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COMPOUND NUCLEUS FORMATION AND                                  
DE-EXCITATION WITH NEUTRONS 

Emil PETRESCU1, Mihail MIREA 2 

    A fost realizat un cod de calcul pentru calculul transmisiilor  neutronilor prin 
bariere centrifugale. Au fost utilizate două modele: cel bazat pe interacţia tare şi cel 
care utilizează un potenţial complex. Sunt descrise aceste modele, iar greşelile 
apărute in publicaţii anterioare au fost eliminate. Rezultatele sunt obţinute pentru 
izotopii de Uraniu. 

 
A computer code is realized in order to calculate the neutron transmissions 

through centrifugal barriers. Two models are used: the strong interaction model and 
the cloudy ball one. These models are described and errors appearing in previous 
publications are eliminated. Results are obtained for U isotopes. 

1. Introduction 

In order to design the new generations of nuclear reactors [1], a good 
knowledge of neutron induced fission cross sections is required. The evaluation of 
nuclear data is often realized within empirical models, the heights of the fission 
barriers being deduced from experimental data [2]. To reproduce the resonant 
structures in the cross section [3], transition states are introduced “by hand”. In 
the last years, we proposed a new model to investigate the resonance structure of 
the fission cross sections. We showed that the rich resonant cross section structure 
in the threshold energy range can be due to single particle dynamical effects. A 
very important ingredient of the model [4] is the shell model that must supply the 
single particle levels schemes during the whole fission process. In this context, the 
rearrangements of the shells was obtained within a realistic version of the 
superasymmetric two center shell model. Another very important ingredient is a 
model for neutron transmissions. This work will focuses on this purpose. 

2. Compound nucleus 

Let consider a region of space where the target nucleus in any excited state 
is enclosed. This domain is known as internal region and the remaining space is 
the external region. The surface is well defined by some nuclear shape 
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parametrization. A nucleon hits this region and a compound nucleus is formed. An 
unbound state is obtained and the nucleus disintegrates after a mean life time . 
The compound nucleus is created during a short period  of time, enabling a 
redistribution of the kinetic energy and the momentum of the incoming particle 
among the entire system. Thus, the mathematical treatment of the nuclear system 
resembles in many ways to the treatment of classical thermodynamics systems. 
The expression of the cross-section for reactions X(a,b)Y which proceed through 
the intermediary compound state emerges naturally [5] 

  (1) 
Where   is the cross section for the (a,b) reaction,   denotes the cross 

section for the formation of a compound nucleus (X+a) and  is the probability 
that the compound nucleus disintegrates in the channel b. It is considered that the 

 for reactions X(a,b)Y which proceed through the intermediary compound state 
emerges naturally [6]: 

  
  (2) 

 
Where  describes the relative motion and satisfies the Schrodinger equation 

  (3) 

and  ( =a, X) are related to the internal states of the two initial particles.  are 
not  dependent and, for convenience, will be omitted from now on.  is the 
reduced mass of the system.  is the potential between the two particles. A 
suitable choice for wave function of the relative motion (in the external region) 
has the form 

  (4) 

where  are the spherical harmonic polynomials, and  is the radial 
function for orbital momentum . Inserting the solution (4) in the Eq. (3) we obtain 
the radial equation: 

  (5) 

For positive energy channels, two linearly independent solutions to Eq. (5) 
occur, one of them is the so–called incoming wave function , and the other is 
the out coming one . The asymptotic behavior of each of these solutions are 
given by the forms: 

  (6) 

  (7) 
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where  is the wave number. If the incident particle is a 
neutron, the reduced mass  the neutron mass. Using the values 

=197.32891 MeV fm (  being the velocity of light), =939.55 MeV the 
value of  can be obtained in fm  units ( ). It is customary 
to work with real solutions which are regular ( ) and irregular ( ) at the 
origin and with asymptotic forms 

  (8) 

 
  (9) 

 In the case of a neutron as the particle a, the  potential vanishes, the 
Schrödinger equation becomes 

  (10) 

 The independent solutions are 

  (11) 

  (12) 

leading to 
  (13) 

 
  (14) 

 
Finally, the external radial function is a combination of the two solutions: 

  (15) 
 

where  is the fraction reflected of the ingoing wave. 
Here  is Bessel function and  is the Neumann one. 

The expansions used in this work for the special functions are described in the 
Appendix 1. 
 Several approximations can be used to describe the wave function in the 
internal region. In the following, two approximations are used. The first one 
considers in that the internal wave function can be expressed as a dumping 
exponential function. 

  (16) 
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 Here  can be approximated with ,  denoting the 
depth of the potential of the absorbing nucleus. This approximation is known as 
the strong interaction model. 
 The second way assumes a complex potential for the neutron-target 
interaction, and the associated model is called the cloudy crystal-ball. The 
interaction potential is 

  (17) 
 

In the actinide region,  42 MeV and  0.1 [7]. Solving the Schödinger 
equations for a square well the interior solutions to the radial wave are found to be 
 

  (18) 
 

where  is the Bessel function,  is a orthonormalization constant and 
 

  (19) 
 

where . The square root of a complex number is realized easily 
if this number is put on the form . 
 Our aim is to deduce the fraction reflected of the external wave function 
denoted , sometimes called the -collision matrix. This parameter is obtained by 
solving the equation for the continuity of the logarithmic derivative on the 
surface, that means at the distance : 
 

  (20) 

 
,  the mass number of the compound nucleus. The inverse of the 

logarithmic derivative has the significance of the -matrix. 
 Solving the Eq. (20) the complex number  is obtained and the compound 
nucleus cross section can be written: 
 

  (21) 

 The quantities 
  (22) 
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can be considered as the transmission of the neutron for a particular , angular 
momentum carried by the neutron. Moreover, the compound cross section can be 
developed as: 

(23) 
 

so that the probability to obtain the nucleus with a particular spin , that means 
, is realized by retaining only the elements corresponding to  in the previous 

sum. Here the 1/2 comes from the neutron spin,  is the spin of the target,  is the 
orbital momentum carried by the neutron while  is the projection spin on the z-
axis of the compound nucleus. In the previous equation, the square of Clebsh-
Gordon coefficients  intervene.  is the wavelength in the incident 
channel divided by 2  (unfortunately the font for -bar was not found). Using the 
relativistic formula is is easy to derive this quantity. By measuring the incident 
neutron energy  in =939.565 MeV units, the linear momentum is 
 

  (24) 
 

so that in MeV/c 
 

  (25) 
 

while =197.32891 MeV fm and the value of  is obtained in fm. 
 The total cross-section (elastic+compound) is given by relation 
 

  (26) 

 
 To put the Eq. (20) in a more suitable form, the phase constant  is defined 
in the external region 

  (27) 

 It is convenient to work with the real quantities  and  called 
shift factor and penetration factor, respectively, which satisfy the equations in the 
external region 

  (28) 
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in order to obtain (from Eq. (20)) 

  (29) 

 
 must be obtained now by using some models for the logarithmic derivative in 

the internal region. As mentioned previously, two models are employed in this 
work: the strong interaction model and the cloudy crystal ball. These two 
approximations are treated separately. 
In the strong interaction model 

  (30) 

and we obtain the result 
 

  (31) 

 
 In the cloudy crystal-ball model, 

  (32) 

 An iterative procedure can be used in order to obtain the logarithmic 
derivative for any value of  starting with =0. For  

 

 (33) 

 
After some calculations 
 

(34) 
(the real part being denoted  while the imaginary one )so that 
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(35) 

 
as shown in Appendix 2. These formulas are published with a wrong expression in 
[5]. Using the recurrence relation for Bessel functions (given in the appendix), we 
obtain the recurrence relations between logarithmic derivatives 
 

  (36) 

so that 

  (37) 

 
and two equations for the real and imaginary parts for the recurrence relations: 
 

 

 (38) 
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 This last equation is introduced in formula (29) to obtain the cross section. 
We use the parameter  (fm) [7]. 

3. Results 

 The results obtained with the code are displayed in figs.1, 2, 3 and 4. The 
total cross section, the compound cross section, the partial compound-cross 
sections for different values of , and the transmissions are displayed. 
 In fig.1 the total reaction cross section  is obtained within the strong 
interaction model as function of the incident energy of the neutron . The 
reaction n+ U was considered. The -values are very large for thermal 
neutrons and decrease rapidly for  of several MeV. The section  for the 
formation of the compound nucleus is much lower and is given by the sum of 
partial cross sections for the formation of compound nucleus in different states of 
spin =1/2, 3/2, 5/2... At very low values of , the major contributions in the 
total compound cross section is given only by the partial cross sections for =1/2 
and 3/2. For energies up to 3-4 MeV, of interest for fission studies in the threshold 
region, only the partial cross sections with =9/2 are sufficient to be taken into 
account to obtain results accurately enough. 
 In fig. 2 the same quantities as in Fig.1 are plotted, calculated in the frame 
of the cloudy ball model. It can be observed that an oscillatory behavior is 
exhibited by the total cross section with an average width of about 2 MeV as 
experimentally observed. The partial contribution of the =3/2 channel is much 
stronger as in the previous case (the strong interaction model) and the partial 
contributions for = 5/2 can be neglected. In the framework of this model the low 
spin channels have a stronger contribution in the compound cross section as in the 
frame of the previous one. 
 In fig. 3 the transmission of the centrifugal barrier for different values of 
the neutron angular momentum =0, 1, 2... are plotted as function of the neutron 
energies. The strong interaction model is used. As expected, all transmissions 
tends to 1 when the kinetic energy of the neutron is increased. 
In Fig. 3 the transmission of the centrifugal barrier for different values of the 
neutron angular momentum =0, 1, 2... are plotted as function of the neutron 
energies. The strong interaction model is used. As expected, all transmissions 
tends to 1 when the kinetic energy of the neutron is increased. 
 In fig. 4 the transmission of the centrifugal barrier for different values of 
the neutron angular momentum =0, 1, 2... are displayed in the frame of the 
cloudy ball model. The transmissions show an oscillatory behavior. 
 In fig. 5 we plotted a comparison between theoretical (cloudy ball model) 
and experimental [8] values for U. This time the partial cross sections are for 
integers value of . This plot give an estimation of the accuracy of our 
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calculations. Due to the fact that the target has the spin 7/2, the partial cross 
sections for l =3 and 4 are larger at low energy. Deviations of about 30% between 
experimental and theoretical values are obtained. 
 

 
Fig.1 The reaction U+n. The total cross section, the compound U cross section and partial 

cross section for formation of the compound nucleus in different final spin =0.5, 1.5…using the 
strong interaction model.  is the kinetic energy of neutrons. 

 
 

 
 

 
Fig.2  The reaction U+n. The total cross section, the compound U cross section and partial 
cross section for formation of the compound nucleus in different final spin =0.5, 1.5…using the 

cloudy-ball (imaginary potential) model.  is the kinetic energy of neutrons. 
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Fig.3  The reaction U+n. The transmission coefficients of neutrons (Eq. 22) divided by ( ) 

for =0, 1…using strong interaction model. Asymptotically the value 1 is reached.  is the 
kinetic energy of neutrons. 

 

 
Fig. 4  The reaction U+n. The transmission coefficients of neutrons (Eq. 22) divided by ( ) 

for =0, 1…using the cloudy-ball (imaginary potential) model. Asymptotically the value 1 is 
reached.  is the kinetic energy of neutrons 
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Fig. 5  Comparison between the total evaluated experimental cross section of U (full line) [8] 

and the theoretical one (dot – dashed line) as function of the neutron incident energy. The 
compound nucleus cross section is plotted with dashed line. The partial cross sections for the 
formation of the compound nucleus with a given spin are plotted with full lines. Two spin are 

marked on the plot: l=3 and l=4. 

4. Conclusions 

In order to investigate the neutron induced fission, an essential ingredient 
is represented by the neutron transmission through centrifugal barriers. This 
quantity allows us to estimate the compound nucleus cross section and the 
probability that the compound nuclear system decays on a given channel. The 
transmission depends on the incident energy of the neutron, its orbital momentum, 
and the spin of the target. For this purpose, the theory concerning the neutron 
transmission was revisited and errors appearing in the literature were corrected. 
Two approaches were analysed: the strong interaction model and the cloudy ball 
one, the last model being based on a complex potential. The theory is presented in 
details. Numerical codes were realised for both versions. These codes are able to 
generate the compound nucleus cross sections in reactions induced by an incident 
neutron that interacts with a target nucleus, the total cross sections, and the spin 
dependent partial cross sections that depend on the states of the target nucleus. 
The theoretical simulations agree well with experimental data. In this context, the 
numerical codes realised in this work are well suited for the study of induced 
fission phenomena. 
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Appendix 1 

Bessel and Neumann functions. In the following some useful series 
expansions and recurrence relations between special functions are  displayed 

 

  (39) 

 

  (40) 

 
  (41) 

 
  (42) 

 If  is close from an integer, then: 

  (43) 

where the Digamma function is 

  (44) 

for  2 and 

  (45) 

with 

  (46) 
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Recurrence relations for Bessel functions 

  (47) 

 

Appendix 2 

 

Determination of the correct form for the wrong formulas of [5] 

  (48) 

  (49) 
 

(50) 

 

 (51) 

because 

(52) 
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