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LEARNING LOCAL LINE DESCRIPTORS WITH FCNNS AND 

TRANSFER LEARNING BY MINIMIZING TRIPLET 

MARGIN LOSS 

Zhanqiang HUO1, Miaomiao FU2, Fen LUO3*, Yujie LIU4 

In this paper, it is demonstrated how to learn line feature descriptors for line 

matching from image data, which is very important for many image processing and 

computer vision applications. In order to encode these functions, the FCNNs (Fully 

Convolutional Neural Networks) based models are developed. The main 

contributions of this method can be summarized form four aspects: (1) it describes 

the line features with mean patches and standard deviation patches; this idea comes 

from MSLD (mean–standard deviation line descriptor); (2) three FCNNs based 

models are introduced, and the central-surrounding to data augmentation is used 

before training; (3) the parameters of the pre-trained L2-Net are transferred to the 

three models to solve the problem of insufficient amount of training data; (4) the 

triplet margin loss is used to optimize these three models. The proposed method is 

verified by the experiments on the Oxford dataset and other datasets, and the 

experimental results show that the line feature descriptors obtained by our three 

models have better robustness under the conditions of viewpoint change, rotation 

change, blur change, and scale change and many others.  

Keywords: Fully Convolutional Neural Networks; transfer learning; line feature 

descriptor 

1. Introduction 

The description of local image features is one of the most basic tasks in the 

image processing and computer vision fields. It is often used as a subroutine and 

plays a vital role in various computer vision tasks, including image registration 

[1], image stitching [2], and 3D reconstruction [3]. In the past two decades, 

various methods for the local image feature description have been proposed. The 

most popular handcrafted feature descriptor is the Scale Invariant Feature 

Transform (SIFT) feature descriptor, which has the advantages of ensuring the 
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invariance of the scale variety of local features and strong distinguishability [4]. 

Dong and Soattos proposed to accumulate the SIFT results of multiple different 

scales to obtain the Domain-Size-Pooling SIFT (DSP-SIFT) and explained its 

superior performance from the perspective of signal processing [5].  

In recent years, due to the successful application of deep learning in many 

fields, the research focus has gradually been turned from the handcrafted 

descriptors to the learning-based descriptors. For instance, Zagoruyko et al. 

proposed many neural networks based models, including Siamese networks, two-

channel networks (2chnet); these models have excellent performances [6] in 

invariance and distinguishability. Tian et al. proposed a Convolutional Neural 

Network (CNN) model named the L2-Net that uses the progressive sampling 

strategy and the loss function composed of three error terms to learn the point 

feature descriptors [7]. Based on the L2-Net architecture and inspired by the SIFT 

matching criteria, Mishchuk et al. proposed a descriptor named the HardNet, 

where the triple loss was applied to the L2-Net architecture to learn point feature 

descriptors, thus further improving the matching performance of the L2-Net [8].  

In the literature, many line feature descriptors for line feature matching, 

including the mean-standard deviation line descriptor (MSLD) for line matching 

proposed by Wang et al., have been reported. The MSLD provides a robust 

descriptor for line matching [9]. In order to overcome the problems of 

segmentation fragmentation and geometric variation, Zhang et al. proposed a line 

feature descriptor called the Line Band Descriptor (LBD) [10], which has good 

matching performance on various image changes. Liu et al. proposed an intensity 

order curve descriptor (IOCD). The IOCD partitions the sub-region based on the 

intensity of pixels in the neighborhood and achieves good distinguishability under 

the conditions of deformation and complex illumination changes [11]. 

Although the above-mentioned descriptors have good performances, the 

development of high-quality local line feature descriptors is still challenging due 

to the factors that affect the final image appearance and problems with the line 

itself. The factors affecting the image appearance include changes in the 

viewpoint, the overall illumination of the scene, rotation, scale, and occlusion. 

The problems with the line include the uncertainty of the endpoint of the line, 

unavailability of a strong disambiguating geometric constraint, a lack of rich 

textures in a local neighborhood of the line [9]. Therefore, compared with the 

point feature descriptor, the line feature descriptor develops slowly and still stays 

in the handcrafted stage. Therefore, how to use the existing dataset HPUPatches, a 

dataset built by ourselves, to learn line feature description functions automatically 

is meaningful work. 

Aiming at solving the above-mentioned problems, this paper proposes to 

learn local line feature descriptors using the FCNNs and transfer learning while 

minimizing the triplet margin loss. The main objective is to use the FCNNs and 
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transfer learning to learn the line feature description function directly from the 

pre-processed image patch without using any handcrafted features. Inspired by the 

L2-Net and transfer learning [12], a deep fully-convolutional neural network 

architecture is combined with transfer learning to represent line features. In this 

work, three fully convolutional neural networks for line feature descriptor 

learning are studied. These networks are trained with pre-processed image 

patches.  

The main contributions of this paper are as follows: (i) the line feature 

description function is learned directly from the image patch data, and various 

image transformations are implicitly considered; (ii) three types of network 

architectures suitable for this function learning while improving the matching 

performance of line descriptors are studied; (iii) the line descriptors applied to the 

line matching problem using the benchmark dataset, and the results indicate that it 

performs better than the existing handcrafted descriptors and further enhances the 

descriptive power of the line feature descriptor. 

2. Line dataset construction and network architectures 

2.1 Line dataset construction 

A line dataset denoted as HPUPatches dataset was constructed, where 

HPU stands for Henan Polytechnic University. The dataset consisted of two 

subsets, HPUPatches-train and HPUPatches-test. The HPUPatches-train and 

HPUPatches-test consisted of approximately 180,000 64×128 image patches and 

90,000 64×128 image patches, respectively. The following seven image changes 

were involved in each subset: illumination, blur, viewpoint, rotation, JPEG 

compression, noise, and scale. The four concrete steps of constructing the dataset 

were as follows. 

Step 1: By using mobile phone shooting and network downloading, a total 

of 3400 pairs of images with different changes in the same scene were obtained, 

involving seven transformations: illumination, blur, viewpoint, rotation, JPEG 

compression, noise, and scale. 

Step 2: Canny edge detection operator was used for image edge detection; 

the points with the curvature greater than 0.8 were removed; finally, the lines with 

the number of pixels less than 20 were discarded to obtain extracted lines. 

Step 3: A positive matching line pair was obtained. The specific method 

was as follows. For any image pair, the matching line pair in the image pair was 

obtained by the line matching technique MSLD, and the matching error was 

manually eliminated to obtain the positive matching line pair set  in the 

image pair, which was expressed as: 

                                    (1) 
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where denoted the jth line in the first image of an image pair,  denoted the jth 

line in the second image of an image pair that matches positive, and denoted 

the number of matched line pairs. 

Step 4: The line feature patches were determined corresponding to the 

line. The specific method was as follows. For any line composed of  

points in the set of positive matching line pairs obtained in Step 3, it was noted 

that any pixel point on was , um . This step included 

Steps 4.1–4.3. 

Step 4.1: Get the support area for each point on the line. The specific 

method was as follows. A square region having a length of 64 along the direction 

of line  and the direction perpendicular to line , which was centered on , was 

defined as a support region of a point . The matrix of the brightness values of 

the point  support region was denoted as . 

Step 4.2: Get the mean patch and standard deviation patch of the line 

feature. The specific method was as follows: the mean matrix  and the 

standard deviation matrix  of the straight line  were calculated according 

to the support regions of the points acquired in Step 4.1 as follows: 

                                            (2) 

                               (3) 

Step 4.3: Get line feature patches. Concatenate the mean patch and 

standard deviation patch of the line  to obtain the line feature patch of the 

size 64×128 pixels by: 

                         (4)  

2.2 Network architectures 

A neural network can process image patches in many ways, and multi-

resolution information can improve the matching ability of descriptors. Therefore, 

an image patch with a size of 64×128 pixels was subjected to the downsampling 

and center cropping to obtain the surrounding low-resolution image patch and the 

central, high-resolution image patch, which were used as an input of the three 

network models studied in this work. The image patch with a size of 64×128 

pixels included a mean patch and a standard deviation patch, of which each had a 

size of 64×64 pixels and was calculated from the point patches that made up the 

line. The obtained image patches were used to explore and test three neural 

network architectures, namely a Central-surround Siamese network (CS S-Net), a 
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Central-surround Pseudo- Siamese network (CS PS-Net), and a Central-surround 

2-Channel network (CS 2-Channel-Net). 

2.2.1 CS S-Net 

In the CS S-Net, there are two branch structures that share the same 

architecture and the same parameter set. The CS S-Net architecture is shown in 

Fig. 1. The two branching structures of the network are processed at two different 

resolutions, surround low-resolution and central high-resolution. More 

specifically; and, a 256-dimensional feature vector is obtained by processing the 

input by seven convolution layers. In the second branch structure (central high-

resolution), the center of the mean patch and the standard deviation patch are used 

as an input to obtain image patch of 32×64 pixels; and then obtain a 256-

dimensional feature vector is obtained by processing the input by seven 

convolution layers. Finally, the output feature vectors of the two branches are 

merged into the final output of the entire network. 

Mean patch Standard 

deviation patch

64×128×1

64×64×1

32×64×1 32×64×1

32 3×3×1 Conv pad 1BN+Relu

32 3×3×32 Conv pad 1BN+Relu

64 3×3×32 Conv pad 1/2BN+Relu

64 3×3×64 Conv pad 1BN+Relu

128 3×3×64 Conv pad 1/2BN+Relu

128 3×3×128 Conv pad 1

256 8×16×128 ConvBN+L2Norm

Branch 1 output:  256×1

32 3×3×1 Conv pad 1 BN+Relu

32 3×3×32 Conv pad 1 BN+Relu

64 3×3×32 Conv pad 1/2 BN+Relu

64 3×3×64 Conv pad 1 BN+Relu

128 3×3×64 Conv pad 1/2 BN+Relu

128 3×3×128 Conv pad 1 BN+Relu+Dropout

256 8×16×128 Conv BN+L2Norm

Branch 2 output:  256×1

Concatencation

Output:  512×1

The first six layers 

parameters of the 

two branches are the 

model parameters 

transferred from the 

pre-trained L2-Net

 shared

（CS S-Net）

unshared

（CS PS-Net）

BN+Relu+Dropout

64×64×1

Fig. 1. The architectures of the CS S-Net and CS PS-Net networks. The only difference between 

the two networks is that the two branches of the latter do not share parameters. 

These two branch structures have the same convolutional layers as the L2-

Net [7] except for the last convolutional layer. Since the different inputs and the 

same desired outputs, the convolution kernel size of the last convolution layer is 

modified from 8×8 to 8×16, and the number of convolution kernels is modified 
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from 128 to 256. In addition, the dropout regularization with the loss rate of 0.3 is 

applied before the last layer. Due to the insufficient number of training samples in 

the existing dataset, the transfer learning is used to set the initial values of the first 

six layers of the two branches to the model parameter values of the L2-Net pre-

trained with the large dataset Liberty [13]; the Liberty contains approximately 

450,000 image patches with the size of 64×64 pixels. The last layer of weight 

tensor is initialized to an orthogonal matrix [14] with the gain equal of 0.6, and 

the bias tensor is constant and set to 0.01. The CS S-Net converts the input two 

32×64 pixels image patches into 512-dimensional descriptors. 

2.2.2 CS PS-Net 

From a complexity perspective, the CS PS-Net is between CS S-Net and 

CS 2-Channel-Net. As shown in Fig. 1, it has the structure of the CS S-Net, but 

the network parameters of the two branches are not shared, which increases the 

number of parameters that can be adjusted during the training and provides more 

flexibility than the CS S-Net, but is less flexible than the CS 2-Channel-Net. 

2.2.3 CS 2-Channel-Net 

Each branch of the CS S-Net and CS PS-Net performs a feature extraction 

process, and the feature vectors extracted by the two branches are concatenated 

into the final network output. The CS 2-Channel-Net skips the process of two 

branches conducting the feature extraction but regards the two 32×64 pixels 

image patches obtained by the method described in Section 2.2.1 as a two-channel 

image patch having the size of 32×64×2. Moreover, the patch of size 32×64×2 is 

fed to the first layer of the convolutional layer. The structure of the CS 2-Channel-

Net is shown in Fig. 2, where it can be seen that it converts the input 32×64×2 

image patch into a 256-dimensional feature vector by seven convolution layers. 

Compared to the two networks described above, the CS 2-Channel-Net provides 

greater flexibility since it processes two patches simultaneously. 

3. Triplet margin loss and model training 

Transfer learning and supervised learning are used to train the three 

models. A triplet margin loss based on the distance between the minimized match 

descriptor and the closest non-matching descriptor is used, which leads to the 

learning objective function , which is expressed as: 

                          (5) 

                               (6) 



Learning local line descriptors with FCNNs and transfer learning by minimizing triplet (…)  139 

       (7) 

where n denotes the batch size;  and  denote the feature description vectors 

that represent the network output for the network input consisted of two matched 

image patches;  denotes the closest  but non-matching line descriptor, and 

 denotes the closest  but non-matching line descriptor, while  

denotes the distance between two descriptors. 

                           (8) 

                           (9) 

Mean patch Standard 

deviation patch

64×128×1

64×64×1

32×64×1 32×64×1

32 3×3×2 Conv pad 1BN+Relu

32 3×3×32 Conv pad 1BN+Relu

64 3×3×32 Conv pad 1/2BN+Relu

64 3×3×64 Conv pad 1BN+Relu

128 3×3×64 Conv pad 1/2BN+Relu

128 3×3×128 Conv pad 1

256 8×16×128 ConvBN+L2Norm

Output:  256×1

BN+Relu+Dropout

64×64×1

32×64×2

The first six layers of 

the network are model 

parameters transferred 

from pre-trained L2-Net

The last parameter of the 

network is to initialize the 

weighting tensor and the 

bias tensor by using the 

orthogonal matrix with 

gain equal to 0.6 and 

constant 0.01
 

Fig. 2. The structure of the CS 2-Channel-Net network. 

 

The three networks were trained using an SGD with an initial learning rate 

of 10, a momentum of 0.9, and a weight attenuation of 0.0001. Training was done 

in mini-batches with a size of 512. Since the construction of a large dataset for the 

line feature network training requires much manpower and financial resources, 

and the combination of transfer learning and convolutional neural networks has 

achieved great successes in computer vision applications, such as image 

recognition [15] and target tracking [16]. In this work, the transfer learning was 
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introduced in the fully convolutional neural networks, which means that the first 

six layer’s parameters of the three networks were initialized to the model 

parameter values of the L2-Net pre-trained by the large dataset Liberty. The last 

layer of weight tensor was initialized to an orthogonal matrix with a gain of 0.6, 

and the bias tensor was set to 0.01. The training samples in the existing datasets 

are insufficient, and there are also over-fitting problems caused by training from 

scratch. Moreover, for CNN, the first few layers learn the low-level general 

features of the image, which is suitable for most visual tasks, while several latter 

layers learn the high-level features for specific tasks [17]. Therefore, a fine-tuning 

strategy was chosen to train all network models.  

The size of the constructed dataset allowed loading all image patches into 

GPU (Graphic Processing Unit) memory and quickly acquiring the image patches 

during the training. The RTX 2080Ti GPU in Pytorch [18] was used to train the 

three networks; the training of all the models converged after ten epochs, so the 

training process lasted about 3 to 4 hours. 

4. Experimental evaluation 

The trained models were applied to a variety of datasets. The experimental 

results obtained by the three network models were compared with the results of 

the state-of-the-art methods.  

In order to evaluate the performance of the line feature descriptors 

proposed in this paper, FPR95 and mAP (mean Average Precision) evaluation 

indicators were used. The FPR95 is the False Positive Rate (FPR) at 95% recall, 

and it is computed as: 

                                                   (10) 

where FP (False Positive) indicates that the unmatched sample is predicted to be 

matched, and TN (True Negative) indicates that the unmatched sample is correctly 

predicted as unmatched. 

In image matching, mAP is used as a performance evaluation indicator. 

The AP (Average Precision) of a matching category on an image pair is calculated 

as: 

                                             (11) 

where np represents the total number of retrieved positively matched line pairs, 

and Precision denotes the ratio of the number of the retrieved positively matched 

line pairs to the total number of retrieved line pairs. The mAP is then calculated 

as: 

                                             (12) 

where m denotes the total number of image pairs in the test set. 
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4.1 HPUPatches dataset 

The three network models were first trained using a subset of the 

HPUPatches-train, and then the performances of the three models were tested 

using a subset of the HPUPatches-test. The results of the CS S-Net, CS PS-Net, 

and CS 2-Channel-Net models regarding the performance indicator FPR95 are 

presented in Fig. 3. As presented in Fig. 3, the CS 2-Channel-Net achieved the 

best performance. This demonstrates the importance of the direct combination of 

the information from the two patches from the first network layer, and the 

importance of the multi-resolution information on the line description task. The 

results obtained by the CS PS-Net were comparable to those of the CS S-Net. 

 

Fig. 3. Experimental results of the CS S-Net, CS PS-Net, and CS 2-Channel-Net models regarding 

the performance indicator FPR95. 

4.2 Oxford dataset 

The Oxford dataset [19], which is a standard dataset, was used to evaluate 

the generalization capabilities of the three network models. The CS S-Net, CS PS-

Net, and CS 2-Channel-Net were evaluated on seven sets of image sequences: 

Bikes (blur change), Graffiti (viewpoint and rotation combination change), 

Leuven (illumination change), Ubc (JPEG compression change), Wall (viewpoint 

change), Trees (blur change), and Boat (rotation and scale combination change). 

There are six images in each group of image sequences, and the last five images in 

each group had different degrees of changes compared with the first image. The 

performance of the CS S-Net, CS PS-Net, CS 2-Channel-Net, and the existing 

advanced handcrafted methods were evaluated by matching the last five images in 

each set of image sequences to the first image. 

The handcrafted descriptors used in the comparison were the MSLD [9] 

and the IOCD [11]. The comparison results regarding the mAP are presented in 

Fig. 4. For a fair comparison, all methods were adjusted to have the same number 

of feature lines. As presented in Fig. 4, the CS S-Net, CS PS-Net, and CS 2-

Channel-Net achieved the best matching performance; they performed 
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significantly better than the MSLD and IOCD especially under the conditions of 

changes in the blur (Bikes and Trees), viewpoint (Graffiti and Wall) and rotation 

and scale combination (Boat). The results of the total number of positive samples 

recalled in seven sets of image sequences are presented in Table 1, where it can be 

seen that the CS S-Net, CS PS-Net, and CS 2-Channel-Net achieved a significant 

increase in the total number of positive samples recalled compared to the other 

handcrafted descriptors. 

 

Fig. 4. Experimental results of the mAP on the Oxford dataset. 

Table 1 

Results of the total number of positive samples on the Oxford dataset 

 Bikes Graffiti Leuven Ubc Wall Trees Boat All 

CS PS-Net 416 248 516 357 58 99 256 1950 

CS S-Net 416 241 512 356 58 99 256 1938 

CS 2-Channel-Net 415 238 517 357 58 99 254 1938 

MSLD 364 171 480 329 52 79 184 1659 

IOCD 352 234 501 320 56 85 219 1767 

4.3 Other dataset 

In order to further prove the generalization capabilities of the CS S-Net, 

CS PS-Net and CS 2-Channel-Net networks, a dataset consisting of four sets of 

image sequences from the traditional handcrafted line feature description article 

[10], which includes changes in the viewpoint, scale, low texture, and occlusion, 

was used. The comparison results of the mAP are presented in Fig. 5, where it can 

be seen that: 1) in terms of viewpoint and scale changes, the performances of the 

proposed models were significantly better than those of the MSLD and IOCD; 2) 

when the dataset HPUPatches-train did not contain occlusion and low-texture 

changes, the proposed models were superior to the MSLD and IOCD in the case 

of low-texture changes; and under the condition of occlusion change, the CS S-

Net, CS PS-Net, and CS 2-Channel-Net were superior to the MSLD and 

comparable to the IOCD. The line matching results of the proposed descriptors for 
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four pairs of images at NNDR of 0.8 are presented in Fig. 6. The results presented 

in Fig. 6 further prove the effectiveness of the proposed descriptors. 

 

Fig. 5. Results of different models for various image changes in the dataset provided in the 

traditional handcrafted line feature description article [10]. 

(a)

CS S-Net

(b)

CS PS-Net

(c)

CS 2-

Channel-Net

Viewpoint Scale Occlusion Low-texture

 

Fig. 6. The matching results of the CS S-Net, CS PS-Net, and CS 2-Channel-Net descriptors. 

5. Conclusion 

In this paper, it is shown how the line feature description functions can be 

leaned directly from image patches, which are encoded in the form of a fully 

convolutional model. Three neural network architectures that are suitable for this 

task are studied. Due to the lack of the existing training samples, transfer learning 

is adopted to develop three neural network architectures suitable for line feature 

description tasks by fine-tuning the L2-Net model pre-trained on the Liberty 

dataset. Moreover, it is demonstrated that the developed models outperform two 

popular handcrafted descriptors on several standard datasets, especially in the 

presence of significant changes in the blur, viewpoint, rotation, and scale. Among 

the three developed networks, the CS 2-Channel-Net network architecture 

achieved the best results. However, these three network architectures are sensitive 

to occlusion changes, so our future work will include the study on occlusion 

invariance. 
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