U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 1, 2011 ISSN 1454-234x

A SIMULATION MODEL FOR FAULT TOLERANCE
EVALUATION

Adrian BOTEANU®, Ciprian DOBRE?

Aceasta lucrare prezintd un model de simulare pentru evaluarea solutiilor de
asigurare a tolerantei la defecte in sistemele distribuite de mari dimensiuni. Modelul
extinde simulatorul MONARC prin adaugarea de noi functionalitati pentru
evaluarea tolerantei la defecte. Modelul descrie defecte ce pot apdrea in astfel de
sisteme §i include mecanisme pentru detectia si corectia acestora. In cadrul lucrarii
este prezentatad si o implementare pilot a modelului, impreund cu rezultatele testelor
de evaluare. Au fost implementate atat defecte permanente cdt §i tranziente ce pot
apdrea in cazul unitdtilor de procesare, componentelor de retea sau a bazelor de
date. Modelul poate fi usor extins, permitind adaugarea de noi clase de defecte [1i
tehnologii aferente, in functie de experimentul vizat. Modelul poate fi folosit pentru
evaluarea performantelor unor solutii de tolerantd la defecte pentru sisteme
distribuite, pretindu-se identificarii rapide a punctelor sau ariilor vulnerabile din
sistemul simulat.

In this paper we present a simulation model designed to evaluate fault
tolerance solutions in large scale distributed systems. This model extends the
MONARC simulation model with new capabilities for fault tolerance simulation.
The model includes failure behavior and capabilities to detect and react to faults.
We also present an implementation of this model in MONARC, together with
specific evaluation results. The model's implementation considers permanent and
transient failures occurring within processing units, network components, as well as
databases. The model is easily extendable, allowing the additions of new failure
models as required by user experiments. The model can be used in conjunction with
key performance metrics, being able to easily pinpoint the likely points or areas of
failures in the simulated environments.

Keywords: fault tolerance, distributed systems, performance analysis, simulation
model, faults

1. Introduction

Modeling and simulation were seen for a long time as viable solutions to
develop new algorithms and technologies and to enable the enhancement of large-
scale distributed systems, where analytical validations are prohibited by the scale
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of the encountered problems. The use of discrete-event simulators in the design
and development of large scale distributed systems is appealing due to their
efficiency and scalability.

Together with the extension of the application domains, new requirements
have emerged for large scale distributed systems; among these requirements, fault
tolerance and resilience in face of possible failures occurring in such systems, are
needed by more and more modern distributed applications, not only by the critical
ones.

The discrete event simulation offers a flexible and powerful method to
evaluate solutions designed for large scale distributed systems, without the time
and effort necessary to implement them in real-world. MONARC is a complex
simulator designed around this paradigm, in which discrete events trigger the
advance of the simulation. Its model offers the means of simulating a large range
of scenarios, ranging from networking protocols to scheduling and distributed
applications running on top of the middle-ware. That is, as long as the simulation
experiments exclude the possibility of component failures. However, modern
requirements of distributed systems, such as fault tolerance, should also be
supported and analyzed using the simulation model. The adoption of a fault
tolerance model was also imperative to completely and accurately model the
behavior of a real distributed system, having an imperfect nature, as in the case of
Internet based systems like GRIDs.

In this paper we present an extension to the MONARC simulation model
that allows the analysis of failure-dependent experiments, where faults can occur
in any simulated component. The model provides realistic observation of failed
components and provides a configurable interface for the user. By adding these
capabilities, the simulation scenarios can include evaluation of failure detection
approaches, as well as replication or consistency solutions designed for large scale
distributed systems. The model can be used for both reactive and proactive types
of situations and recovery solutions in the presence of faults.

The main capabilities of the failure simulation model are flexibility and
compatibility. Existing MONARC simulation experiments must easily be adapted
to evaluate failure behavior. The model also includes a wide range of possible
defects, from permanent crashes occurring in various components to transient or
Byzantine errors. The user is also presented with an interface to easily allow
other simulated mechanisms to be included.

In the model the mechanisms for fault injection, fault detection and
possible failure recovery techniques are completely separated, to have a better
understanding of the entire processes involved. The component that is prone to
failures generates at various moments, according to a statistical probability
distribution, a change of state. A supervisor component periodically interrogates,
using a heartbeat approach (the default one), it's available resources. It then
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evaluates the functioning state of the component by the number of consecutive
heartbeat answers of the same type, negative or positive.

The rest of this paper is structures as follows. We next present related
work in the domain of simulating failures in large scale distributed systems
experiments. We next present the architecture of the model and we present details
about the implementation of the various components. Next we present results and
a detailed analysis of the capabilities of the proposed solution. The final section
presents conclusions and future work.

2. Related work

SimGrid [1] is a simulation toolkit that provides core functionality for the
evaluation of scheduling algorithms in distributed applications in a heterogeneous,
computational Grid environment. It aims at providing the right model and level of
abstraction for studying Grid-based scheduling algorithms and generates correct
and accurate simulation results. GridSim [2] is a grid simulation toolkit developed
to investigate effective resource allocation techniques based on computational
economy. OptorSim [3] is a Data Grid simulator project designed specifically for
testing various optimization technologies to access data in Grid environments.
OptorSim adopts a Grid structure based on a simplification of the architecture
proposed by the EU DataGrid project. ChicagoSim [4] is a simulator designed to
investigate scheduling strategies in conjunction with data location. It is designed
to investigate scheduling strategies in conjunction with data location.

None of these projects present general solutions to modeling fault
tolerance technologies for large scale distributed systems. They tend to focus on
providing evaluation methods for the traditional research in this domain, which up
until recently targeted the development of functional infrastructures. Our model
aims to provide the means to evaluate a wide-range of solutions for fault tolerance
in case of large scale distributed systems.

The simulation model provided by MONARC is more generic that others,
as demonstrated in [5]. It is able to describe various actual distributed system
technologies, and provides the mechanisms to describe concurrent network traffic,
to evaluate different strategies in data replication, and to analyze job scheduling
procedures. MONARC offers ample customization possibilities, thus enabling us
to integrate our model while preserving the interface. Also, because of this
feature, our own model can incorporate custom failure, recovery and rescheduling
algorithms that the user may need for a particular scenario.

3. A Simulation Model for Fault Tolerance

MONARC is built based on a process oriented approach for discrete event
simulations, which is well suited to describe concurrent running programs,
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network traffic as well as stochastic arrival patterns, specific for such type of
simulations. Threaded objects or "Active Objects" (having an execution thread,
program counter, stack...) allow a natural way to map the specific behavior of
distributed data processing into the simulation program. However, as
demonstrated in [6], because of the considered optimizations, the threaded
implementation of the simulator can be used to experiment with scenarios
consisting of thousands of processing nodes executing a large number of
concurrent jobs or with thousands of network transfers happening simultaneously.
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Fig. 1. The Regional center model being adopted in MONARC, [16]

In order to provide a realistic simulation, all the components of the system
and their interactions were abstracted. The chosen model is equivalent to the
simulated system in all its important aspects. A first set of components was
created for describing the physical resources of the distributed system under
simulation. The largest one is the regional center (Fig. 1), which contains a site of
processing nodes (CPU units), database servers and mass storage units, as well as
one or more local and wide area networks. Another set of components model the
behavior of the applications and their interaction with users. Such components are
the “Users” or “Activity” objects which are used to generate data processing jobs
based on different scenarios.

The job is another basic component, simulated with the aid of an active
object, and scheduled for execution on a CPU unit by a “Job Scheduler” object.
Any regional center can dynamically instantiate a set of users or activity objects,
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which are used to generate data processing jobs based on different simulation
scenarios. Inside a regional center different job scheduling policies may be used to
distribute jobs to corresponding processing nodes.

One of the strengths of MONARC is that it can be easily extended, even
by users, and this is made possible by its layered structure. The first two layers
contain the core of the simulator (called the "simulation engine™) and models for
the basic components of a distributed system (CPU units, jobs, databases,
networks, job schedulers etc.); these are the fixed parts on top of which some
particular components (specific for the simulated systems) can be built. The
particular components can be different types of jobs, job schedulers with specific
scheduling algorithms or database servers that support data replication. The
diagram in Fig. 2 presents the MONARC layers and the way they interact with a
monitoring system. In fact, one other advantage that MONARC have over other
existing simulation instruments covering the same domain is that the modeling
experiments can use real-world data collected by a monitoring instrument such as
MonALISA, an aspect demonstrated in [10]. This is useful for example when
designing experiments that are meant to experiment new conditions starting from
existing real distributed infrastructures.
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Fig. 2. The layers of MONARC, [16]

Using this structure it is possible to build a wide variety of models, from
the very centralized to the distributed system models, with an almost arbitrary
level of complexity (multiple regional centers, each with different hardware
configuration and possibly different sets of replicated data).

The maturity of the simulation model was demonstrated in previous work.
For example, a number of data replications experiments were conducted in [11],
presenting important results for the future LHC experiments, which produce more
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than 1 PB of data per experiment and year, data that needs to be then processed. A
series of scheduling simulation experiments were presented in [11], and [12].

In [13] we presented a first extension to the model designed to simulating
faults occurring in distributed systems using MONARC. In this we extend the
presented work, with results about the implementation of the proposed model in
MONARC, its evaluation, but we also describe additional mechanisms (for
modeling different types of failures, at hardware and software levels, together
with their occurrences and mechanisms for detection, as well as recovery and
masking mechanisms) to cover a complete set of resilience-related characteristics,
in its generic sense.

The characteristics of large scale distributed systems make the problem of
assuring fault tolerance a difficult issue because of several aspects. A first aspect
is the geographical distribution of resources and users that implies frequent
remote operations and data transfers; these lead to a decrease in the system's
reliability and make it more vulnerable to various faults occurring in different
nodes of the systems because of the heterogeneous possible accesses. Another
problem is the volatility of the resources, which are usually available only for
limited periods of time; the system must ensure the correct and complete
execution of the applications even in situations such as when the resources are
introduced and removed dynamically, or when they are damaged.
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Fig. 3. The Regional Center model

The model extended each of the MONARC'’s three layers. At each level
we implemented different functionalities and different levels of fault-tolerance
model abstractions. The Fig. 3 presents the components of the extended model. As
presented, each component has a supervisor and/or belongs to a larger system
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(also modeled as a larger component). For example, the processing units can be
grouped (along with other elements, such as a scheduler) in farms that are
associated to Regional Centers. When a task is received by one such Regional
Center, the scheduler automatically distributes it to an appropriate processing unit.
This Regional Center extended architecture is presented in Fig. 3.

The extended model include components and methods necessary to
implement fault tolerance in the processing, networking as well as database
layers. For example, we added specific component capable to model faults
occurring in local network and in wide area network, as well as the mechanisms to
implement fault recovery protocols in the communication layer. The components
susceptible to failure are network links (for local networks) and routers (for wide
area networks) with their respective supervisors LANs and WANS, as presented in
Fig. 4.
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Fig. 4. Network model with local networks and wide area networks

The extended simulation model is constructed based on the basic
components, but also uses the modified components from the layer composed of
specific components (see Fig. 2). The model allows the simulation of hybrid
systems, in which failing components can coexist with traditional components of
the MONARC’s model. This is possible because the fault injection mechanism is
“hidden” from the other components that the affected one is communicating with.

Within the model, a fault can be detected by a supervisor of the affected
component through heartbeat interrogations. For example, the Supervisor
component, having a monitoring role, can send messages to the processing unit it
wants to use before sending the actual task. If it fails to answer in due time
(according to the detection algorithm being used by the user), the simulation can
assume the component failed. This leads to no further tasks being scheduled on
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that particular processing unit and its tasks are rescheduled on other processing
units from the same regional center. The Scheduler can also use a registry index,
attached to the monitoring task, to find out when a particular processing unit
recovered from transient failures. Such transient failures can be attributed to
periodical failures, so a unit in this condition would not be suitable for executing
long-time jobs. The scheduler uses the monitor also to find out what processing
units are currently available in the system. The monitor can question processing
units periodically and dynamically adjust the list of still available processing
units. Also, new processing units can dynamically enter the system and register to
the monitor, so that to be used in the scheduling process.

The failure mode, permanent or transient, is decided within the CPU class
and it is not visible from the outside (for example, by the Scheduler). The same
applies for all network and database components, also including the failure model
in their implementation. Fig. 5 shows the components that were added to the
original model in MONARC.
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Fig. 5. Classes added to implement the failure model and their relation with the original
MONARC classes

The extent to which a fault affects the performance of the regional center
can be use as an indication on how the user could be alerted. For example, if all
processors fail or no new tasks can be run then the experiment could state that an
alert should be raised. This can be used to indicate an area in the system that is
more likely to be insufficiently reliable.

The user can also modify various parameters through configuration files.
The format of the configuration file is “parameter_name value”. If some
parameters are not defined then default values are used. Some of the available
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options are probabilities for permanent failure, for transient failure, for recovery
from transient failure. Also the average number of consecutive heartbeat answers,
negative or positive, which determine the Scheduler to change the observed
working state of the processing unit can also be modified.

4, Model validation and simulation results

In order to analyze the validity and performance of the fault tolerance
simulation model implemented in MONARC we conducted a number of
simulation experiments. We present the results of two such experiments: one
designed to test the failure model in case of processing nodes and another in case
of the various network components.

The first experiment analyzed how the number of processing units is
related to the reliability in processing a batch of tasks. In the experiment we
envisioned a situation where the objective is to be guarantee that a given number
of tasks can be processed, without taking into account delays caused by failed
CPUs. If no CPU is working at a given moment, the test fails.

The test revealed the importance of repairing faulty resources. If no
permanent faults occur, and transient faults occur in a reasonable range, the given
task will be completed, independently of the given batch size, because the
processing units are repaired faster than they break down. On the other hand,
permanent failure rates have a limit, dependent on the failure probability and
batch size. For very large batches (10,000-100,000), by increasing the relatively
small number of CPUs (50-100) the rate of permanent failures stays constant.
When correlating the real world failures with their simulation equivalents, the
total number of available processing units should be taken into account rather than
the physical devices: a permanent failure in the simulation should signify a
permanent decrease of the total number of working CPUs. Even if a computer's
hardware fails permanently in the real world, replacing it would restore the total
number of working computers, so it would be appropriate to interpret this event as
a transient failure.

Tables 1, 2 and 3 show test results for permanent failures (crash) alone.
Tables 4 and 5 show the effects transient failures in relation to the CPU number.
The values CrashThresh and TransientThresh in the following tables represent
thresholds above which the value of the random variable that models each
probability leads to a failure manifestation; in these tests the random variables
have uniform distribution in the interval [0,1]. ChrashThresh corresponds to
permanent failures and TransientThresh to transient failures.
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Table 1
10 CPUs with 10,000 Jobs, only permanent failures
Jobs CPUs CrashThresh Avg. Failed CPUS Processed
10000 10 0.9 10 110
10000 10 0.99 10 1008
10000 10 0.999 7 10000
10000 10 0.99 99 1 10000
Table 2
20 CPUs with 10,000 Jobs, only permanent failures
Jobs CPUs CrashThresh Avg. Failed CPUs Processed
10000 20 0.9 20 245
10000 20 0.99 20 3010
10000 20 0.999 6 10000
10000 20 0.99 99 1 10000
Table 3
40 CPUs with 10,000 Jobs, only permanent failures
Jobs CPUs CrashThresh Avg. Failed CPUs Processed
10000 40 0.9 40 409
10000 40 0.99 40 5365
10000 40 0.999 13 10000
10000 40 0.99 99 1 10000
Table 4
10 CPUs, 10000 Jobs, transient failures
Jobs CPUs TransientThresh Avg. Failed CPUs Processed
10000 10 0.5 7 4931
10000 10 0.6 3 10000
10000 10 0.7 1 10000
Table 5
40 CPUs, 10000 Jobs, transient failures
Jobs CPUs TransientThresh Avg. Failed CPUs Processed
10000 40 0.4 40 3166
10000 40 0.5 11 10000
10000 40 0.6 2 10000
10000 40 0.7 1 10000
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For tables 4 and 5, the job scheduler had an optimistic approach: it
considers that CPUs are failed if they don't answer for one heartbeat and that they
are repaired if one positive answer is received. The following tables, 6 and 7,
show how the consecutive heartbeat answer counts influence the scheduler. These
parameters, also configurable, add another level of reliability evaluation. In some
systems, tasks may be given only to high uptime units. ResponseTimeThresh is the
number of consecutive negative answers after which the scheduler marks the CPU
failed. AliveThresh is the number of positive answers after which the scheduler
marks the CPU working.

Table 6
ResponseTimeThresh=2, AliveThresh=1, 10000 Jobs
Jobs CPUs TransientThresh Avg. Failed CPUs Processed
10000 10 0.3 4 10000
10000 10 0.4 4 10000
10000 10 0.5 2 10000
10000 10 0.6 2 10000
10000 10 0.7 1 10000
Table 7
ResponseTimeThresh=1, AliveThresh=2, 10000 Jobs
Jobs CPUs TransientThresh Avg. Failed CPUs Processed
10000 10 0.3 10 23
10000 10 0.4 10 53
10000 10 0.5 8 411
10000 10 0.6 5 6183
10000 10 0.7 2 10000

The second scenario shows the relation between redundant network links
and link reliability. The goal is to send a given number of packets, without
considering delays. TCP was chosen for the transport protocol to test the resend
mechanism for failed connections. In this scenario both connections (link ports)
and routers can fail. In this experiment each Job sends one packet in the network.

Fig. 6 shows the network topology being used. Cern LAN sends packets to
Caltech LAN. Packets are routed by Cern Router through the two possible paths
towards Caltech Router in respect to network load.
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Fig. 6. Network topology for network failure scenarios.

Table 8
LinkPortFail tests, 10 Jobs, permanent and transient failures
Jobs Link Crash Thresh Link Transient Thresh Average Loss
10 0.8 0.8 1
10 0.7 0.7 5
10 0.6 0.6 7
10 0.5 0.5 8

Tables 8 shows test results for link port failures. Since the transport
protocol used is TCP, permanent crashes are sent again, thus the average number
loss is very much like in transient failure only situations.

Table 9 shows the simulation results for router failures alone, both
permanent and transient. The given values are from numerous simulations.
Because there are only two routers and no backup ones, if one of them fails
permanently all packets afterwards are not delivered.

Table 9
RouterFail tests, 10 Jobs, permanent and transient failures
Jobs Router Crash Thresh Router Trans Thresh Average Loss
10 0.999 0.999 0
10 0.99 0.99 1
10 0.9 0.9 9
10 0.8 0.8 9

10 0.7 0.7 10
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Routers are not influenced by the chosen transport protocol, so there are
no alternate means of assuring higher reliability other than intrinsic router
reliability or redundancy.

5. Conclusions

Modern distributed systems are more and more seen as the most likely
solution to the ever increasing computational needs, despite they are more prone
to partial failure. Failures should not be limited to actual malfunctioning; a
shutdown of a computer in a “@home” type of network is enough to disturb the
process. However, these events are predictable and failure resistant algorithms
exist. Given these circumstances, simulating failures in a distributed system can
give good predictions over the actual behavior.

The framework developed using MONARC gives users a simple interface
to use, by adding some parameters to the configuration files. All existing
configuration files supported can be modified to enable the failure model. The
simulation model is easy to understand, but flexible enough to allow various
scenarios. MONARC's versatility is not reduced. The two fault types
implemented, permanent and transient, are the most common and the input values
can be adapted to measured values in real life systems.

In this paper we presented an extension to the MONARC simulation
model that allows the analysis of failure-dependent experiments, where faults can
occur in any simulated component. The model provides realistic observation of
failed components and provides a configurable interface for the user. By adding
these capabilities, the simulation scenarios can include evaluation of failure
detection approaches, as well as replication or consistency solutions designed for
large scale distributed systems. The model can be used for both reactive and
proactive types of situations and recovery solutions in the presence of faults.

Future development could include realistic routing protocols by which
routers make decisions. It may be used in verifying that a protocol is adequate for
a given topology, estimating parameters such as convergence speed and network
overhead.
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