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PROPERTIES OF CALCULUS IN R-COMPLEXITY

Rares Folea1 and Emil Slusanschi2

This paper presents a series of general properties of the r-Complexity
calculus, a complexity measurement for assessing the performance and as-
ymptotic behaviour of real-world algorithms. This research describes charac-
teristics such as reflexivity, transitivity, or symmetry and discusses several
conversion rules between different classes of r-Complexity, as well as es-
tablishing fundamental arithmetic principles. The work also examines the
behaviour of the addition property within this system and compares its char-
acteristics with those frequently used in the traditional Bachmann-Landau
notation. Through utilizing these properties, this research seeks to promote
the exploration and development of novel applications for r-Complexity, as
well as accelerating the adoption rate of calculus in this refined complexity
model.

Keywords: r-Complexity, computational complexity, code complexity, prop-
erties of complexity models, asymptotic analysis, algorithmic performance

1. Introduction

Algorithms stand at the core of computer science as they are used as pri-
mary building blocks and asymptotic notations are being widely accepted as
the main method for estimating its performance, by calculating the complexity
of the analysed algorithm [5, 6, 9]. When examining and comparing two or
more code snippets, calculating the asymptotic complexity is important for a
number of reasons: it helps predicting the scalability of the solution, serves as a
comparison method between different algorithms and it can help engineers un-
derstand the inherent limitations and trade-offs of each solution. Nonetheless,
it can help identify bottlenecks in the code, which can then later be opti-
mized by developers. Algorithmic complexity is commonly expressed utilizing
the Bachmann-Landau [2, 3] asymptotic notations, encompassing Big-Theta,
Big-O, and Big-Omega measurements.
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Asymptotic code complexity is a topic of interest in various fields, in-
cluding logic, coding theory, and computational systems. In general, the as-
ymptotic complexity mostly aims to map how the algorithm’s utilisation of
resources (e.g. total CPU time or memory) grows, with respect to increases
in the input size, to later estimate how it will perform with larger inputs.
Having this metric, asymptotic notations permits the comparison of multiple
algorithms’ efficiency, as for example an Θ(n · log n) algorithm is more efficient
than an Θ(n2) algorithm, for sufficiently large input sizes. Over time, many
asymptotic notations [4, 5, 6, 7, 8, 9, 10, 11] have been introduced, but the
fundamental concept has remained essentially the same: the definition of an as-
ymptotic notation is based on measuring different complexity functions against
a given reference function. Also, there have been efforts to try and automate
the process of finding the complexity class for a given program [12, 13].

The r-Complexity model [1] is an alternative asymptotic notation to the
Bachmann-Landau notations, that offers better complexity feedback for simi-
lar programs and provides subtle insights, even for algorithms that are part of
the same conventional complexity class. The model aims to address some of
the shortfalls of the traditional model, such as providing a solution for making
discrepancy between two similar algorithms with two similar complexity func-
tions, v, w : N −→ R, for which that there exists g, such that v(n) ∈ Θ(g(n))
and w(n) ∈ Θ(g(n)).

In Section 2, we present the motivation of our research and illustrate
a scenario where two algorithms solving the same problem would have been
grouped into the same complexity class in the traditional analysis, despite
their vastly different performance in practice. Then, in Section 3, we present
some formal definitions and associated corollaries for the various r-Complexity
classes, including Big r-Theta, Big r-O and Big r-Omega, as well as presenting
alternative criteria for admittance in a given set. Section 4 explores proper-
ties like reflexivity, transitivity, symmetry, and projections within the context
of r-Complexity. Section 5 examines the behaviour of r-Complexity classes
under addition and finally, in Section 6, we summarize the key results of the
research.

2. Motivation

The r-Complexity model demonstrates value by analysing dominant con-
stants, revealing significant differences in some algorithms’ behaviour, that
can substantially impact the total execution time. To help software engineers
collaborate and share knowledge more directly, by discussing and comparing
algorithms using the r-Complexity asymptotic notation, this paper presents a
set of common properties of calculus within the r-Complexity classes, that can
be used to obtain a faster pace of operating with complexities.

In the traditional Bachmann-Landau notations, the Big-Theta defini-
tion [4, 5, 6] states that a function f(n) belongs to the Θ(g(n)) complexity set
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if and only if two positive constants, denoted by c1 and c2, exists, as well as
a positive integer n0, such that f(n) is bounded between g(n), multiplied by
c1 (lower bound) and c2 (upper bound) constants, for any value of n greater
than or equal to n0:

Θ(g(n)) = {f(n) | ∃c1, c2 ∈ R∗
+,∃n0 ∈ N∗ s.t. c1·g(n) ≤ f(n) ≤ c2·g(n), ∀n ≥ n0}

To highlight potential situations where the lack of distinction can mis-
lead developers, consider two algorithms, Alg1 and Alg2, that solve the same
problem are defined by different complexity functions: f1, f2 : N −→ R, with
the properties that the functions defer exactly by one constant: f1 = x · f2,
with x ∈ R+, x > 1.

These complexities functions will imply that the two algorithms would
belong to the same Big-Theta complexity set, because there exists g, with
f2 ∈ Θ(g(n)), such as:

∃c1, c2 ∈ R∗
+,∃n0 ∈ N∗ s.t. c1 · g(n) ≤ f2(n) ≤ c2 · g(n) , ∀n ≥ n0

holds for c
′
1, c

′
2 ∈ R∗

+, n
′
0 ∈ N∗, where:

c
′

1 = x · c1
c
′

2 = x · c2
n

′

0 = n0

because ∀n ≥ n
′
0:

c
′

1 · g(n) = x · c1 · g(n) ≤ x · f2(n) = f1(n) = x · f2(n) ≤ x · c2 · g(n) = c
′

2 · g(n)
This implies:

c
′

1 · g(n) ≤ f1(n) ≤ c
′

2 · g(n)
and therefore, based to the definition of Big Theta, f2 ∈ Θ(g(n))⇒ f1 ∈

Θ(g(n)).

Similarly, f1 ∈ Θ(g(n)) ⇒ f2 ∈ Θ(g(n)) for c
′
1 =

1

x
· c1, c

′
2 =

1

x
· c2 and

n
′
0 = n0.

Remark that even if f1 > f2, both complexity functions are part of the
same complexity class. This observation implies that two algorithms, whose
complexity functions can differ by a constant, even as high as 20242024, are
part of the same complexity class, even if the actual run-time might differ by
over five-thousands orders of magnitude. For comparison, only a 30 magni-
tude order between the two complexity functions f1 = 1030 · f2, signify that
if for a given input n, if Alg2 ends execution in 1 attosecond (10−9 part of
a nanosecond), then Alg1 is expected to end execution in about 3 millenni-
ums. Despite of the colossal difference in time, classical complexity model is
not perceptive between these subset of algorithms, that have their complexity
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Metrics (raw)

Big r-Theta approximator

Regression module

Best fitting regression for r-Complexity:(
(”POLY”, 2, 3, 6)time, (”POLY”, 1, 2.1, 1)memory

)

time:
input = 10 → 306 (seconds)
input = 20 → 1206
input = 30 → 2706

memory:
input = 10 → 22 (kB)
input = 20 → 43
input = 30 → 64

time(n) = 3 · n2 + 6 (seconds)
memory(n) = 2.1 · n1 + 1 (kB)

Figure 1. An example of the regression fitting process in [14],
with a set of two raw metrics: temporarily and space. The goal
of the research is to approximate, using simplified functions, the
actual Big r-Theta complexity function that models program
behaviour across multiple performance metrics, which later can
be used to build complexity-based code embeddings. One part
of the embedding that analyses the time complexity, POLY 2 3
6, denotes a second degree polynomial, with the coefficient 3 for
the squared term of the polynomial and the intercept 6.

functions differing by only some constants. In general, it is easier to evaluate
the algorithm’s effectiveness and applicability for various scenarios when one
is aware of these complexity features.

Some applications of r-Complexity have been presented in [1], which has
challenged the common belief that Strassen’s algorithm, with its lower asymp-
totic complexity would always outperform a traditional matrix multiplication
for any input size. The result in the paper has shown that for input sizes less
than 25 million element, a cache-friendly loop ordering algorithm would fin-
ish faster due, despite the increase in complexity. The same paper presents an
estimation of the total time using a brute-force algorithm for generating all pos-
sible episodes to around 10123 seconds, based on the associated r-Complexity
function. This has been the core argument for arguing that solving the game
of chess perfectly, by brute force algorithms, is currently infeasible, due to the
limitations of available computing power. This argument could have not been
established by using the traditional complexity models, for finite inputs.

Another area where r-Complexity has proven useful [14] is in building
code-embeddings, representative of the program logic, that would later be
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used to classify algorithms into different categories, such as greedy, brute force
or divide and conquer. The embedding calculus is based on the idea of finding
the coefficients of the associated r-Complexity function, estimated by fitting a
regression model to the metrics obtained from the profilers during the execution
of algorithm, as a function of its input size. For example, a real use-case
presented in Figure 1, indicates, via experimental data, that the algorithm’s
execution time is proportional to the square of the input size and the amount
of memory used by the algorithm grows proportionally to the size of the input
data. Using r-Complexity models for estimating the Big r-Theta class, we can
have insights into what the proportion is, such as insights that the execution
time is scaling three times with the square of the input size, or that the memory
scales 2.1 times as fast as the input size.

3. Definition of the r-Complexity sets

The definition of the r-Complexity sets have initially been introduced
in [1]. In this paper, we extend the expressively of these statements by associ-
ating corollaries, build upon the knowledge described in the definition, which
will highlight important consequences in asymptotic calculus. The validity of
the corollaries presented in this section follows directly from the definition of
the classes.

Calculus in r-Complexity can be performed either using limits of se-
quences or limits of functions. Consider any two complexity functions f, g :
N+ −→ R. The following notations and terminology will be used to de-
scribe the asymptotic behaviour of an algorithm’s complexity, as character-
ized by a function f : N −→ R. We define the set of all complexity calculus
F = {f : N −→ R}.
Definition 3.1. Big r-Theta has been defined as the set that represents the
group of mathematical functions that have the same growth rate as a function
g, in the context of asymptotic analysis. More formally, the Big r-Theta r-
Complexity class has been defined [1] as:

Θr(g(n)) = {f ∈ F | ∀c1, c2 ∈ R∗
+ s.t.c1 < r < c2,∃n0 ∈ N∗

s.t. c1 · g(n) ≤ f(n) ≤ c2 · g(n) , ∀n ≥ n0}
Corollary 3.1. Criteria for a function f to be in the Big r-Theta complexity
class defined by a function g is a direct result of the following:

f ∈ Θr(g(n))⇔ lim
n→∞

f(n)

g(n)
= r

We will use the same definition for the Big r-O, Big r-Omega, Small
r-O and Small r-Omega as presented in [1], with the remark that the last
two models are defined for completeness reasons only, as they don’t provide
any novelty opposed to the traditional notations [16, 17]. Similar to Big r-
Theta, following the definitions of Big r-O, Big r-Omega, Small r-O and Small
r-Omega classes, the following corollaries are direct implications:
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Corollary 3.2. Criteria for admittance of f in Big r-O class defined by g:

f ∈ Or(g(n))⇔ lim
n→∞

f(n)

g(n)
= l, l ∈ [0, r]

Corollary 3.3. Criteria for admittance of f in Big r-Omega class defined by
g:

f ∈ Ωr(g(n))⇔ lim
n→∞

f(n)

g(n)
= l, l ∈ [r,∞)

The criteria for admittance of f in both Small r-O and Small r-Omega
complexity classes are unchanged from the traditional notations.

Corollary 3.4. Criteria for admittance of f in Small r-O class defined by g:

f ∈ or(g(n))⇔ lim
n→∞

f(n)

g(n)
= 0

Corollary 3.5. Criteria for admittance of f in Small r-Omega class defined
by g:

f ∈ ωr(g(n))⇔ lim
n→∞

f(n)

g(n)
=∞

4. Common properties in r-Complexity

This chapter will present new implications in terms of reflexivity, tran-
sitivity, symmetry and projections in r-Complexity, and it will draw the com-
parison with equivalent properties within the conventional Bachmann–Landau
notations, already well analysed and established in the literature [9, 10, 11, 15].
By recognizing reflexivity, symmetry and transpose properties in r-Complexity,
we consider that some problems can be solved more efficiently in this model.
To establish the results in this section, we will rely on the definitions introduced
in Section 3, and the foundational model described in [1].

Theorem 4.1. Reflexivity in r-Complexity for Big r-Theta notation

f ∈ Θr

(
1

r
· f(n)

)
∀r ̸= 0

Proof. Based on the definition of Θr(f(n))

Θr(f(n)) = {f ′ ∈ F | ∀c1, c2 ∈ R∗
+ s.t.c1 < r < c2,∃n0 ∈ N∗

s.t. c1 · f(n) ≤ f ′(n) ≤ c2 · f(n) , ∀n ≥ n0}

Using substitution f(n)←− 1
r
· f(n)

Θr

(
1

r
· f(n)

)
= {f ′ ∈ F | ∀c1, c2 ∈ R∗

+ s.t.c1 < r < c2,∃n0 ∈ N∗

s.t.
1

r
· c1 · f(n) ≤ f ′(n) ≤ 1

r
· c2 · f(n) , ∀n ≥ n0}
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By choosing c′1 =
1
r
· c1, c′2 = 1

r
· c2

Θr

(
1

r
· f(n)

)
= {f ′ ∈ F | ∀c′1, c′2 ∈ R∗

+ s.t.c′1 < 1 < c′2,∃n0 ∈ N∗

s.t. c′1 · f(n) ≤ f ′(n) ≤ c′2 · f(n) , ∀n ≥ n0}
For any x ∈ R∗, ∀c1, c2 s.t.c1 ≤ 1 ≤ c2, we have x · c1 ≤ x ≤ x · c2. Thus, if
f : N −→ R, ∀c1, c2 s.t.c1 ≤ 1 ≤ c2, we have f(n) · c1 ≤ f(n) ≤ f(n) · c2 ∀n ∈
N∗ or f(n) · c1 ≥ f(n) ≥ f(n) · c2 ∀n ∈ N∗

Therefore:

∀c′1, c′2 ∈ R∗
+ s.t.c′1 < 1 < c′2,∃n0 = 1s.t. c′1·f(n) ≤ f(n) ≤ c′2·f(n) , ∀n ≥ n0 = 1⇒

f ∈ Θr

(
1

r
· f(n)

)
∀r ̸= 0

Theorem 4.2. Reflexivity in r-Complexity for Big r-O notation

f ∈ Or (x · f(n)) ∀x ≥
1

r

Proof. Based on the definition of Or(f(n))

Or(f(n)) = {f ′ ∈ F | ∀c ∈ R∗
+ s.t. r < c, ∃n0 ∈ N∗ s.t. f ′(n) ≤ c·f(n), ∀n ≥ n0}

Using substitution f(n)←− x · f(n),∀x ≥ 1

r
,∀r ̸= 0

Or(x·f(n)) = {f ′ ∈ F | ∀c ∈ R∗
+ s.t. r < c, ∃n0 ∈ N∗ s.t. f ′(n) ≤ c·x·f(n), ∀n ≥ n0}

If r < c and x ≥ 1

r
, then c · x ≥ 1, ∀r, c, x r ̸= 0 Thus, if f : N −→ R, we have

f(n) ≤ 1 · f(n) ≤ c · x · f(n) ∀n ∈ N∗.
Therefore:

∀x ≥ 1

r
, ∀c ∈ R∗

+ s.t. r < c, ∃n0 = 1s.t. f(n) ≤ c·x·f(n) ∀n ∈ N∗, ∀n ≥ n0 = 1⇒

f ∈ Or (x · f(n)) ∀x ≥
1

r

Theorem 4.3. Reflexivity in r-Complexity for Big r-Omega notation

f ∈ Ωr (x · f(n)) ∀x ≤
1

r

Proof. Based on the definition of Ωr(f(n))

Ωr(f(n)) = {f ′ ∈ F | ∀c ∈ R∗
+ s.t. c < r,∃n0 ∈ N∗ s.t. f ′(n) ≥ c·f(n), ∀n ≥ n0}

Using substitution f(n)←− x · f(n),∀x ≤ 1

r
,∀r ̸= 0

Ωr(x·f(n)) = {f ′ ∈ F | ∀c ∈ R∗
+ s.t. c < r,∃n0 ∈ N∗ s.t. f ′(n) ≥ x·c·f(n), ∀n ≥ n0}
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If r > c and x ≤ 1

r
, then c · x ≤ 1,∀r, c, x r ̸= 0

Therefore:

∀x ≤ 1

r
, ∀c ∈ R∗

+ s.t. c < r,∃n0 = 1s.t. f(n) ≥ c·x·f(n) ∀n ∈ N∗, ∀n ≥ n0 = 1⇒

f ∈ Ωr (x · f(n)) ∀x ≤
1

r

Remark 4.1. Reflexivity does not hold in r-Complexity for small r-O and
small r-Omega notation, as this set is the same as the classical sets defined in
Bachmann–Landau notations, and reflexivity does not hold for Small Omega
class.

f /∈ or(f(n))

f /∈ ωr(f(n))

Theorem 4.4. Transitivity in r-Complexity - Big r-Theta notation:

f ∈ Θr(g(n)), g ∈ Θr′(h(n))⇒ f ∈ Θr·r′(h(n))

Proof. f ∈ Θr(g(n))⇒ ∀c1, c2 ∈ R∗
+ s.t.c1 < r < c2,∃n0 ∈ N∗

s.t. c1 · g(n) ≤ f(n) ≤ c2 · g(n) , ∀n ≥ n0

g ∈ Θr′(h(n))⇒ ∀c1, c2 ∈ R∗
+ s.t.c1 < r′ < c2,∃n′

0 ∈ N∗

s.t. c1 · h(n) ≤ g(n) ≤ c2 · h(n) , ∀n ≥ n′
0

Therefore:

∀c1, c2, c′1, c′2 ∈ R∗
+ s.t.c1 < r < c2, c

′
1 < r′ < c′2, ∃n′′

0 = max(n0, n
′
0) ∈ N∗ s.t.

c′1 · c1 · h(n) ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n) ≤ c′2 · c2 · h(n) , ∀n ≥ n′′
0

For c′′1 = c1 · c′1, c′′2 = c2 · c′2, we have: c′′1 < r · r′ < c′′2.
As a consequence:

∀c′′1, c′′2 ∈ R∗
+ s.t.c′′1 < r · r′ < c′′2 ∃n′′

0 = max(n0, n
′
0) ∈ N∗s.t.

c′′1 · h(n) ≤ f(n) ≤ c′′2 · h(n) , ∀n ≥ n′′
0 ⇒ f ∈ Θr·r′(h(n))

The remaining transitivity properties also hold within r-Complexity Cal-
culus, and their proofs follow a similar structure to the one presented above:

Theorem 4.5. Transitivity in r-Complexity - Big r-O notation:
f ∈ Or(g(n)), g ∈ Or(h(n))⇒ f ∈ Or·r′(h(n))

Theorem 4.6. Transitivity in r-Complexity - Big r-Omega notation:
f ∈ Ωr(g(n)), g ∈ Ωr(h(n))⇒ f ∈ Ωr·r′(h(n))

Theorem 4.7. Transitivity in r-Complexity - Small r-O notation:
f ∈ or(g(n)), g ∈ or′(h(n))⇒ f ∈ or·r′(h(n))
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Theorem 4.8. Transitivity in r-Complexity - Small r-Omega notation
f ∈ ωr(g(n)), g ∈ ωr′(h(n))⇒ f ∈ ωr·r′(h(n))

Symmetry is a fundamental algebraic property that plays a crucial role in
various mathematical contexts, as it simplifies problem solving in many cases,
and it also provides means to perform a more elegant flow of calculations.

Theorem 4.9. Symmetry in r-Complexity: f ∈ Θr(g(n))⇒ g ∈ Θ 1
r
(f(n))

Proof. f ∈ Θr(g(n))⇒ ∀c1, c2 ∈ R∗
+ s.t.c1 < r < c2,∃n0 ∈ N∗

s.t. c1 · g(n) ≤ f(n) ≤ c2 · g(n) , ∀n ≥ n0

Using the substitution c′1 =
c1
r
, c′2 =

c2
r
⇒ ∀c′1, c′2 ∈ R∗

+ s.t.c1 < 1 < c2,∃n0 ∈
N∗

s.t. c′1 · g(n) ≤
1

r
· f(n) ≤ c′2 · g(n) , ∀n ≥ n0

The previous inequality can be re-written as:
g(n) ≤ 1

c′1
· 1
r
· f(n)

g(n) ≥ 1

c′2
· 1
r
· f(n)

Using notation c′′1 =
1

c′2
, c′′2 =

1

c′1
the inequality becomes:

∀c1,′′ c′′2 ∈ R∗
+ s.t.c′′1 < r < c′′2,∃n0 ∈ N∗

c′′1 ·
1

r
· f(n) ≤ g(n) ≤ c′2 ·

1

r
· f(n) ∀n ≥ n0

Thus, Based on the definition of Θr(f(n)), f ∈ Θr(g(n))⇒ g ∈ Θ 1
r
(f(n)).

Theorem 4.10. Transpose symmetry in r-Complexity: f ∈ Or(g(n)) ⇔ g ∈
Ω 1

r
(f(n))

Proof. Using the definition of Or(f(n)) and f ∈ Or(g(n)) (Or(g(n)) ⊇ {f} ):
∀c ∈ R∗

+ s.t. r < c,∃n0 ∈ N∗ s.t. g(n) ≤ c · f(n), ∀n ≥ n0

We can rewrite the previous relation as following:

∀c ∈ R∗
+ s.t. r < c,∃n0 ∈ N∗ s.t.

1

c
· g(n) ≤ f(n), ∀n ≥ n0

Substituting the constant c′ =
1

c
:

∀c′ ∈ R∗
+ s.t. c′ <

1

r
,∃n0 ∈ N∗ s.t. f(n) ≥ c′ · g(n), ∀n ≥ n0

Therefore:

Ω 1
r
(f(n)) ⊇ {g}
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Remark 4.2. The Transpose symmetry hold for Small r-o and Small r-Omega,
as these two sets are equal with the classical sets defined in Bachmann–Landau
notations.

Theorem 4.11. Projection property in r-Complexity:
f ∈ Θr(g(n))⇔ f ∈ Or(g(n)) and f ∈ Ωr(g(n))

Proof. The proof is straightforward, using the definitions of Big r-Theta, Big
r-O and Big r-Omega.
” ⇒ ” f ∈ Θr(g(n))⇒ f ∈ Or(g(n)), f ∈ Ωr(g(n)) Based on the definition of
Θr(g(n)), f ∈ Θr(g(n))⇒
∀c1, c2 ∈ R∗

+ s.t.c1 < r < c2,∃n0 ∈ N∗s.t. c1 ·g(n) ≤ f(n) ≤ c2 ·g(n) , ∀n ≥ n0

By splitting the inequality:{
∀c1 ∈ R∗

+ s.t.c1 < r, ∃n0 ∈ N∗ s.t. c1 · g(n) ≤ f(n), ∀n ≥ n0

∀c2 ∈ R∗
+ s.t.r < c2,∃n0 ∈ N∗ s.t. f(n) ≤ c2 · g(n) , ∀n ≥ n0

Therefore: {
f ∈ Or(g(n))

f ∈ Ωr(g(n))

” ⇐ ” f ∈ Or(g(n)), f ∈ Ωr(g(n))⇒ f ∈ Θr(g(n)) Using the definitions
of Big r-O and Big r-Omega:{

∀c1 ∈ R∗
+ s.t.c1 < r, ∃n0 ∈ N∗ s.t. c1 · g(n) ≤ f(n), ∀n ≥ n0

∀c2 ∈ R∗
+ s.t.r < c2,∃n′

0 ∈ N∗ s.t. f(n) ≤ c2 · g(n) , ∀n ≥ n′
0

By choosing n′′
0 = max(n0, n

′
0):{

∀c1 ∈ R∗
+ s.t.c1 < r,⇒ c1 · g(n) ≤ f(n), ∀n ≥ n′′

0

∀c2 ∈ R∗
+ s.t.r < c2,⇒ f(n) ≤ c2 · g(n) , ∀n ≥ n′′

0

By merging the inequalities, we have for ∀n ≥ n′′
0:

∀c1, c2 ∈ R∗
+ s.t.c1 < r < c2,∃n′′

0 = max(n0, n
′
0) s.t. c1 ·g(n) ≤ f(n) ≤ c2 ·g(n)

Therefore f ∈ Θr(g(n)).

5. Addition properties

Analogous to the calculus in Bachmann-Landau notations (including Big-
O arithmetic), valuable insights can be gained by examining the behaviour
of r-Complexity classes under addition. For each of the presented theorem,
we present a corollary, using a relax notation, where consider that by any r-
Complexity class notation, we denote an arbitrary function part of the set.
This would allow us to write equations such as the one presented below.

For analysing the addition properties in Big r-Theta, the following rela-
tions hold for any correctly defined functions f, g, f ′, g′, h : N −→ R, where

h(n) = f ′(n) + g′(n)
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∀n ∈ N, where f ′, g′ are two arbitrary functions such that f ′ ∈ Θr(f), g
′ ∈

Θq(g) and r, q ∈ R+:

Theorem 5.1. If limn→∞
f(n)

g(n)
= 0⇒ h ∈ Θq(g).

Proof. limn→∞
f(n)

g(n)
= 0 ⇒ limn→∞

f ′(n)

g′(n)
= 0 ⇒ limn→∞

g′(n) + f ′(n)

g′(n)
= 1

and using the result from asymptotic analysis section, we have g′(n)+ f ′(n) =
h(n) ∈ Θ1(g

′).
Using reflexivity property, h(n) ∈ Θq(g).

Corollary 5.1. If limn→∞
f(n)

g(n)
= 0, the following relation holds:

lim
n→∞

f(n)

g(n)
= 0⇒ Θr(f) + Θq(g) = Θq(g)

Theorem 5.2. If limn→∞
f(n)

g(n)
=∞⇒ h ∈ Θr(f).

Proof. Using the last result, by performing the swap:f ← g, g ← f and consid-
ering the commutativity of addition, we obtain the proof for this statement.

Corollary 5.2. If limn→∞
f(n)

g(n)
=∞, the following relation holds:

lim
n→∞

f(n)

g(n)
=∞⇒ Θr(f) + Θq(g) = Θr(f)

Theorem 5.3. If limn→∞
f(n)

g(n)
= t, t ∈ R+ ⇒ h ∈ Θr

(
f +

r

q
· g

)
.

Proof. limn→∞
f(n)

g(n)
= t⇒ limn→∞

f ′(n)

g′(n)
= t·r

q
= t′ ⇒ limn→∞

g′(n) + f ′(n)

g′(n)
=

t′ + 1 and using the result from asymptotic analysis section, we have g′(n) +
f ′(n) = h(n) ∈ Θt′+1(g

′).
Using reflexivity property, h(n) ∈ Θt′+1(q · g).
Using the conversion technique, we have h(n) ∈ Θr(

1

r
· t · r

q
+ 1) · q · g).

By swapping back t, asymptotically, we can establish:

h(n) ∈ Θr

(
1

r
· (f(n)

g(n)
· r
q
+ 1) · q · g

)
Therefore h ∈ Θr

(
f +

r

q
· g

)
.
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Corollary 5.3. If limn→∞
f(n)

g(n)
= t, t ∈ R+, the following relation holds:

lim
n→∞

f(n)

g(n)
= t, t ∈ R+ ⇒ Θr(f) + Θq(g) = Θr(f +

r

q
· g)

For addition in Big r-O, the following relations hold for any correctly
defined functions f, g, f ′, g′, h : N −→ R, where h(n) = f ′(n) + g′(n) ∀n ∈ N,
where f ′, g′ are two arbitrary functions such that f ′ ∈ Or(f), g

′ ∈ Oq(g) and
r, q ∈ R+:

Theorem 5.4. If limn→∞
f(n)

g(n)
= 0⇒ h ∈ Oq(g).

Corollary 5.4.

lim
n→∞

f(n)

g(n)
= 0⇒ Or(f) + Oq(g) = Oq(g)

Theorem 5.5.

Corollary 5.5.

lim
n→∞

f(n)

g(n)
=∞⇒ Or(f) + Oq(g) = Or(f)

Theorem 5.6. If limn→∞
f(n)

g(n)
= t, t ∈ R+ ⇒ h ∈ Or

(
f +

r

q
· g

)
.

Corollary 5.6.

lim
n→∞

f(n)

g(n)
= t, t ∈ R+ ⇒ Or(f) + Oq(g) = Or(f +

r

q
· g)

The proofs for the latest results is similar with the proof for addition in
Big Theta, by using conversion presented for Big r-O class.

For addition in Big r-Omega, the following relations hold for any correctly
defined functions f, g, f ′, g′, h : N −→ R, where h(n) = f ′(n) + g′(n) ∀n ∈ N,
where f ′, g′ are two arbitrary functions such that f ′ ∈ Ωr(f), g

′ ∈ Ωq(g) and
r, q ∈ R+:

Theorem 5.7. If limn→∞
f(n)

g(n)
= 0⇒ h ∈ Ωq(g).

Corollary 5.7.

lim
n→∞

f(n)

g(n)
= 0⇒ Ωr(f) + Ωq(g) = Ωq(g)

Theorem 5.8. If limn→∞
f(n)

g(n)
=∞⇒ h ∈ Ωr(f).
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Corollary 5.8.

lim
n→∞

f(n)

g(n)
=∞⇒ Ωr(f) + Ωq(g) = Ωr(f)

Theorem 5.9. If limn→∞
f(n)

g(n)
= t, t ∈ R+ ⇒ h ∈ Ωr

(
f +

r

q
· g

)
.

Corollary 5.9.

lim
n→∞

f(n)

g(n)
= t, t ∈ R+ ⇒ Ωr(f) + Ωq(g) = Ωr(f +

r

q
· g)

The proofs for the latest results is similar with the proof for addition in
Big Theta, using conversion presented for Big r-Omega class.

The additions in Small r-O and Small r-Omega have the same properties
as described in Bachmann-Landau notations.

6. Conclusions

The r-Complexity [1] model proposes a different approach to measuring
the algorithm complexity, that seeks to provide a more refined awareness of
algorithm performance, by not only performing asymptotic analysis, but also
providing relevant estimations for finite inputs.

Compared to traditional Bachmann-Landau notations, r-Complexity can
distinguish between algorithms that would otherwise fall under the same com-
plexity class, providing more granular insights for developers in deciding the
optimal solution to use. Moreover, r-Complexity classes have a flexible nature,
as functions defining classes can be easily converted, given different values of
r, via the simple technique of changeover developed in [1]. For this reasons,
the r-Complexity framework has the potential to enhance the standard ways
engineers and developers assess and optimize their algorithms. The presented
applications in Section 2 demonstrated that r-Complexity provides a valuable
framework for analysing algorithm performance beyond asymptotic complex-
ity, enabling more accurate predictions(as observed on matrix multiplication)
and deeper understanding of program behaviour (as exemplified by their ap-
plicability on building code embeddings). One of the key insights provided
by this complexity model is that Strassen’s algorithm, despite its theoretical
asymptotic advantage, is slower than a traditional matrix multiplication, for
practical input sizes.

The main contributions of this paper consists in enumerating and proof-
ing some of the properties of calculus within r-Complexity classes, such as
reflexivity, transitivity, symmetry, and projections. Additionally, the study
investigated the behaviour of r-Complexity classes under addition and conver-
sion rules between r-Complexity classes and the more traditional Bachmann-
Landau complexity classes. These findings aim to help users of r-Complexity
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to speed up their calculus, and potentially support the wider adoption of this
method of performing algorithm analysis and trade-off comparisons.
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