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A SIMULATION MODEL FOR FAULT TOLERANCE 
EVALUATION 

Adrian BOTEANU1, Ciprian DOBRE2 

Această lucrare prezintă un model de simulare pentru evaluarea soluţiilor de 
asigurare a toleranţei la defecte în sistemele distribuite de mari dimensiuni. Modelul 
extinde simulatorul MONARC prin adăugarea de noi funcţionalităţi pentru 
evaluarea toleranţei la defecte. Modelul descrie defecte ce pot apărea în astfel de 
sisteme şi include mecanisme pentru detecţia si corecţia acestora. În cadrul lucrării 
este prezentată şi o implementare pilot a modelului, împreună cu rezultatele testelor 
de evaluare. Au fost implementate atât defecte permanente cât şi tranziente ce pot 
apărea în cazul unităţilor de procesare, componentelor de reţea sau a bazelor de 
date. Modelul poate fi uşor extins, permiţând adăugarea de noi clase de defecte �i 
tehnologii aferente, în funcţie de experimentul vizat. Modelul poate fi folosit pentru 
evaluarea performanţelor unor soluţii de toleranţă la defecte pentru sisteme 
distribuite, pretându-se identificării rapide a punctelor sau ariilor vulnerabile din 
sistemul simulat. 

In this paper we present a simulation model designed to evaluate fault 
tolerance solutions in large scale distributed systems. This model extends the 
MONARC simulation model with new capabilities for fault tolerance simulation. 
The model includes failure behavior and capabilities to detect and react to faults. 
We also present an implementation of this model in MONARC, together with 
specific evaluation results. The model's implementation considers permanent and 
transient failures occurring within processing units, network components, as well as 
databases. The model is easily extendable, allowing the additions of new failure 
models as required by user experiments. The model can be used in conjunction with 
key performance metrics, being able to easily pinpoint the likely points or areas of 
failures in the simulated environments.  

Keywords: fault tolerance, distributed systems, performance analysis, simulation 
model, faults 

1. Introduction 

Modeling and simulation were seen for a long time as viable solutions to 
develop new algorithms and technologies and to enable the enhancement of large-
scale distributed systems, where analytical validations are prohibited by the scale 
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of the encountered problems. The use of discrete-event simulators in the design 
and development of large scale distributed systems is appealing due to their 
efficiency and scalability. 

Together with the extension of the application domains, new requirements 
have emerged for large scale distributed systems; among these requirements, fault 
tolerance and resilience in face of possible failures occurring in such systems, are 
needed by more and more modern distributed applications, not only by the critical 
ones.  

The discrete event simulation offers a flexible and powerful method to 
evaluate solutions designed for large scale distributed systems, without the time 
and effort necessary to implement them in real-world. MONARC is a complex 
simulator designed around this paradigm, in which discrete events trigger the 
advance of the simulation. Its model offers the means of simulating a large range 
of scenarios, ranging from networking protocols to scheduling and distributed 
applications running on top of the middle-ware. That is, as long as the simulation 
experiments exclude the possibility of component failures. However, modern 
requirements of distributed systems, such as fault tolerance, should also be 
supported and analyzed using the simulation model. The adoption of a fault 
tolerance model was also imperative to completely and accurately model the 
behavior of a real distributed system, having an imperfect nature, as in the case of 
Internet based systems like GRIDs. 

In this paper we present an extension to the MONARC simulation model 
that allows the analysis of failure-dependent experiments, where faults can occur 
in any simulated component. The model provides realistic observation of failed 
components and provides a configurable interface for the user. By adding these 
capabilities, the simulation scenarios can include evaluation of failure detection 
approaches, as well as replication or consistency solutions designed for large scale 
distributed systems. The model can be used for both reactive and proactive types 
of situations and recovery solutions in the presence of faults. 

The main capabilities of the failure simulation model are flexibility and 
compatibility. Existing MONARC simulation experiments must easily be adapted 
to evaluate failure behavior. The model also includes a wide range of possible 
defects, from permanent crashes occurring in various components to transient or 
Byzantine errors.  The user is also presented with an interface to easily allow 
other simulated mechanisms to be included. 

In the model the mechanisms for fault injection, fault detection and 
possible failure recovery techniques are completely separated, to have a better 
understanding of the entire processes involved. The component that is prone to 
failures generates at various moments, according to a statistical probability 
distribution, a change of state. A supervisor component periodically interrogates, 
using a heartbeat approach (the default one), it's available resources. It then 
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evaluates the functioning state of the component by the number of consecutive 
heartbeat answers of the same type, negative or positive. 

The rest of this paper is structures as follows. We next present related 
work in the domain of simulating failures in large scale distributed systems 
experiments. We next present the architecture of the model and we present details 
about the implementation of the various components. Next we present results and 
a detailed analysis of the capabilities of the proposed solution. The final section 
presents conclusions and future work. 

2. Related work 

SimGrid [1] is a simulation toolkit that provides core functionality for the 
evaluation of scheduling algorithms in distributed applications in a heterogeneous, 
computational Grid environment. It aims at providing the right model and level of 
abstraction for studying Grid-based scheduling algorithms and generates correct 
and accurate simulation results. GridSim [2] is a grid simulation toolkit developed 
to investigate effective resource allocation techniques based on computational 
economy. OptorSim [3] is a Data Grid simulator project designed specifically for 
testing various optimization technologies to access data in Grid environments. 
OptorSim adopts a Grid structure based on a simplification of the architecture 
proposed by the EU DataGrid project. ChicagoSim [4] is a simulator designed to 
investigate scheduling strategies in conjunction with data location. It is designed 
to investigate scheduling strategies in conjunction with data location. 

None of these projects present general solutions to modeling fault 
tolerance technologies for large scale distributed systems. They tend to focus on 
providing evaluation methods for the traditional research in this domain, which up 
until recently targeted the development of functional infrastructures. Our model 
aims to provide the means to evaluate a wide-range of solutions for fault tolerance 
in case of large scale distributed systems.  

The simulation model provided by MONARC is more generic that others, 
as demonstrated in [5]. It is able to describe various actual distributed system 
technologies, and provides the mechanisms to describe concurrent network traffic, 
to evaluate different strategies in data replication, and to analyze job scheduling 
procedures. MONARC offers ample customization possibilities, thus enabling us 
to integrate our model while preserving the interface. Also, because of this 
feature, our own model can incorporate custom failure, recovery and rescheduling 
algorithms that the user may need for a particular scenario.  

3. A Simulation Model for Fault Tolerance 

MONARC is built based on a process oriented approach for discrete event 
simulations, which is well suited to describe concurrent running programs, 
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network traffic as well as stochastic arrival patterns, specific for such type of 
simulations. Threaded objects or "Active Objects" (having an execution thread, 
program counter, stack...) allow a natural way to map the specific behavior of 
distributed data processing into the simulation program. However, as 
demonstrated in [6], because of the considered optimizations, the threaded 
implementation of the simulator can be used to experiment with scenarios 
consisting of thousands of processing nodes executing a large number of 
concurrent jobs or with thousands of network transfers happening simultaneously. 

 
Fig. 1. The Regional center model being adopted in MONARC, [16] 

 
In order to provide a realistic simulation, all the components of the system 

and their interactions were abstracted. The chosen model is equivalent to the 
simulated system in all its important aspects. A first set of components was 
created for describing the physical resources of the distributed system under 
simulation. The largest one is the regional center (Fig. 1), which contains a site of 
processing nodes (CPU units), database servers and mass storage units, as well as 
one or more local and wide area networks. Another set of components model the 
behavior of the applications and their interaction with users. Such components are 
the “Users” or “Activity” objects which are used to generate data processing jobs 
based on different scenarios. 

The job is another basic component, simulated with the aid of an active 
object, and scheduled for execution on a CPU unit by a “Job Scheduler” object. 
Any regional center can dynamically instantiate a set of users or activity objects, 
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which are used to generate data processing jobs based on different simulation 
scenarios. Inside a regional center different job scheduling policies may be used to 
distribute jobs to corresponding processing nodes. 

One of the strengths of MONARC is that it can be easily extended, even 
by users, and this is made possible by its layered structure. The first two layers 
contain the core of the simulator (called the "simulation engine") and models for 
the basic components of a distributed system (CPU units, jobs, databases, 
networks, job schedulers etc.); these are the fixed parts on top of which some 
particular components (specific for the simulated systems) can be built. The 
particular components can be different types of jobs, job schedulers with specific 
scheduling algorithms or database servers that support data replication. The 
diagram in Fig. 2 presents the MONARC layers and the way they interact with a 
monitoring system. In fact, one other advantage that MONARC have over other 
existing simulation instruments covering the same domain is that the modeling 
experiments can use real-world data collected by a monitoring instrument such as 
MonALISA, an aspect demonstrated in [10]. This is useful for example when 
designing experiments that are meant to experiment new conditions starting from 
existing real distributed infrastructures. 

 

 
Fig. 2. The layers of MONARC, [16] 

 
Using this structure it is possible to build a wide variety of models, from 

the very centralized to the distributed system models, with an almost arbitrary 
level of complexity (multiple regional centers, each with different hardware 
configuration and possibly different sets of replicated data). 

The maturity of the simulation model was demonstrated in previous work. 
For example, a number of data replications experiments were conducted in [11], 
presenting important results for the future LHC experiments, which produce more 
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than 1 PB of data per experiment and year, data that needs to be then processed. A 
series of scheduling simulation experiments were presented in [11], and [12]. 

In [13] we presented a first extension to the model designed to simulating 
faults occurring in distributed systems using MONARC. In this we extend the 
presented work, with results about the implementation of the proposed model in 
MONARC, its evaluation, but we also describe additional mechanisms (for 
modeling different types of failures, at hardware and software levels, together 
with their occurrences and mechanisms for detection, as well as recovery and 
masking mechanisms) to cover a complete set of resilience-related characteristics, 
in its generic sense. 

The characteristics of large scale distributed systems make the problem of 
assuring fault tolerance a difficult issue because of several aspects. A first aspect 
is the geographical distribution of resources and users that implies frequent 
remote operations and data transfers; these lead to a decrease in the system's 
reliability and make it more vulnerable to various faults occurring in different 
nodes of the systems because of the heterogeneous possible accesses. Another 
problem is the volatility of the resources, which are usually available only for 
limited periods of time; the system must ensure the correct and complete 
execution of the applications even in situations such as when the resources are 
introduced and removed dynamically, or when they are damaged. 

 

 
 

Fig. 3. The Regional Center model 
 
The model extended each of the MONARC’s three layers. At each level 

we implemented different functionalities and different levels of fault-tolerance 
model abstractions. The Fig. 3 presents the components of the extended model. As 
presented, each component has a supervisor and/or belongs to a larger system 
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(also modeled as a larger component). For example, the processing units can be 
grouped (along with other elements, such as a scheduler) in farms that are 
associated to Regional Centers. When a task is received by one such Regional 
Center, the scheduler automatically distributes it to an appropriate processing unit. 
This Regional Center extended architecture is presented in Fig. 3. 

The extended model include components and methods necessary to 
implement fault tolerance in the processing, networking as well as database 
layers. For example, we added specific component capable to model faults 
occurring in local network and in wide area network, as well as the mechanisms to 
implement fault recovery protocols in the communication layer. The components 
susceptible to failure are network links (for local networks) and routers (for wide 
area networks) with their respective supervisors LANs and WANs, as presented in 
Fig. 4. 

 
Fig. 4. Network model with local networks and wide area networks 

 
The extended simulation model is constructed based on the basic 

components, but also uses the modified components from the layer composed of 
specific components (see Fig. 2). The model allows the simulation of hybrid 
systems, in which failing components can coexist with traditional components of 
the MONARC’s model. This is possible because the fault injection mechanism is 
“hidden” from the other components that the affected one is communicating with. 

Within the model, a fault can be detected by a supervisor of the affected 
component through heartbeat interrogations. For example, the Supervisor 
component, having a monitoring role, can send messages to the processing unit it 
wants to use before sending the actual task. If it fails to answer in due time 
(according to the detection algorithm being used by the user), the simulation can 
assume the component failed. This leads to no further tasks being scheduled on 
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that particular processing unit and its tasks are rescheduled on other processing 
units from the same regional center. The Scheduler can also use a registry index, 
attached to the monitoring task, to find out when a particular processing unit 
recovered from transient failures. Such transient failures can be attributed to 
periodical failures, so a unit in this condition would not be suitable for executing 
long-time jobs. The scheduler uses the monitor also to find out what processing 
units are currently available in the system. The monitor can question processing 
units periodically and dynamically adjust the list of still available processing 
units. Also, new processing units can dynamically enter the system and register to 
the monitor, so that to be used in the scheduling process.  

The failure mode, permanent or transient, is decided within the CPU class 
and it is not visible from the outside (for example, by the Scheduler). The same 
applies for all network and database components, also including the failure model 
in their implementation. Fig. 5 shows the components that were added to the 
original model in MONARC. 

 

  
Fig. 5. Classes added to implement the failure model and their relation with the original 

MONARC classes 
 
The extent to which a fault affects the performance of the regional center 

can be use as an indication on how the user could be alerted. For example, if all 
processors fail or no new tasks can be run then the experiment could state that an 
alert should be raised. This can be used to indicate an area in the system that is 
more likely to be insufficiently reliable. 

The user can also modify various parameters through configuration files. 
The format of the configuration file is “parameter_name value”. If some 
parameters are not defined then default values are used. Some of the available 
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options are probabilities for permanent failure, for transient failure, for recovery 
from transient failure. Also the average number of consecutive heartbeat answers, 
negative or positive, which determine the Scheduler to change the observed 
working state of the processing unit can also be modified. 

4. Model validation and simulation results 

In order to analyze the validity and performance of the fault tolerance 
simulation model implemented in MONARC we conducted a number of 
simulation experiments. We present the results of two such experiments: one 
designed to test the failure model in case of processing nodes and another in case 
of the various network components. 

The first experiment analyzed how the number of processing units is 
related to the reliability in processing a batch of tasks. In the experiment we 
envisioned a situation where the objective is to be guarantee that a given number 
of tasks can be processed, without taking into account delays caused by failed 
CPUs. If no CPU is working at a given moment, the test fails.  

The test revealed the importance of repairing faulty resources. If no 
permanent faults occur, and transient faults occur in a reasonable range, the given 
task will be completed, independently of the given batch size, because the 
processing units are repaired faster than they break down. On the other hand, 
permanent failure rates have a limit, dependent on the failure probability and 
batch size. For very large batches (10,000-100,000), by increasing the relatively 
small number of CPUs (50-100) the rate of permanent failures stays constant. 
When correlating the real world failures with their simulation equivalents, the 
total number of available processing units should be taken into account rather than 
the physical devices: a permanent failure in the simulation should signify a 
permanent decrease of the total number of working CPUs. Even if a computer's 
hardware fails permanently in the real world, replacing it would restore the total 
number of working computers, so it would be appropriate to interpret this event as 
a transient failure. 

Tables 1, 2 and 3 show test results for permanent failures (crash) alone. 
Tables 4 and 5 show the effects transient failures in relation to the CPU number. 
The values CrashThresh and TransientThresh in the following tables represent 
thresholds above which the value of the random variable that models each 
probability leads to a failure manifestation; in these tests the random variables 
have uniform distribution in the interval [0,1]. ChrashThresh corresponds to 
permanent failures and TransientThresh to transient failures. 
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Table 1 

10 CPUs with 10,000 Jobs, only permanent failures 
Jobs CPUs CrashThresh Avg. Failed CPUS Processed 

10000 10 0.9 10 110 

10000 10 0.99 10 1008 

10000 10 0.99 9 7 10000 

10000 10 0.99 99 1 10000 
 

Table 2 
20 CPUs with 10,000 Jobs, only permanent failures 

Jobs CPUs CrashThresh Avg. Failed CPUs Processed 

10000 20 0.9 20 245 

10000 20 0.99 20 3010 

10000 20 0.99 9 6 10000 

10000 20 0.99 99 1 10000 
 

Table 3 
40 CPUs with 10,000 Jobs, only permanent failures 

Jobs CPUs CrashThresh Avg. Failed CPUs Processed 

10000 40 0.9 40 409 

10000 40 0.99 40 5365 

10000 40 0.99 9 13 10000 

10000 40 0.99 99 1 10000 
Table 4 

10 CPUs, 10000 Jobs, transient failures 
Jobs CPUs TransientThresh Avg. Failed CPUs Processed 

10000 10 0.5 7 4931 

10000 10 0.6 3 10000 

10000 10 0.7 1 10000 
Table 5 

40 CPUs, 10000 Jobs, transient failures 
Jobs CPUs TransientThresh Avg. Failed CPUs Processed 

10000 40 0.4 40 3166 

10000 40 0.5 11 10000 

10000 40 0.6 2 10000 

10000 40 0.7 1 10000 
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For tables 4 and 5, the job scheduler had an optimistic approach: it 
considers that CPUs are failed if they don't answer for one heartbeat and that they 
are repaired if one positive answer is received. The following tables, 6 and 7, 
show how the consecutive heartbeat answer counts influence the scheduler. These 
parameters, also configurable, add another level of reliability evaluation. In some 
systems, tasks may be given only to high uptime units. ResponseTimeThresh is the 
number of consecutive negative answers after which the scheduler marks the CPU 
failed. AliveThresh is the number of positive answers after which the scheduler 
marks the CPU working. 

 
Table 6 

ResponseTimeThresh=2, AliveThresh=1, 10000 Jobs 
Jobs CPUs TransientThresh Avg. Failed CPUs Processed 

10000 10 0.3 4 10000 

10000 10 0.4 4 10000 

10000 10 0.5 2 10000 

10000 10 0.6 2 10000 

10000 10 0.7 1 10000 
 

Table 7 
ResponseTimeThresh=1, AliveThresh=2, 10000 Jobs 

Jobs CPUs TransientThresh Avg. Failed CPUs Processed 

10000 10 0.3 10 23 

10000 10 0.4 10 53 

10000 10 0.5 8 411 

10000 10 0.6 5 6183 

10000 10 0.7 2 10000 
 
The second scenario shows the relation between redundant network links 

and link reliability. The goal is to send a given number of packets, without 
considering delays. TCP was chosen for the transport protocol to test the resend 
mechanism for failed connections. In this scenario both connections (link ports) 
and routers can fail. In this experiment each Job sends one packet in the network. 

 
Fig. 6 shows the network topology being used. Cern LAN sends packets to 

Caltech LAN. Packets are routed by Cern Router through the two possible paths 
towards Caltech Router in respect to network load. 
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Fig. 6. Network topology for network failure scenarios. 
 

Table 8 
LinkPortFail tests, 10 Jobs, permanent and transient failures 

Jobs Link Crash Thresh Link Transient Thresh Average Loss 

10 0.8 0.8 1 

10 0.7 0.7 5 

10 0.6 0.6 7 

10 0.5 0.5 8 
 
Tables 8 shows test results for link port failures. Since the transport 

protocol used is TCP, permanent crashes are sent again, thus the average number 
loss is very much like in transient failure only situations.  

Table 9 shows the simulation results for router failures alone, both 
permanent and transient. The given values are from numerous simulations. 
Because there are only two routers and no backup ones, if one of them fails 
permanently all packets afterwards are not delivered. 

Table 9 
RouterFail tests, 10 Jobs, permanent and transient failures 

Jobs Router Crash Thresh Router Trans Thresh Average Loss 

10 0.99 9 0.99 9 0 

10 0.99 0.99 1 

10 0.9 0.9 9 

10 0.8 0.8 9 

10 0.7 0.7 10 
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Routers are not influenced by the chosen transport protocol, so there are 
no alternate means of assuring higher reliability other than intrinsic router 
reliability or redundancy. 

5. Conclusions 

Modern distributed systems are more and more seen as the most likely 
solution to the ever increasing computational needs, despite they are more prone 
to partial failure. Failures should not be limited to actual malfunctioning; a 
shutdown of a computer in a “@home” type of network is enough to disturb the 
process. However, these events are predictable and failure resistant algorithms 
exist. Given these circumstances, simulating failures in a distributed system can 
give good predictions over the actual behavior. 

The framework developed using MONARC gives users a simple interface 
to use, by adding some parameters to the configuration files. All existing 
configuration files supported can be modified to enable the failure model. The 
simulation model is easy to understand, but flexible enough to allow various 
scenarios. MONARC's versatility is not reduced. The two fault types 
implemented, permanent and transient, are the most common and the input values 
can be adapted to measured values in real life systems.  

In this paper we presented an extension to the MONARC simulation 
model that allows the analysis of failure-dependent experiments, where faults can 
occur in any simulated component. The model provides realistic observation of 
failed components and provides a configurable interface for the user. By adding 
these capabilities, the simulation scenarios can include evaluation of failure 
detection approaches, as well as replication or consistency solutions designed for 
large scale distributed systems. The model can be used for both reactive and 
proactive types of situations and recovery solutions in the presence of faults. 

Future development could include realistic routing protocols by which 
routers make decisions. It may be used in verifying that a protocol is adequate for 
a given topology, estimating parameters such as convergence speed and network 
overhead. 

 
Acknowledgement 
The research presented in this paper is supported by national project 

“DEPSYS – Models and Techniques for ensuring reliability, safety, availability 
and security of Large Scale Distributes Systems”, Project “CNCSIS-IDEI” ID: 
1710. 

 



26                                                     Adrian Boteanu, Ciprian Dobre 

R E F E R E N C E S 

 
[1] H. Casanova, A. Legrand, M. Quinson, “SimGrid: a Generic Framework for Large-Scale 

Distributed Experimentations”, Proc. of the 10th IEEE International  Conference on Computer 
Modelling and Simulation (UKSIM/EUROSIM'08), 2008 

[2] R. Buyya, M. Murshed, “GridSim: A Toolkit for the Modeling and Simulation of Distributed 
Resource Management and Scheduling for Grid Computing”, The Journal of Concurrency and 
Computation: Practice and Experience (CCPE), Volume 14, 2002 

[3] W. Venters, et al, “Studying the usability of Grids, ethongraphic research of the UK particle 
physics community”, UK e-Science All Hands Conference, Nottingham, 2007 

[4] K. Ranganathan, I. Foster, “Decoupling Computation and Data Scheduling in Distributed 
Data-Intensive Applications”, Int. Symposium of High Performance Distributed Computing, 
Edinburgh, Scotland, 2002 

[5] C. Dobre, V. Cristea, “A Simulation Model for Large Scale Distributed Systems”, Proc. of the 
4th International Conference on Innovations in Information Technology, Dubai, United Arab 
Emirates, November 2007 

[6] C. Dobre, “Advanced techniques for modeling and simulation of Grid systems”, PhD Thesis 
publicly sustained at University POLITEHNICA of Bucharest, January 2008 

[7] C. Dobre, C. Stratan, V. Cristea, “Realistic simulation of large scale distributed systems using 
monitoring”, in Proc. Of the 7th International Symposium on Parallel and Distributed 
Computing (ISPDC 2008), Krakow, Poland, July 2008 

[8] I.C. Legrand, H. Newman, C. Dobre, C. Stratan, “MONARC Simulation Framework”, 
International Workshop on Advanced Computing and Analysis Techniques in Physics 
Research, Tsukuba, Japan, 2003 

[9] F. Pop, C. Dobre, G. Godza, V. Cristea, “A Simulation Model for Grid Scheduling Analysis 
and Optimization”, Parelec , 2006 

[10] C. Dobre, F. Pop, V. Cristea, “A Simulation Framework for Dependable Distributed 
Systems”, First International Workshop on Simulation and Modelling in Emergent 
Computational Systems (SMECS-2008), Portland, USA, 2008 

[11] C. Dobre, V. Cristea, Advanced techniques for modelling and simulation of Grid systems, 
2008 

[12] N. Naik, Simulating Proactive Fault Detection in Distributed Systems, Proposal for Capstone 
Project, 2007 

[13] F. Cristian, Understanding Fault-Tolerant Distirbuted Systems, Communications of the ACM, 
vol. 34, feb 1991 

[14] K. Neocleous, M. D. Dikaiakos, P. Fragopoulou, E. Markatos, GRID RELIABILITY: A 
STUDY OF FAILURES ON THE EGEE INFRASTRUCTURE, Proposal Paper, 2006 

[15] A. Avizienis, J.C. Laprie, B. Randell, Dependability and it’s threats: A Taxonomy 
[16] Official MONARC page http://monarc.cacr.caltech.edu:8081/www_monarc/monarc.htm 
 
 


