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COMPOUND NUCLEUS FORMATION AND
DE-EXCITATION WITH NEUTRONS

Emil PETRESCU?, Mihail MIREA 2

A fost realizat un cod de calcul pentru calculul transmisiilor neutronilor prin
bariere centrifugale. Au fost utilizate doud modele: cel bazat pe interactia tare si cel
care utilizeaza un potential complex. Sunt descrise aceste modele, iar greselile
aparute in publicatii anterioare au fost eliminate. Rezultatele sunt obtinute pentru
izotopii de Uraniu.

A computer code is realized in order to calculate the neutron transmissions
through centrifugal barriers. Two models are used: the strong interaction model and
the cloudy ball one. These models are described and errors appearing in previous
publications are eliminated. Results are obtained for U isotopes.

1. Introduction

In order to design the new generations of nuclear reactors [1], a good
knowledge of neutron induced fission cross sections is required. The evaluation of
nuclear data is often realized within empirical models, the heights of the fission
barriers being deduced from experimental data [2]. To reproduce the resonant
structures in the cross section [3], transition states are introduced “by hand”. In
the last years, we proposed a new model to investigate the resonance structure of
the fission cross sections. We showed that the rich resonant cross section structure
in the threshold energy range can be due to single particle dynamical effects. A
very important ingredient of the model [4] is the shell model that must supply the
single particle levels schemes during the whole fission process. In this context, the
rearrangements of the shells was obtained within a realistic version of the
superasymmetric two center shell model. Another very important ingredient is a
model for neutron transmissions. This work will focuses on this purpose.

2. Compound nucleus

Let consider a region of space where the target nucleus in any excited state
is enclosed. This domain is known as internal region and the remaining space is
the external region. The surface is well defined by some nuclear shape
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parametrization. A nucleon hits this region and a compound nucleus is formed. An
unbound state is obtained and the nucleus disintegrates after a mean life time i/T".
The compound nucleus is created during a short period of time, enabling a
redistribution of the Kinetic energy and the momentum of the incoming particle
among the entire system. Thus, the mathematical treatment of the nuclear system
resembles in many ways to the treatment of classical thermodynamics systems.
The expression of the cross-section for reactions X(a,b)Y which proceed through
the intermediary compound state emerges naturally [5]
Oab = 0P 1
Where o, is the cross section for the (a,b) reaction, o denotes the cross
section for the formation of a compound nucleus (X+a) and P, is the probability
that the compound nucleus disintegrates in the channel b. It is considered that the
P, for reactions X(a,b)Y which proceed through the intermediary compound state
emerges naturally [6]:

U =U(R)Dxd, (2)
Where W ( R?) describes the relative motion and satisfies the Schrodinger equation
— " ARV (R)+ V(R)U(R) = eV(R) 3)
2Mp

and @, (i=a, X) are related to the internal states of the two initial particles. ¥, are
not R dependent and, for convenience, will be omitted from now on. My is the
reduced mass of the system. V'(RR) is the potential between the two particles. A
suitable choice for wave function of the relative motion (in the external region)
has the form

U(R) x ”’E,f) ) 4)

where Y}, are the spherical harmonic polynomials, and w;(R) is the radial
function for orbital momentum /. Inserting the solution (4) in the Eqg. (3) we obtain
the radial equation:

A l(l+1) 2Mp

- e VR -E)| wu(®)=0 (5)
For positive energy channels, two linearly independent solutions to Eg. (5)
occur, one of them is the so—called incoming wave function (=), and the other is

the out coming one «*). The asymptotic behavior of each of these solutions are
given by the forms:

uy ' (R) o exp(—ikR — %ﬁﬂ') (6)

-u.}“(R) oc exp(ikR — éhr) (7
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where k = (2MrE/h*)'/? is the wave number. If the incident particle is a
neutron, the reduced mass Mp =~ m, the neutron mass. Using the values
he=197.32891 MeV fm (c being the velocity of light), m,¢*=939.55 MeV the
value of % can be obtained in fm-" units (k = [2m,,c*E/(hc)?]/?). It is customary
to work with real solutions which are regular (F;(R)) and irregular (G,;(R)) at the
origin and with asymptotic forms

Fi(R) o sin(kR — %hr) (8)

Gi(R) o cos(kR — %hr) 9)

In the case of a neutron as the particle a, the V(R) potential vanishes, the
Schrodinger equation becomes

d?u(R) L I+ 1)] B
P [ﬂ, " w(R) =0 (10)
The independent solutions are
kR
('” ) }J+1;z (kR) (11)
Gi(R) = - ( d ) Nisajs(KR) 12)
leading to

uP(R) = Gy(R) + iFy(R) (13)

u;”(R) = Fi(R) — iFy(R) (14)

Finally, the external radial function is a combination of the two solutions:
w(R) =u\ " (R) +nu " (R) (15)

where 5 is the fraction reflected of the ingoing wave.
Here Ji41,2(kR) is Bessel function and Ny /2(kR) is the Neumann one.

The expansions used in this work for the special functions are described in the
Appendix 1.

Several approximations can be used to describe the wave function in the
internal region. In the following, two approximations are used. The first one
considers in that the internal wave function can be expressed as a dumping
exponential function.

w(R) = Crexp(—iKR), R < R, (16)
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Here K can be approximated with [2Mz(E, 4+ V)/h?]"/? V denoting the
depth of the potential of the absorbing nucleus. This approximation is known as
the strong interaction model.

The second way assumes a complex potential for the neutron-target
interaction, and the associated model is called the cloudy crystal-ball. The
interaction potential is

V(R) = Vy(1 —iy). 0<y<l1 (17)

In the actinide region, Vi = 42 MeV and \ =~ 0.1 [7]. Solving the Schodinger
equations for a square well the interior solutions to the radial wave are found to be

w(R) = ClkRji(KR) (18)
where j, is the Bessel function, C; is a orthonormalization constant and
K = [2Mg(E, — V)/hY? = [k* + (2MgVy/1?) (1 — ix)]/? (19)

where k = /2MgrFE, /h*. The square root of a complex number is realized easily
if this number is put on the form a + ib = (v/a® + b?) exp[i arctan(b/a)].

Our aim is to deduce the fraction reflected of the external wave function
denoted 7;, sometimes called the I7-collision matrix. This parameter is obtained by
solving the equation for the continuity of the logarithmic derivative on the
surface, that means at the distance R.:

N | O R 20
. 'H.;(R) - 'Et(_}(R)—I—? () R ( )
R 1 - ny (R)

R=R;

R, = 1.40A}°, Ay the mass number of the compound nucleus. The inverse of the
logarithmic derivative has the significance of the r-matrix.

Solving the Eqg. (20) the complex number 7, is obtained and the compound
nucleus cross section can be written:

oo =mA Y 21+ 1) (1= |mif?) (21)
=0
The quantities
Ty = 20+ 1)(1 = [m*) (22)
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can be considered as the transmission of the neutron for a particular /, angular
momentum carried by the neutron. Moreover, the compound cross section can be
developed as:

o0 i+1/2 i+
Oo=TN Z Z )(1— |m]?)
=0 j=|i— lf| J=|j-1| Q==-J
(23)

so that the probability to obtain the nucleus with a particular spin .7, that means
a”, is realized by retaining only the elements corresponding to .J in the previous
sum. Here the 1/2 comes from the neutron spin, i is the spin of the target, [ is the
orbital momentum carried by the neutron while €2 is the projection spin on the z-
axis of the compound nucleus. In the previous equation, the square of Clebsh-
Gordon coefficients < jQ10|.J€2 > intervene. A is the wavelength in the incident
channel divided by 2= (unfortunately the font for A-bar was not found). Using the
relativistic formula is is easy to derive this quantity. By measuring the incident
neutron energy £, in m,,¢*=939.565 MeV units, the linear momentum is

}) = E”(EH + 2) (24)

so that in MeV/c

p= 939.565\/,‘3'“/939.565(E“/!JSEJ.SGS +2) (25)

while hc=197.32891 MeV fm and the value of A = //p is obtained in fm.
The total cross-section (elastic+compound) is given by relation

op = TN Z 204+ 1)(|L=m* + 1= |m]?) (26)

To put the Eg. (20) in a more suitable form, the phase constant ¢ is defined
in the external region
(=)
, u; '(R)
exp(2i¢) = -
(20 = R
It is convenient to work with the real quantities S;(R) and F;(R) called

shift factor and penetration factor, respectively, which satisfy the equations in the
external region

(+)

(27)

(=)

du, du;

A _ S(R)+iP(R) or R—Y_ — S(R)—iP(R) (28)
o o
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in order to obtain (from Eq. (20))
duy ()
R (_JT) — S +1B

wy(R)

=
duj(R)
R ( o ) -5 —iP

w(R)

exp(2i) (29)

R=R.

7 must be obtained now by using some models for the logarithmic derivative in
the internal region. As mentioned previously, two models are employed in this
work: the strong interaction model and the cloudy crystal ball. These two
approximations are treated separately.

In the strong interaction model

duy(R)
R| —4E_ = —iKR 30
(“I(R)) R=R. ( )
and we obtain the result
4P(R)KR
1= = = = 3 31
A= InP) = SR+ (KR + AT, ey
In the cloudy crystal-ball model,
duy(R) - N -

. = _ ok ﬂ:RJ,’(KIy?) + kji(KR) (32)

w(R) . ERji(KR) R=R,

An iterative procedure can be used in order to obtain the logarithmic
derivative for any value of [ starting with /=0. For I =0

dug(R)
R dR
( 'i‘.‘.(}(R) )

After some calculations

rlu(l;}'?R)
Rl —SL_
('H.U(R) )

(the real part being denoted 3 while the imaginary one 3)so that

KRcos(KR) — (KR)?sin(KR)

=1+ sin(K R)

R=R,

= KR cot(KR)(33)
R=R.

— R(KR) + iS(KR)] 1 —itan[R(K R)] tanh[S(K R)]

R=R.

)

(34)

tan[R(K R)] + i tanh[S(KR)] "| z_p.
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dn[;}?f?)

R R| —dE_
{ (“’“(R)) R=R. }
R(KR) cos[R(K R)] sin[R(KR)] + S(K R) cosh[3(K R)] sinh[3(K R))
cosh?[S(K R)] — cos?[R(K R)] R=R.

{ ( dug(R) ) }
3¢ R di —
UD(R) R=R,

S(KR) cos[R(KR)]sin[R(K R)] — R(K R) cosh[3(K R)] sinh[3(K R)]
cosh?[J(K R)] — cos?[R(K R)]

(35)

R=R.

as shown in Appendix 2. These formulas are published with a wrong expression in
[5]. Using the recurrence relation for Bessel functions (given in the appendix), we
obtain the recurrence relations between logarithmic derivatives

duy(R) -
— KRJ_(KR
R| —dE_ = KRJ-1(KR) .y (36)
w(R) J(KR)  |pp.
so that
duy(R) - 2
KR)-
R = (KR) —1 (37)
'U!(R) duy_(R)
R=R. [ —R (_w_)
uj—1 ()
R=R.,

and two equations for the real and imaginary parts for the recurrence relations:

duy ()
RI R d it _
{ ( ""(R)) H=H.<}
dur—1(R) dup_y (R) ]
{[W(I\-R)]Q _ [_J(I\'R]]Q} {f — R [R (T_f-lﬁﬂ—])] } — 23?(1\-1?}3(1&—1?}1?” [R ( T )
dug_1 (R) 2 duj_1(R) 2 - —1
)
R=H,
duy (1)
3 R di —
{ ( w(R) ) n:nx}
duj_,(R)
()]
~1(38)

] R
PPl )]}

%

duy_(R)

>[5 )
|

{[R(KR])? - [S(KR)?}S |R
duy_1(R)
— diR

( up—1(R) )

s

+ 2R(KR)3( M?}{
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This last equation is introduced in formula (29) to obtain the cross section.
We use the parameter R, = 1.4/ (fm) [7].

3. Results

The results obtained with the code are displayed in figs.1, 2, 3 and 4. The
total cross section, the compound cross section, the partial compound-cross
sections for different values of .7, and the transmissions are displayed.

In fig.1 the total reaction cross section o is obtained within the strong
interaction model as function of the incident energy of the neutron FE,. The
reaction n+*“U was considered. The or-values are very large for thermal
neutrons and decrease rapidly for E, of several MeV. The section o, for the
formation of the compound nucleus is much lower and is given by the sum of
partial cross sections for the formation of compound nucleus in different states of
spin J=1/2, 3/2, 5/2... At very low values of [, the major contributions in the
total compound cross section is given only by the partial cross sections for ./=1/2
and 3/2. For energies up to 3-4 MeV, of interest for fission studies in the threshold
region, only the partial cross sections with .7=9/2 are sufficient to be taken into
account to obtain results accurately enough.

In fig. 2 the same quantities as in Fig.1 are plotted, calculated in the frame
of the cloudy ball model. It can be observed that an oscillatory behavior is
exhibited by the total cross section with an average width of about 2 MeV as
experimentally observed. The partial contribution of the .7=3/2 channel is much
stronger as in the previous case (the strong interaction model) and the partial
contributions for .J= 5/2 can be neglected. In the framework of this model the low
spin channels have a stronger contribution in the compound cross section as in the
frame of the previous one.

In fig. 3 the transmission of the centrifugal barrier for different values of

the neutron angular momentum /=0, 1, 2... are plotted as function of the neutron
energies. The strong interaction model is used. As expected, all transmissions
tends to 1 when the kinetic energy of the neutron is increased.
In Fig. 3 the transmission of the centrifugal barrier for different values of the
neutron angular momentum /=0, 1, 2... are plotted as function of the neutron
energies. The strong interaction model is used. As expected, all transmissions
tends to 1 when the kinetic energy of the neutron is increased.

In fig. 4 the transmission of the centrifugal barrier for different values of
the neutron angular momentum /=0, 1, 2... are displayed in the frame of the
cloudy ball model. The transmissions show an oscillatory behavior.

In fig. 5 we plotted a comparison between theoretical (cloudy ball model)
and experimental [8] values for 2*U. This time the partial cross sections are for
integers value of .J. This plot give an estimation of the accuracy of our
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calculations. Due to the fact that the target has the spin 7/2, the partial cross

sections for /=3 and 4 are larger at low energy. Deviations of about 30% between
experimental and theoretical values are obtained.

i
u

w

strong interaction

o (barn)

¢ Q 1 2 3 4 a5 & !

E. (MeV)

Fig.1 The reaction 23®U+n. The total cross section, the compound 239U cross section and partial

cross section for formation of the compound nucleus in different final spin .7=0.5, 1.5...using the
strong interaction model. F,, is the kinetic energy of neutrons.

a cloudy ball mode

compouna nucleus

partia

Fig.2 The reaction 2*%U+n. The total cross section, the compound 23*°U cross section and partial
cross section for formation of the compound nucleus in different final spin .7=0.5, 1.5...using the
cloudy-ball (imaginary potential) model. F,, is the kinetic energy of neutrons.
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Fig.3 The reaction 23®U+n. The transmission coefficients of neutrons (Eq. 22) divided by (21 + 1)
for I=0, 1...using strong interaction model. Asymptotically the value 1 is reached. F,, is the
kinetic energy of neutrons.

cloudy ball model

Yoo 6 7
E., (MeV)
Fig. 4 The reaction 23%*U+n. The transmission coefficients of neutrons (Eq. 22) divided by (2 + 1)
for I=0, 1...using the cloudy-ball (imaginary potential) model. Asymptotically the value 1 is
reached. F,, is the Kinetic energy of neutrons
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Fig. 5 Comparison between the total evaluated experimental cross section of 235U (full line) [8]
and the theoretical one (dot — dashed line) as function of the neutron incident energy. The
compound nucleus cross section is plotted with dashed line. The partial cross sections for the
formation of the compound nucleus with a given spin are plotted with full lines. Two spin are
marked on the plot: /=3 and /=4.

4. Conclusions

In order to investigate the neutron induced fission, an essential ingredient
is represented by the neutron transmission through centrifugal barriers. This
quantity allows us to estimate the compound nucleus cross section and the
probability that the compound nuclear system decays on a given channel. The
transmission depends on the incident energy of the neutron, its orbital momentum,
and the spin of the target. For this purpose, the theory concerning the neutron
transmission was revisited and errors appearing in the literature were corrected.
Two approaches were analysed: the strong interaction model and the cloudy ball
one, the last model being based on a complex potential. The theory is presented in
details. Numerical codes were realised for both versions. These codes are able to
generate the compound nucleus cross sections in reactions induced by an incident
neutron that interacts with a target nucleus, the total cross sections, and the spin
dependent partial cross sections that depend on the states of the target nucleus.
The theoretical simulations agree well with experimental data. In this context, the
numerical codes realised in this work are well suited for the study of induced
fission phenomena.
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Appendix 1

Bessel and Neumann functions. In the following some useful series
expansions and recurrence relations between special functions are displayed

1. 2\k
(_3/“ ) (39)

—
w
—_—
o2
—
Il
—
(S
o]
C——
=
M
7
=
—_
=
_|_
>~
_|_
[a—
Cr——

k=0

~Jycos(vm) — J_,(2)

No(2) = sin(vm) (40)
TU2) = 31ea(2) = S ()] (41)
N.(Z) = 3 Noct(2) = Ny (2)] (42)

If v is close from an integer, then:

(l»«)_” n—1 (_” _ ,I,' _ 1)! 1 k
N,(z) = =222 — — [ =2°
() T ZE?!I”(JJ+£:+1) (4 ) *

k=0
2 1
- In (57) Jo(2) —
nooso b ke
(32) , _ (—1%°)
where the Digamma function is
H—l
U(n)=—y+ Z kL, (44)
k=1
forn >2and
U(l) = —vy (45)

with

—y =2In2 — 1.963510026021423 (46)
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Recurrence relations for Bessel functions

d_"erl }m( )

dz
dz""1 T, (2)

dz

— zm-{—l Jm—l (Z)

=—2""Jmi1(2) (47)

Appendix 2

Determination of the correct form for the wrong formulas of [5]
cos(a + 1b)

Jo=(a+ib) sin(a + ¢b) (48)
cos(a + ib) = cos(a) cos(ib) — sin(a) sin(ib)
sin(a + ib) = cos(a) sin(ib) + sin(a) cos(ib) (49)

_ ., cos(a) cos(ib) — sin(a) sin(ib)
fo=(a+ Ib)(‘os(u) sin(ib) + sin(a) cos(ib)

cos(a)[exp(b) + exp(—b)] — isin(a)[exp(b) — exp(—b)]

(@+ g”.ﬂ(m (a)[exp(b) — exp(—b)] — sin(a)[exp(b) + exp(—b)]

1 —itan(a)tanh(b) [tan(a) — tan(a) tanh®(b)] — i[tanh(b) + tanh(b) tan®(a)],
((l + "b) l.i'lll(f'l) + i T.i'lllh[h) N ((I + Eb) tan- ((; + tdllll (b 50)

R(fo) = altan(a) — tan(a) tanh®(b)] + bltanh(b) + tanh(b) tan®(a)] %;{Lb} + %% _
e tan?(a) + tanh”(b) "~ tan?(a) + tanh®(b)

atan(a) cos*(a) + btanh(b) cosh®(b) _ asin(a) cos(a) + bsinh(b) cosh(h)
[tan?(a) + tanh®(b)] cosh®(b) cos?(a)  sin®(a) cosh?(b) 4 sinh?(b) cos?(a)
asin(a) ('ns(‘ﬂ) + bsinh(b) cosh(b) (51)
cosh?(b) — cos?(a)

because
sin?(a) cosh?(b) + sinh?(b) cos?(a) = [1 - cos? ](osh (b) + sinh? (b) cos®(a) =

cosh?(b) — (cosh?(b) — sin*(b)) cos*(a) = cosh?(b) — cos*(a)(52)
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