2 +A2 ⇒ 4AB 6 B2 +A2 + 2AB ⇒ 4AB 6 (B +A)

2 ⇒ 4AB

(B +A)
2 6 1,

then

0 6 pa1b1(A) = pa1b1(B) 6 1. (4.2)

Proof of part (2). Under conditions of P2, it is obvious that (see Figures 3 and 4)

∥1− pab(x)∥∞,[A,B] = max{l(a, b), k(a, b)}, (4.3)

where

l(a, b) := 1− pab(A), k(a, b) := pab

(
b

2a

)
− 1. (4.4)

Use (4.1) to get l(a, b) = 1− bA+ aA2, k(a, b) = b2

4a − 1. We show that p2 = pa2b2 satisfies
the conditions of P2:

pa2b2

(
b2
2a2

)
=

b22
4a2

=

(
8(B +A)

(B +A)
2
+ 4AB

)2
(B +A)

2
+ 4AB

4× 8
= 2

(B +A)
2

(B +A)
2
+ 4AB

6 2.

Hence 0 6 pa2b2

(
b2
2a2

)
6 2.

We see that

pa2b2 (A) = b2A− a2A
2 =

8(B +A)

(B +A)
2
+ 4AB

A− 8

(B +A)
2
+ 4AB

A2 =
8AB

(B +A)2 + 4AB
,

and

pa2b2 (B) = b2B − a2B
2 =

8(B +A)

(B +A)
2
+ 4AB

B − 8

(B +A)
2
+ 4AB

B2 =
8AB

(B +A)2 + 4AB
.

Thus

0 6 (B −A)
2 ⇒ 2AB 6 B2 +A2 ⇒ 8AB 6 B2 +A2 + 2AB + 4AB

⇒ 8AB 6 (B +A)
2
+ 4AB ⇒ 8AB

(B +A)
2
+ 4AB

6 1.
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Consequently, 0 6 pa2b2(A) = pa2b2(B) 6 1. We compute

l(a2, b2) = 1− pa2b2(A) = 1−
(
b2A− a2A

2
)

= 1−
(

8(B +A)

(B +A)2 + 4AB
A− 8

(B +A)2 + 4AB
A2

)
=

(B +A)2 + 4AB − 8A(B +A) + 8A2

(B +A)2 + 4AB

and by (??),

k(a2, b2) = pa2b2

(
b2
2a2

)
− 1 = 2

(B +A)
2

(B +A)
2
+ 4AB

− 1 =
(B −A)2 − 4AB

(B +A)2 + 4AB
.

So max {l(a2, b2), k(a2, b2)} = (B−A)2

(B+A)2+4AB
.

Relations (3.7), (4.3) and the previous equation give

∥I − p2(S)∥ 6 ∥1− p2(x)∥∞,[A,B] = ∥1− pa2b2(x)∥∞,[A,B]

= max {l(a2, b2), k(a2, b2)} =
(B −A)

2

(B +A)
2
+ 4AB

.
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