U.P.B. Sci. Bull. Series A, Vol. 73, Iss. 2, 2011 ISSN 1223-7027

AN APPROACH TO ACCESS TO ACONCEPT LATTICE VIA

THE IDEA OF LATTICE THEORY
Hua MAO!

A concept lattice is defined by a binary relation on a context and indeed a lattice. In this
paper, for a given context, firstly, we present a way to obtain all the cover elements of the smallest
element in the given context ordered by a naturally relation. After that, we define a binary relation
on a new context produced by one of elements in the concept lattice for the given context. A new
concept lattice is derived from just the new binary relation. By the help of lattice theory, we
explain the isomorphic relation between the new concept lattice and an interval in the concept
lattice produced by the given context. Henceforth, using this isomorphic relation and the way
presented previously to obtain all the cover elements of the smallest element, we give an approach
to earn all the elements in the concept lattice for the given context. Simultaneously, the Hasse
diagram of the concept lattice is got.
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1. Introduction

We know that concept lattices are used in several areas of database
managing and the theory of concept lattices is an efficient tool for knowledge
representation and knowledge discovery (cf. [1, 2, 3, 5]). As Berry and Sigayret
said in [2], one of the important challenges in data handling is generating or
navigating the concept lattice of a binary relation. In this paper, we present an
approach for generating and understanding a concept lattice by the intervals and
the cover elements’ properties in the concept lattice for a given context. The
approach generates all the concepts as well as the edges of the Hasse diagram of
the lattice, without requiring a data structure.

A. Berry et.al. in [6] also present an algorithmic process which encounters
all the concepts without requiring an exponential-size data structure. The
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algorithm in [6] is a Depth-First fashion. To get the cover of a concept (A, B), it
needs to compute the partition into maxmods. After that, it computes the set ND
of non-dominating maxmods. Finally, using the set ND of non-domination
maxmods of I(G\A, B) (Notice: I(G\A, B) is a sub-relation of I, cf. [6]), it obtains
the cover of (A, B). The method in this paper is different from [6] and the others
such as [2, 7, 8] and so on. It is a Breadth-First fashion. We notice that though [6]
informs us that in a sublattice of a given context, if (A, B) is the least, then this
sublattice is exactly the lattice of the sub-relation I(G, B) and the atoms of this
lattice are defined by the properties of I(G\A, B). It does not show the relationship

between [(A, B), (G, )] and =(G\ A, B, Ig) (Notice: the definition of =(G\A, B, Ig)
can be found in the following). This paper just deals with the relationship between
the interval [(A, B), (G, @)]c=(G, M, 1) and =(G\A, B, Ig). We may hope that the

relationship is not only useful in this paper but also important to the discussion
with concept lattices in the future. Using this relationship, for finding the cover of
a given concept (A, B) in a concept lattice, we only need the method computing
the cover of the least element in this concept lattice. The method computing the
cover of the least element is visual and simple.

Firstly, we declare that all the discussions in this paper are finite. Secondly,
some knowledge needed in the sequel are now recalled on.

Definition 1 (1) [1, &2] A triple (G, M, 1) is called a formal context, if G
and M are sets and | < GxM is a binary relation between G and M. For AcG and
B<M, we define A'={me M| (g, m)e | for all ge A} and B'={geG | (g, m)e | for
all me B}. (A, B) is a formal concept of (G, M, 1) if and only if A’=B and A=B"'.

The concepts of a given context are naturally ordered by (A1, B1) < (A2, By)
< Aic A; (< Boc Bj). The ordered set of all formal concepts of (G, M, 1) is

denoted by =(G, M, 1) and is called the concept lattice of (G, M, I).
(2) [3, p-12, &4, p.4] In the poset (P, <), a covers b or b is covered by a (in
notation, b= a) if and only if b<a and, for no x, b<x<a.

[4, p.5] In a poset P of finite length with the least element O, the height h[x]
of xe P is, by definition, the l.u.b. of the lengths of the chains 0=Xy<x;<...<xX;=X
between 0 and Xx.
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[3, p.21] Given a < b in a lattice L, the interval [a, b]={xe L |a<x < b}.

Lemma 1 Let (G, M, 1) be a formal context, A;, AcG and B;, BcM ( jeJ).

Then
(|)[1] (1) (I) Alg A2 = Az' c Al'; (I)’ Blg Bz = Bz' [ Bj_'.
(i) Ac A”and A'=A"""; (i)’ BcB"and B’ =B'".
(i) AcB'<BcCA'.
(2) =(G, M, 1) is a complete lattice in which infimumand supremum are
given by

Ajed _(Aia Bi)=(Mjes Aj; (Vjea By)"); Vel (A, B)=((Yies A)", NMjea Bj).
(D] (V) (VieaA) =njca A (IV) (Yjes B)) =njea By

Remark (1) [4, p.5] In a poset P, h[x]=1 if and only if x covers 0.

[4, p.7] Given a<b in a lattice L, the interval is a sublattice.

(2) In this paper, a formal context (G, M, 1) and a formal concept of (G, M,
1) is simply said a context and a concept respectively. We just use glm to express

(g, mel.
2. Computing the cover elements of the smallest element

Let (G, M={my, my, ..., my}, I) be a context. No harm to suppose, in what
follows, in =(G, M, 1), (, M) and (G, &) is the smallest element and the greatest

element respectively. Actually, if not, we can easily change the original context to
be that as the supposition and the original concept lattice is easier to be obtained
from the new concept lattice. In this section, we just give a way to obtain the

whole cover elements of (&, M) in =(G, M, I).

Let Zy={M\m;| (M\m))"=M\m;, je{1, 2, ..., n}}, X={(M\m))’ | M\m; €24}
and My={ j | M\m; e=4}. In addition, [T;={((M\m;)’, M\ m;) | jeMN.}.

Suppose we have got £ (j=1, 2, ..., p-1) such that

2 ={M{m,, ..., m [ (M{m,, ....m; })"=M\{m,, ...,m; }and for any
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Sc{is, ..., i}, SeNs},
X={M{m,, ...m 3 IM{m,, ....m; Fei,
M={{in, - i IM{m,, ...m, Fed),
=g m, , ...m, 3, MEm, ,om; 3 [ i, .o ikend

Let Z5={M\{m, , ..., m } | (M{m, , ....m_})"=M\{m,, ...,m, } and for
any Scfin, .., iy, M{m,, ..om_Yedg } X ={(M{m, ...m, D) |
MM, omy de2eh M ={{in o i} | MM, ..., m, }e2p} and I

=(Mm, , oMy 3 MM, my ) i e ke

Since n, |G|<e impel that the above process is stopped after k steps where
k<n.

We may observe that by Definition 1, (A, B)e=(G, M, I) < B'=A and

A’'=B. This reveals that A is uniquely determined by B. Next to discuss with the
cover elements of (&, M).

Theorem 1 Let (A, B)e=(G, M, I). Then
(A, B) covers (I, M) < BeZ, for some pe{l, 2, ..., k}.

Proof (<) Let BeZ, for some pe{l, 2, ..., k}.

Suppose (A, B) does not cover (&, M). This implies that there is (X,
Y)e=(G, M, ) satisfying (&, M) = (X, Y) < (A, B). By Definition 1, it follows
M oY o B.

Let Y=M\{m,, ...,m, } where y;1<y,<...<yr. Bc Y& M tells us t=n. In
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addition, M\{m , ...,m; }=B=Y\{m,, ... m, }=M\{m , ...m .m,, ...m }

where by, ..., bwe{yi, ..., yi} and bbb for any o= (o, pe{1, ..., w}{1, ...,n}).
(g, M)=(X, Y) expresses that for any Sc{yi, ..., Vi},

M{m,, ..., m,, D'EMm, ..., m,, }. Thus YeZ, is correct for some te{1, ...,
k}. But there is (M\{m,, oM B EMIm, om ) for any T, ...,
ip}={y1, ..., yiyo{bs, ..., by} according to the definition of £, and Be=,. This

follows a contradiction to {y, ..., yy<{is, ..., ip} and Yel,.

Hence, (A, B) covers (J, M).
(=) Let (A, B) cover (&, M). Then {iy, ..., i}<{1, ..., n}.

Suppose Bg 2 for Vte{, ..., k}. This indicates that there exists {j, ...,
Js3=SHiy, ..., i} satisfying M\{m, ..., M, }eZs. Further, 1<|S| and (M\
{mjl e My })' e Xs. Therefore, it follows

(MY{m; .....m; " MY{m, .....m; }e=(G,M,I).
Namely, (&, M)<((M\{m, , My D M{m, , My H<(A, B). By the

cover property of (A, B), one has M{m, ,..., M, }=M, and so |[S|=0, a
contradiction.

That is to say, Be £, holds for some pe{1, 2, ..., k}.

Corollary 1 Let BEM. Then Be =, for some pe{1, ..., k} < (B’, B)e=(G,
M, 1) and (B’, B) covers (&, M).
Proof By the selection of =, (p=1, ..., k) and Theorem 1.
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The following is to introduce an algorithm to get £, X;, 11 and M.

Step 1. Let £,=0, 21=@, [1:=, 1= and j=0.

Step 2. If j=n, then go to Step 5. If j<n, go to Step 3.
Step 3. j=j+1.

Step 4. If (M\m;)"'= M\m;, then £1=2,0(M\m;), Xi=X;u(M\my)’, T1;= TT1u
((M\m;)’, M\m;), M;1=aj. Otherwise, go to Step 2.

Step 5. Stop.

Next to introduce an algorithm to approach =, and so on. Suppose for

1<t<p, £ is got, certainly, X, " are got, too. Herein, [T={(B', B) | Be £, for some
t<p} is obtained.
Step 1. Let Z=X=p=[1,=<=, and  ={{iy, iz, ..., ip}| for any S={i,

iz, ..., i} SeNg}-
Step 2. If  \<=(, then go to Step 6. Otherwise, go to Step 3.
Step 3. Select {iy, iz, ..., ipye  \<.
Step 4. <= Ay, iz, ..., ip}.
Step 5. If (M\{m, , My D"'=M\{m, , My }. then
Zp=2p0(M\ {m, , oM )y X=X, my 1) M=o, ey ip})

and [T, =[Tpu((M\{ M, My D' M\{ M, my D.

Otherwise, go to Step 2.
Step 6. Stop.
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By the selection of =, and X,, we see that for (A, B)e =(G, M, 1), if (2,
M)=(A, B), then BeZ,, simultaneously, Ac X,. Because of Theorem 1, we may
use the above algorithms to obtain all the cover elements u‘;zl [ of (J, M) in
=(G, M, 1). In view of the knowledge of lattice theory, if every =,={C},
(pe{l, ..., k}), then £,={}, X=G and N={{1, 2, ..., n}}. So (G, &) covers (J,

M). Therefore, under this case, =(G, M, I)={(9, M), (G, &)} holds.
3. Properties of an interval

Let (A, B)e=(G, M, I). In this section, we firstly research on the properties
of the interval [(A, B), (G, ©)] in =(G, M, I), followed by giving an approach to
obtain the whole elements in =(G, M, 1), and meanwhile, getting the Hasse

diagram of =(G, M, I). (The Hasse diagram of a poset is seen [3, p.13 &4, p.4]).

According to Definition 1, we may indicate (X, Y)e[(A, B), (G, ©)] =
AcXcG and DcYCB. Based on this, next we define a binary relation Ig between
G\A and B as: VxeG\A, yeB, xlgy < xly and for any ac A, aly.

In light of Definition 1 and Lemma 1, =(G\A, B, Ig) is a concept lattice. To

state more clearly and to be different from the signs in =(G, M, 1), in =(G\A, B,

Ig), for UcG\A and VcB, we just present U={meB|vxeU, xlgm} and V=
{geG\A|V yeV, glsy}.

Theorem 2 Let (A, B)e=(G, M, I). Then theinterval [(A, B), (G, &)] of

=(G, M, 1) is isomorphic to the lattice =(G\A, B, Ig).
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Proof Distinguished three steps to finish the proof.
Step 1. Let (X, Y)€[(A, B), (G, D)]. Let Xnew=X\A and Ynew=Y. Then

Xnewg G\A and Ynewg B We Wl“ prOVG (Xnew, Ynew)EZ(G\A, B, IB)

Since (X, Y)e=(G, M, 1), AcX and X'={meM | VxeX, xIm}={meM |

VxeA, xIm, and, VxeX\A, xIm}=YcB. This follows

X'={meB | VX&Xnew, XIsM}=Xnew'®.

Thus, Y=X"=Xnew'®, 1.€. Ynew=Xnew®.

On the other hand, Y'={geG | VyeY, gly}=X> A implies that VyeY
induces aly for any acA, and hence, Y'={geG\A | VyeY, gly, and besides, aly for
VaeA}. But Ynen®={geG\A | VyeYnew, 9lay}={0eG\A| V yeY, glgy}

={geG\A |V yeY, gly, and simultaneously, VacA, aly}.
Thus, Y'=Ynew'®.

So, combining the above two hands, it obtains (Xnew, Ynew) €=(G\A, B, Ig).
Step 2. Let (Crew, Dnew)e=(G\A, B, Ig), C=CpewWA and D=Dpey. Then

Ac ChewJA=Cc G, and Dc B. We just prove (C, D)e=(G, M, I).

Since Chew'® =Dnew and Dpew'® =Chrew. In addition,
Crew'® ={beB | V XxeCpew, Xlgh}
={beB | VxeChew, xIb, and besides, VacA, alb}
={beB | VXeCpnew A, xIb}={beB | VxeC, xIb}=Dyew=D,
and  Dpenw®={ceG\A | Vy€Dpew, Clgy}
={ceG\A | VyeDnew=D, cly, and besides,Vae A, aly}=Chew.
However, D'={zeG | Vye D, zly}
={zeG\A | VyeD, zly} {zeA | VyeD, zly}.
Moreover, Dc B and Lemma 1 together follows A=B’c D'. Thus for any
aeA and VyeD, it must have aly.
Furthermore, for any zeD'\A, we assure zly for any yeD, and s0 zeChew.
Conversely, for any ceCew, We own cly for any yeD, and so ceD’.
In one word, there is D'\A=Ci,ew, i.6. D'=C e\ JA=C. So C=D’ holds.
On the other hand, C'={meM | ¥xeC, xIm}={meM | VXeCpew, XIMm}N
{meM | VxeA, xim}={meM | V XxeCpew, XIsM}=Crew'® =Dpnew=DcB.

Summing up, (C, D)e=(G, M, I).



An approach to access to a concept lattice via the idea of lattice theory 45

Step 3. Combining the above two steps, we may state that the map defined

as f: [(A B), (G, @)] - =(G\A, B, Ig) satisfying f : (X, Y) — (X\A, Y)

is a bijection between [(A, B), (G, )] and =(G\A, B, Ig).

Let (Xj, Yj) E[(A, B), (G, @)], XjneW:Xj\A, and anew:Yj (j:]_, 2). Then Yj gB,
(j=1, 2), and further, Y1nY,cB, and so (Y1nY2)' oB’and B'=A by Lemma 1. In
view of Lemma 1, it causes

(X1, YD) v(Xz, Y2)=((X1w X2)", YinY2)=((Y1nY2)', Y1NY2);

(xlnew » Yinew )V(XZnew, Y2new)=((x1newux2new),B,B, YlnemeZnew)

=((Y1newNY2new)®, Yinew Y 2new )-
By the definition, it follows f ((X;, Y;))=(Xjnew, Yjnew), (1=1,2);
f ((Xl, Yl)V(Xz, Yz)): ((YlﬂYz)’\A, YlﬁYz);
f ((Xl, Yl))\/f ((XZ, YZ))z(Xln9W1 Ylnew)V(XZnew, Y2new)
= ((Ylnew mYZnew)'B, YleZ)-

On the other hand, by the above, we firmly believe (YinY2)'2A.
Additionally, (Y1nY2)'={geG | VyeYinY,, gly}> A shows that for VyeYinY,
and VaeA, aly holds.

But (Y1inew Y 2new) ®={9€G\A | VY €Y 1new Y 2new, 9lsy}

={geG\A | Vye Y1nY,, gly, and simultaneously, Vae A, aly}.

These point out (Y1nY2)"\A =(Y1newY 2new)®.

Hence f (X1, Y))v(Xa, Y2))=F (X1, YO))VF ((X2, Y2)).

DuaIIy, Wwe may prove f ((X1, Yl)/\(Xz, Yz))zf ((Xl, Yl))/\f ((XZ, Yz))

Therefore, [(A, B), (G, )] =z =(G\A, B, Ip).

We may sum up the beyond discussion to state that after using Theorem 1

to obtain all the cover elements of (&, B) in =(G\A, B, Ig), via Theorem 2, we will

obtain all the cover elements of (A, B) in =(G, M, I).

Next we express the sketch of an algorithm to approach =(G, M, I).

In =(G, M, 1), h[(Z, M)]=0 where h is the height function of =(G, M, I).
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Let xe=(G, M, 1) with h[x]=1. By Remark in Section 1, it follows that x
covers (&, M). Thus, x is got by the algorithm in Section 2.
In light of Definition 1, ye=(G, M, 1) covers some ze=(G, M, I) with

h[z]=1 if and only if h(y)=2.
Hence, we may use the algorithm in Section 2 to obtain the cover elements

of (&, B) in =(G\A, B, Ig) where (A, B)e=(G, M, 1) and h[(A, B)]=1. After that,
using Theorem 2, we find out all the cover elements of (A, B) in =(G, M, I). That
is, we earn all the elements of height 2 in =(G, M, I). Simultaneously, owing a

cover relation or not between x and y is shown, where VX, ye=(G, M, 1), h[x]=1
and h[y]=2.
Analogously, for h[z]=t > 2, the cover elements of z in =(G, M, 1) are

found. The height of any cover element of z is t+1. Thus, all the elements of
height t+1 will be searched out. Meanwhile, the cover relations between the set of
elements of height t and the set of elements of height t+1 are shown clearly.

Because (G, @) is the greatest element in =(G, M, 1) and |[M|, |G|<oo, we
may state that the height h[(G, &] of =(G, M, 1) is finite. Moreover, we may find
out all the elements in =(G, M, I). Therefore, the above process will be stopped
after finite steps. At the same time, the relationships among the elements in =(G,
M, 1) are obtained. Furthermore, the Hasse diagram of =(G, M, I) is also obtained.

Next, we provide an example to show how to use the approach above to

find out the concept lattice =(G, M, 1) and its Hasse diagram for a given context

G, M, I).
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Example 1 Let M={1, 2, 3, 4,5, 6} and G={a, b, c, d, ¢, f}.
The table below describes binary relation I.

Table 1
Describe the relation between G and M
1 2 3 4 5 6

a X X X
b X X X
C X X X
d X X X
e X X
f X

By using the following steps, we find out =(G, M, I).
Step 1. (I, M) is the smallest.
Step 2. By Theorem 1, the cover elements [ of (&, M) are {(A; ,B; )

| A e, B, eX, t=1,2,., I=l; j=1, 2, ..., k}. Using the algorithm in Section

2 for (@, M), one gets {=; | j=1, ..., k}, {X|j=1, ..., K} and I as follows.

Since M\{1}={2, 3, 4, 5, 6}. From Table 1, we easily receive (M\{1})'=
{geG | Yxe M \{1}, gIx}={a, b, c}nI=.

Similarly, (M\{j})'=3, (j=2, 3, 4, 5, 6). Hence, £;=X;=1=C.

By Table 1, obviously, (M\{i, j})'=2, (i j; i, j=1, ...,6), that is, 25=X; =Nz

=.
Additionally, M\{1, 2, 3}={4, 5, 6}, (M\{1, 2, 3})'=&. However,
M\{1, 4, 5}={2, 3, 6},
(M\{1, 4,5})={ge G| V xe{2, 3, 6}, gIx}={a},
(M\{1, 4,5})"=({a})’={2, 3, 6}=M\{1, 4, 5}.

Thus M\{1, 4, 5}e23, {a}e X3, {1, 4, 5}z and

(M1, 4, 5})'={a}, M\{1, 4, 5}={2, 3, 6})e=(G, M, I).



48 Huo Mao

Repeated application of the algorithm in Section 2 to {i, j, t}, (i, j, t €
{1, ..., 6}; i=j#1), it yields out

2={M\{1, 4, 5}={2, 3, 6}, M\{4, 5, 6}={1, 2, 3}, M\{3, 4, 6}={1, 2, 5}
M\{2, 3, 6}={1, 4, 5}};

A={(M\{1, 4, 5})'={a}, (M\{4, 5, 6})'={b}, (M\{3, 4, 6})'={c},
(M2, 3, 6})'={d}};

Ms={{1, 4,5}, {4, 5, 6}, {3, 4, 6}, {2, 3, 6}}

At the end, all the cover elements of (J, M) in =(G, M, I) are

I ={({a}, {2, 3, 6}), ({b}, {1, 2, 3}), {c}, {1, 2, 5}), ({d}, {1, 4, 5})}-
Step 3. For ({a}, {2, 3, 6})ell.

Let A={a} and B={2, 3, 6}. [(A, B), (G, ©)] is an interval in =(G, M, 1).
Put Xpew=X\A=X\{a} and Y=Y for (X, Y)e[(A, B), (G, ©)]. Then by the
definition at the beginning of this section, it causes =(G\A, B, Ig)==({b, c, d, e, f},
{2, 3, 6}, Ig).

By the method in the proof of Theorem 2, in =(G\A, B, Ig), we obtain that
the smallest element is (J, {2, 3, 6}), and all of its cover elements are ({b}, {2,
3}). Further, in light of Theorem 2, we may indicate that in =(G, M, I), all the
cover elements of (QUA, {2, 3, 6})=(A, {2, 3, 6}) are ({b}UA, {2, 3})=({a, b}, {2,
3}). Analogously, in =(G, M, 1),

the cover elements of ({b}, {1, 2, 3}) are ({a, b}, {2, 3}) and ({b, c}, {1, 2});
the cover elements of ({c}, {1, 2, 5}) are ({b, c}, {1, 2}) and ({c, d}, {1, 5});
the cover elements of ({d}, {1, 4, 5}) are ({c, d}, {1, 5}) and ({d, e}, {1, 4}).

That is, all the elements of height 2 in =(G, M, I) are ({a, b}, {2, 3}), ({b,
¢} {1 2}), ({c, d}, {1, 5}) and ({d, e}, {1, 4}).
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Step 4. Similarly to the closely Step 3, for xe=(G, M, 1) with h[x]=t, all
the cover elements of x are generated (t=2, 3) and h[(G, &)]=4. Finally, we

receive the Hasse diagram of =(G, M, 1) as Figure 1.

{a b, c} {2})

({a,b,c, d, e}, )
)

({a.b, 7. {3}) ./

(b, c}, {1, 2} {b,c.d e}, {1})  ({c d} {1, 5}
Y @ ({de}{14})

({a, b}, {2, 3})

({a}. {2,3,6}) ({d}. {1.4,5})

({b}{1,2,3}) ({c} {1,2,5)
(©,{1,2,3,4,5,6})
Fig. 1. Hasse diagram of concept lattice relative to the context in Table 1

We still consider that [2] is good and valuable to discuss concept lattices
with the way of graph theory. The result in Example 1 is the same as that in [2,
Example 2.2]. This also shows the truth of the algorithm produced from Theorem
1 and Theorem 2. However, [2, Example 2.2] is obtained directly from the
definition of concept lattice. Certainly, the context in [2, Example 2.2] are also

discussed with the methods of graph theory in [2, 4 and 5], and [2] gives the

same diagram in [2, 4] and [2, 5] as thatin [2, Figure 1] for the context in [2,

Example 2.2] respectively.

The approach in this paper is different from others because it is just using
the isomorphic and interval’s properties of lattice theory. It is visible and
accessible. As Ganter and Wille said in [1], for concept lattice, “Much of the
mathematics required for the applications comes from lattice theory. ... The new
goals made it necessary to extend this theory.” We may infer that the potential of
the results in this paper is extending and enriching the theory of concept lattices.
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