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EIGENVALUE PROBLEM FOR SCHRÖDINGER EQUATION 
USING NUMEROV METHOD  

Cosmin TATU1, Mihai RIZEA2, Niculae N. PUŞCAŞ3 

În aceeastă lucrare este prezentată o metodă originală de rezolvare a 
ecuaţiei lui Schrödinger unidimensională, folosind potenţialul Wood-Saxon, cu 
ambele puncte de întoarcere interior respectiv exterior care poate fi utilizată şi în 
alte domenii (de exemplu în spectroscopie molecularǎ), precum şi soluţia numerică 
a acesteia. Acestea se referǎ la alegerea  pasului, schimbarea pasului, iteraţia 
valorilor proprii, fixarea limitelor inferioarǎ respectiv superioarǎ a valorilor 
proprii, determinarea unui interval de integrare necesar pentru coordonata de 
poziţie, un exemplu numeric cu potenţialul Wood–Saxon şi o comparaţie a Metodei 
Numerov cu alte metode. 

In this paper we present an original method to solve the one-dimensional 
Schrödinger equation in Wood Saxon potential, with both an inner and outer 
classical turning point which can be used in other fields (for example molecular 
spectroscopy) and also the its numerical solution. These involve choice of a step 
size, changing step size, iteration on the eigenvalue, setting upper and lower bounds 
on the eigenvalue, determining a useful range of the coordinate for the numerical 
integration, a numerical example with Wood–Saxon potential and a comparation 
between Numerov method and other methods. 

Keywords: one-dimensional Schrödinger equation,Wood Saxon potential, 
                   eigenvalue, Numerov method, classical turning point. 

1. Introduction 

      Over the past couple of decades, new algoritms have improved the accuracy 
and efficiency with a few orders comparable of the original Numerov method for 
resonant state and highest oscillatory solution, by finding better discretization or 
extending the interval of periodicity. 

In these algoritms we found Taylor series expansion [1], [2], continuity of 
the logarithmic derivative [2], bisection method [3] used for finding zero of the 
nonlinear equation ( ) 0=xf , a few types of discretizations [1]-[5], 
trigonometrically-fitting method [4], [5] (TFM) which overcome the traditional 
Obrechkoff one-step method (or called as the non-TFM) for its poor-accuracy in 
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the resonant state, and Wood Saxon potential. Numerical solution of the one-
dimensional Schrödinger equation in a Wood-Saxon potential has seen application 
in electrochemistry. 
        Numerov’s method is the highest order method which is at the same time a 
three-point method. Lower-order methods such as the Runge-Kutta method (error 
of order )4(4 yh ) lead to smaller net intervals h , and hence longer integrations 
times and more roundoff errors. Methods involving more than three adjacent 
function values should be avoided, since they are frequently unstable. If the 
Noumerov method with a given step size h  has insufficient accuracy, the remedy 
lies in decreasing the step size, not in going to some other method. 

2. Numerov method; theory 

Method of Numerov is the most popular scheme to integrate the one-
dimensional Scrödinger equation: 
                         )()('' xyxfy = , ExVxf −= )()( , ],[ bax∈             (1) 

with nonsingular potential )(xV . In order to solve it we used a three point scheme 
of the form: 
              )(''))('')(''()()(2)( 10 xyhxyhxyhxyxyhxy ββ +−++=−+−+       (2) 

 where:  
12/2

0 h=β , 6/5 2
1 h=β              (3) 

and h represent the step size. The values of 0β  and 1β  where obtained from the 
condition that Eq. (2) may be integrated exactly, polynomials whose degree is as 
high as possible. In fact, the algoritm (2) and (3) integrates exactly the functions 

432 ,,,,1 xxxx  and 5x . 
  It  should be noted, however, that the general behaviour of the solution of 
Eq.(1) is better described in terms of the exponential functions. Indeed, take some 
subinterval [a1,b1] of [a,b] on which approximate )(xV  by a constant V . The Eq. 
(1) is then approximated by EVfyfy −== ,''  which has the general solution: 

                    ( ) ( )xfBxfAy −+= expexp 00         (4) 
It means that the algorithm (2) and (3) is accurate enough for Eq.(1) if the 

step size h   is so small that the exponential functions can be approximated safely 
by fifth order polynomials. Therefore the larger f  is the smaller should be the 
step size to be used and this is the basis of repeated criticism of the standard 
Numerov scheme when it is used to integrate Eq. (1) at higher energies. 

We shall discuss the various problems encountered, and methods used to 
solve the eigenvalue problem for Scrődinger equation: 
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• How to chose a step size, how to decide when the step size needs 
changing, and how to carry out this change. A midpoint formula is develop for use 
with the Numerov method. 

• How to iterate on the eigenvalue when already close to it. The usual 
variational method is put into a convenient form,and a formula is developed for 
the derivative of the wavefunction, to be used with the Numerov method (it 
should be noted that the Numerov method itself does not give the derivative at 
all). 

• How to narrow down the search for the desired eigenvalue (with N a 
given number of nodes) in the initial stages. 

• How to decide on a range of the independent variable x for the numerical 
integration. 
 

In order to establish the statement of the problem, and a quick review of 
the Numerov method we consider the form of  one-dimensional Scrödinger 
equation: 

    )()(2

2

xyxf
xd
yd
=           (5) 

where                                                                                 
])()[/2()( 2 ExVMxf −= .           (6) 

  Here )(xV  is the potential energy function, M is the reduced mass of the 
problem, and 2 is Planck's constant divided by π2 . The potential 

)(xV approaches zero in the limit of large positive x , it is negative for 
intermediare values of x , and becomes positive and large for small positive x . 
Formally speaking, we desire a solution )(xy  which is bounded and square-
integrable on the positive x  axis, with 0)0( =y . In practice, we need not consider 
values near 0=x  at all, since )(xy  becomes exponentially small in that region, 
due to the “repulsive core” of the potential )(xV . The energy E  in Eq. (6) is an 
eigenvalue, to be determined so that the solution )(xyN  of Eq. (5) is not only 
square-integrable (and therefore approaches zero as x approaches infinity), but 
has exactly N  nodes (zeros) on the positive x  axis. 

The eigenvalue NE  in question are negative. For any E , eigenvalue or not, 
there are two values of x , called the classical turning points, at which:     

0)( =xf .            (7) 
The desired solution )(xy  has increasing exponential behavior for 

10 xx << , oscillatory behavior between the two turning points [where ( )xf  is 
negative], and decreasing exponential behavior for 2xx > . We shall concentrate 
on the problem of numerical integration of the differential  Eq. (5), without 
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worrying about the eigenvalue problem aspects; that is, we assume that )(xf  is a 
given function, which is large and positive for small x , becomes negative in the 
range 21 xxx <<  [where 1x and 2x  are the solutions of  Eq. (7)], and then 
becomes positive again, approaching a constant positive value as x  approaches 
infinity. In order to establish notation for later use, we review Numerov method 
briefly here, and follow this with a brief reminder why this is the method of 
choice. We start from the Taylor expansion of )( hxy +  around the point x ,  

                  )( hxy + = )(

0 !
n

n

n

y
n
h∑

∞

=

                (8) 

 where )(ny  is the n 'th derivative if  )(xy  evaluated at the point x . We obtained:  

2
1 )]()([ hxyhxy −++ = y  + ....

!6!42
1 )6(

6
)4(

4
)2(2 +++ yhyhyh         (9) 

and, differentiating twice, 

        ...
!42

1)]()([
2
1 )6(

4
)4(2)2()2()2( +++=−++ yhyhyhxyhxy   .       (10) 

We now multiply Eq. (10) by the factor 2

12
1 h , and substract the result 

from Eq. (9). This eliminates the term proportional to )4(y . We replace the second 
derivative )2(y , wherever it occurs, by )()( xyxf  according to Eq. (5). Introducing 
the notation  

                     ])([2
12

)(
12

)( 2

22

ExVMhxfhxT −==              (11) 

we thus arrive to the basic formula of the Numerov method 

...
240

)()](102[)()](1[)()](1[ )6(
6

+−+=−−−+++− yhxyxThxyhxThxyhxT  (12) 

        If )(xy  and )( hxy −  are known, )( hxy + can be found directly from this 
equation if the error term, proportional to )6(y , is ignored; the values of  )(xT are 
known, of course. 

3. Changing net size 

         In the case of large positive values of the potential )(xV  for small x , we 
must start the integration with a rather small net size h . Unless we are prepared to 
change net size as we go out, we will then waste a lot of machine time in the 
region where )(xf  is small in absolute value. It is therefore necessary to decide, 
during the course of the integration, whether the net size can be increased with 
safety, whether it must perhaps be decreased, and to program in the necessary 
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steps for carrying out these operations. In the neighborhood of a point x  at which 
)(xf  is positive and varying slowly, the solution )(xy  has roughly exponential 

behavior )exp( ax±  with )(xfa ≅  and in a region of negative )(xf , the 

behavior of )(xy  is oscillatory, of type )sin( bkx − with )(xfk −≅ .  In either 
case, we obtain the estimate:     

)()]([ 3)6( xyxfy ≈                   (13) 
We substitute this estimate into the error term of Eq. (12), and use the notation 
(11): 

        Relative error per step =
)(

)(....
xy

hxyinError + ≈ 3)]([
10
72 xT−         (14) 

The relative error per step that we are prepared to tolerate depends on the 
total number of the steps we anticipate having to take, and on the accuracy with 
which we wish to know the final wavefunction. The number of steps we shall 
have to take is proportional to the number of nodes N  in the wavefunction, since 
a given accuracy in )(xy  decides in the main the number of half-wavelengths can 
be estimated as 2/1+N  for our purpose. 

As an example, suppose we anticipate having to take some 500 steps 
altoghether, and we wish to know the function )(xy  to 1% accuracy. We can then 
tolerate relative errors of up to 5102 −× , witch by Eq. (14) means 001.0|)(| ≤xT  is 
a safe upper limit. These estimate depend on integrating in such a way that error 
made at a given step does not tend to perpetuate itself, with compound interest, 
during subsequent steps. It should be noted that the condition deduced from the 
estimate (14) is a condition on )(xT , on the coefficient in the differential 
equation, not on the solution )(xy  directly. This highly desirable behavior is 
associated with the linearity if the differential Eq. (5), and is sometimes not 
brought out clearly in books on numerical analysis where the emphasis is 
frequently on the solution of nonlinear differential equations. Since the condition 
which determines the choice of step size is on )(xT , the regions of x  in which 
different step sizes are required can be determined as soon as )(xT  is known  for 
all x to sufficient accuracy, as soon as we have a trial value of the energy E  
[which appears in Eq. (11)] sufficiently close to the true value of E . Thus, in 
principle, )(xt  need not be tested at every point during the integration; but in 
practice, such a test takes little time. The only step-size changes of interest are 
halving and doubling of the step size. )(xT  should be calculated in minimum 
time. The effective way of doing so is to store, in core memory, the values of:  

   22 12/)(2)( xMVhxY =             (15) 
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for all netpoints  nhxn =  on the finest net size h . The computation of )(xT  for 
this net size is then a straight table-lookup followed by substraction of a constant: 

                                 22 12/2)()( MEhxYxT −=         (16) 
If we restrict net-size changes to doubling and halvings, and if h in Eq. 

(15) is the finest net size ever used, then the effect of net-size changes amounts to 
multiplication of the right side of Eq. (16) by an appropriate power of 4, a fast 
operation in a binary machine. If h  is chosen as indicated, the possible net-size 
halving during the course of the integration will never lead us to a net size 'h  
smaller than h , and there will never be a need for interpolations in the table of  

).(xY  
Doubling the net size is trivial: all we need to do is to carry along, during 

the integration, )2( hxy − as well as ( )hxy − .When h is doubled, as a result of a 
test on )( hxT + , the value of )2( hxy −  is stored into the position reserved 
for )( hxy − , )(xT  is multiplied by 4, and )2()'( hxThxT −=−  are obtained by 
table-lookup followed by multiplication by a new power of 4. 
  Halving the net size, at first sight, is more troublesome.If we decide that 
the absolute value of )( hxT +  is too large for comfort, and to introduce the halved 

net size 2/' hh = , we require )
2

()'( hxyhxy −=−   to continue the integration. The 

value of )(xy  known to us are )( hxy −  and )(xy . We thus require an accurate 
formula for midpoint interpolation-accurate to the same order as the Numerov 
method itself –for otherwise we lose the advantage of the Numerov method.           

Letting 
20
hxx −=  be the point at which we desire to know y , our problem can 

be restarted as follows: find )( 0xy , given values of )'( 0 hxy +  and )'( 0 hxy − , and 
given that )(Xy  satisfies the differential equation (5). The solution, though 
exceedingly simple, does not, to our knowledge, appear in the literature: it consist 
in using the basic formula of the Numerov method, Eq. (12), to solve for it )(xy . 
The accuracy is then obviously the same as the accuracy of the Numerov 
method.No additional  function values need be stored and net-size halving is now 
as simple as net-size doubling. For the sake of the record,we write down the 
midpoint interpolation formula explicitly (in the error term, we replace 

)(102 xT+  by 2): 

....
480)(102

)()](1[)()](1[)(
)6(6

++
+

−−−+++−
=

yh
xT

hxyhxThxyhxTxy  .       (17) 

 
 



Eigenvalue problem for Schrödinger equation using numerov method 63

      4. Iteration on the eigenvalue when we are close and a derivative formula 

 The lowest eigenvalue of the Hamiltonian E  is approximated by the mean 

value 
)()(

)()(

xvxv

xHvxv
. One obtain 

∫

∫ ⎥
⎦

⎤
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+−

=
dxxv

dxxvxVdxd
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xv
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)()()/(
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 and 

finally 

          
[ ]

∫
∫ +−

≅
dxxv

dxxvxMVdxdxvME
)(

)}(/)(2/)(2
2

222

2                (18) 

Written in this form, the expression is rather awkward. We have seen 
already that and must integrate outwards for small values of the coordinate x , and 
inwards for large x . We let Q  be a trial value for the energy E , hopefully close 
to the true value of E . Then integrate the differential equation:    

                            )()()(])([2
22

2

xvxfxvQxVM
dx

vd
Q≡−=          (19) 

first outwards from some sufficiently small value of  x  until we reach a joining 
point 0xx = , then inwards from some sufficiently largue value of x  until we 
reach the same joining point.The outwards integration is started in such a way that 
we obtain the exponentially increasing solution, the inwards integration is started 
in such a way that we obtain the exponentially decreasing solution.In either 
solution,there is one free multiplicative constant.We can, and do, read just this 
constant at the end so that )(xv  turns out to be continuous at 0xx = , the joining 
point.In practice, 0x  is chosen to be the minimum of the potential )(xV . The fact 
that this )(xv  is not yet the true solution to the eigenvalue problem manifest itself 
as a discontinuity in the first derivative )(' xv  at 0xx = . The lefthand value Lv'  
obtained from the outwards integration fails to equal the righthand value Rv'  
obtained from the inwards integration. The second derivative 22 / dxvd  therefore 
has a delta-function singularity at 0xx = , which makes a finite contribution to the 
integral in the numerator of (18). Except for this delta function contribution, the 
result would be just Q , the trial value for the energy, as can be seen by 
substituting (19) into (18). Putting things together, we obtain the simple iteration 
formula: 

                
∫

−
−≅

dxxv
vvxvMQME LR

2
0

22 )]([
)'')((22                 (20) 

The Simpson-rule sums necessary for the evaluation of the integral in the 
denominator can be accumulated during the process of  solving the differential 
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Eq. (19), and can be multiplied by the appropriate factors to make )(xv  
continuous at 0xx = , without any problem. However, Eq. (20) is useless unless 
we have an accurate value for the derivative )('/ xvdxdv = . The Numerov method 
by itself fails to give us such a value; in fact, the Numerov method is built on the 
fact that the first derivative does not appear explicitly in the differential equation.  

One method is to integrate the second derivative 22 / dxvd  numerically; 
however, this is both awkward and productive of numerical inaccuracies. 

A better method, which is new to our knowledge, can be developed by 
using reasoning similar to that of the Numerov method itself. We star by 
developing a low-accuracy formula, so as to show the basic idea; we then improve 
the method so as to get a derivative formula with an error term of order )9(9vh . 
         Returning to the Taylor – series expansion (8), we compute: 

               ...
!5!3

')]()([
2
1 )5(

5
)3(

3

1 +++=−−+≡ yhyhhyhxyhxyA      (21) 

         Taking into account the second derivative on both sides, and multiplying 
by 6/2h , we obtain: 

            ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

12

2

1
hB ....

366
)]('')(''[ )5(

5
)3(

3

++=−−+ yhyhhxyhxy .    (22) 

           We substract (22) from (21) and use the differential equation to replace ''y  
by )()( xyxf , to obtain the first derivative formula: 
          ...)360/7()()](1[)()](1[' 55 ++−−−−++−= yhhxyhxThxyhxThy  .  (23) 
           Here )(xT is defined by (11) with )()( xfxf Q=  defined by (19). The error 
term in (23) may be sufficiently small in some cases. It is, however, of order 

)5(5 yh  porrer than the basic error of the Numerov method. At substantially no 
expense in machine time, the accuracy of the first derivative, and hence of Eq. 
(20), can be improved significantly, simply by using function values at hx 2+  
and hx 2− . We define:  

 )]2()2([
2
1

2 hxyhxyA −−+=          (24) 

and 

)2()2()2()2(     

)]2('')2(''[
12
1 2

2

hxyhxThxyhxT

hxyhxyhB

−−−++=

=−−+=
  (25) 

We then write down the Taylor expansion of 121 ,, BAA , and 2B , carrying 
terms up to order )9(9vh  inclusive. We eliminate the terms proportional to )(kk yk  
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with k =3,5,7 and solve for 'hy . The procedure is tedious but straight forward; we 
quote only the result which is:   

         ....
!935

4016
40
17

35
37

32
37

21
16'

)9(9

2121 +−⎟
⎠
⎞

⎜
⎝
⎛ −−+−=

yhBBAAhy                (26) 

         Thus, by integrating a mere two steps beyond the joining point 0xx = , we 
can determine the value of the first derivative to an accuracy substantially better 
than the basic accuracy of  the Numerov method. We now have an iteration 
scheme of second order for the eigenvalue E : starting from a trial eigenvalue Q , 
near to E , we find an improved approximation to E  from Eq. (20). The 
improvement is second order, the error of E  is proportional to the square of the 
error of the trial value Q  , once Q  is close enough. The iteration is terminated 
conveniently when we begin to hunt, when the new correction QE −  is both 
sufficiently small for safety and no smaller than the previous correction in 
absolute value. The one unnecessary iteration can be saved after a bit of 
experience, by setting a straight upper limit on || QE − , and terminating as soon 
as || QE −  falls below this upper limit. 
        The iteration procedure described in the preceding section works only if the 
trial energy Q  is already quite close to the true eigenvalue NE  lies certainly 
between them:  

               21 QEQ N <<                 (27) 
We then try the value:  

                       2/)( 21 QQQ +=             (28) 
and ascertain whether Q  lies above or below the desired NE  ( [ ]21,QQ  being a 
“probe interval”). If Q  lies above NE , we replace 2Q  by Q  and repeat the 
process; if Q  lies below NE , we replace 1Q  by Q  and repeat the process. At each 
stage, we gain exactly one binary digit of accuracy in the energy. Unless 1Q  and 

2Q  are very bad limits indeed, a few stages of  halving suffice to get us close 
enough to NE . The first step to ascertain where Q  lies in relation to NE  is to 
count the nodes of the trial function )(xv  generated by (19). As we generate )(xv , 
we count each node and accumulate. If the node count, at any stage, exceeds N, 
then the trial value Q  was too high. Conversely, if at the end of generating )(xv , 
the node count is below N , then Q  was too low. Since we generate )(xv  in two 
stages, so to speak, first by integrating out, then by integrating in, a bit of care is 
required to avoid double counting of nodes occurring right at the joining point 0x . 

We have found the following simple scheme quite adequate to ensure 
convergence: 
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    (1) Ascertain whether the number of nodes in  )(xv  equals N ; if not, proceed 
with halving. 
    (2) If the node count agrees, proceed to evaluate the second-order correction 

QE −  from (20) and (26); the sign of the correction is right, even if the 
magnitude is far off.Thus, if QE −  turns out to be positive, Q  was too low, and 
we replace 1Q  by Q ; if QE −  turns out to be negative,  Q   was too high, and we 
replace 2Q  by Q . 
     (3) Now compute the new )( QEQE −+= predicted by the second-order 
iteration scheme. If this new value of E lies between 1Q  and 2Q ,it is safe to use. If 
not, next trial value is determined by Eq. (28). In this way, we combine the safety 
of halving scheme with the speed of the second-order  iteration. 

5. Setting upper and lower bounds on the eigenvalue 

            The halving method requires bounds 1Q  and 2Q  on the true eigenvalue 

NE .We discuss here  methods of setting such bounds. The simpliest case, and the 
one occurring most of the time, is that we already posses a list of true eigenvalues 

ME  with kNNNNM −−−−= ,....,3,2,1 , say. Clearly 11 −= NEQ  is a lower 
bound for NE . Ordinary polynomical extrapolation of the list ME  to some depth 

kj ≤  [in practice, )4,(kMinj =  is adequate] yields a prediction for NE , which 
we denote by NW . We then put:  

                         11 −= NEQ ,    ( )112 2 −− −+= NNN EWEQ            (29) 
Unless the polynomical extrapolation is utterly unjustified, the factor 2 in 

Eq. (29) ensure that 2Q  lies above the true NE . Furthermore, when we start the 
halving procedure with this 1Q  and 2Q , the first value tried, by (28), is the 
predicted value, NWQ = . If the prediction is accurate, this trial value is close 
enough to the truth to permit use of the second-order iteration scheme, which then 
yields full convergence in 3 or 4 steps. 
         Use of (29) requires at least two known eigenvalues, 1−NE  and 2−NE . Thus, 
an alternative procedure is required at the beginning of the run. The simplest 
choice is: 

 )]([1 xVMinQ = ,    02 =Q                  (30) 
These are perfectly safe upper and lower bounds on all bound-state 

energies. There are two troubles, however:  
(1) Quite a few halving steps may be required if such generous bound are used. 
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(2) The choice of the range of integration (minimum and maximus values of x ) 
for finding )(xv , depends on the trial energy. A range of integration suitable for 

)]([
2
1 xVMinQ =  the first trial value generated from the choice (30) by means of 

(28), is a most unsuitable range of integration for the desired eigenvalue NE , 

particulary. So if 0=N  if we wish to start by generating the ground state. Thus, if 
(30) is used, the range of integration must be readjusted during the halving 
process until we are down to the right number of nodes. 

Better limits than (30) are available if we want to generate all eigenvalues 
NE  from 0=N  onwards. )]([1 xVMinQ =  is then a fairly close lower bound for 

the true 0E , but 02 =Q  would be a very bad upper bound. A simple scheme 
consistes in approximating )(xV  near its minimum by a quadratic polynomial 
(oscillator potential) and determining the ground state energy of this 
oscillator, 2/hv .We then set hvQQ += 12 , the extra factor 2 serving as a safety 
measure. An alternative is to use Eq. (20) with a simple trial function: 

])(exp[)( 2
0xxaxv −−=               (31) 

The two methods can be combined by determining the parameter a  in (30) 
from the oscillator-potential fitting, the function (31) being just of the right form 
for the ground-state wavefunction of an oscillator potential. With a bit of 
experience, it is possible to make a reasonable guess at the zero-point energy 

)]([0 xVMinE −  and to set a generous upper limit 2Q  which is nonetheless far 
nearer to the true 0E  than the trivial choice, without going to all the trouble of 
evaluating (18) numerically for the function (30).Once the lowest eigenvalue 0E  
is known, a safe upper limit for the eigenvalue 1E  is:  

                       )]}([{3 0021 xVMinEEQE −+=≤               (32) 
The factor 3 is exactly right for a square-well potential, and is an 

overestimate for all other potentials; for an oscillator potential, the correct factor 
would be 2, to that 3 is a perfectly safe choice for an upper limit. Once 0E  and 1E  
are known, extrapolation becomes possible with more and more accuracy as 
further eigenvalue very rapid convergence. 

The outwards integration must start at a value of x less than the inner 
turning point 1x ; the inwards integration must start at a value of x  larger than the 
outer turning point 2x . In this section, we discuss the choice of these starting 
points, and hence the choice of the total range of integration for the wavefunction. 
We also discuss how the integrations are started so as to get the desired solution, 
the exponentially increasing solution for the outwards integration, the 
exponentially decreasing solution for the inwards integration. We discuss the 
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second point first; that is, let us suppose we have chosen a staring value of x , call 
it ax = , for outward integration. Clearly )(av can be set arbitrarily, since one 
multiplicative factor is free. To get going with the Numerov method, we require 
an approximation to )( hav + for the exponentially increasing solution. The first 
thing to realize is that quite sizeable errors are permitted here. An erroneous 
choice of )( hav +  has the effect of admixing, to the desired exponentially 
increasing solution, a component proportional to the other, exponentially 
decreasing solution. As we integrate out from a towards the turning point 1x , this 
erroneous component becomes smaller. Whereas the desired component increases 
in value. 
         To the crude approximation need here, the differential equation (5) is 
satisfied by:    

     )](exp[)()( xWavxv ≅             (33) 
where         

                                      dxxfxW
x

a
∫= )()( .                (34) 

This is one step cruder than the usual WKB approximation, but is good 
enough for us here.We  now become even cruder, by replacing the integral from 
relation (34) by its trapezoidal-rule approximation.The result is the following 
estimate for )( hav + : 

         ])(3)(3exp[)()( haTaTavhav ++≡+                 (35) 
where )(xT  is defined by (11), and is the quantity we require in any case for the 
Noumerv method. We note that )(xf , and hence )(xT , are positive outside the 
classical turning points, so that the square roots in (35)  are real numbers. The 
positive square roots should be used for the exponentially increasing solution, to 
get from a to a+h, and the negative square roots should be use for the 
exponentially decreasing solution, to get from the outermost point bx =  to 

hbx −= , at the start of the inwards integration. We note that there is no 
difference, in the Numerov method, whether one integrates inwards or outwards; 
the basic equation (12),  can be solved  for )( hxy −  as it can for )( hxy + . It 
remains to decide on suitable values of a and b. If a is too close  to the inner 
turning point 1x , we fail to generate enough of the desired wavefunction; if a is 
too far from 1x , we not only waste machine time by generating the wave function 
(we miss an appreciable part of the exponential tail) in a region where its value is 
exceedingly small and of no conceivable physical interest, but we can also get into 
scaling troubles: even modern machines, with floating-point facilities, do not 
allow an infinite range of the floating-point exponent. And once we are well and 
truly into the exponential region, it becomes all too easy to get into underflow 
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troubles even on present machines. Supppose we wish to chose the inner starting 
point ax =  so that )(av is smaller than the value at the turning point, )( 1xv , by a 
factor exp( A ), with A  given a priori. For  example, we might choose  16=A , 
corresponding to a factor of roughly 107. We now use the estimate Eqs. (33), (34) 
to get the condition on a:  

          Adxxf
x

a

=∫
1

)(              (36)  

The integrand is zero at the upper limit, the classical turning point 1x . We 
again replace the integral by trapezoidal-rule approximation, and keep going 
downwards through  ,...,3,2, 111 hxhxhx −−− x1-h, until the accumulated sum 
exceeds A . The terms in the sum are of form )(2 ixT  where )(xT is defined by 
Eq. (11). Te uppermost value of  x ,  bx = , is determined similary, the condition 
being:  

             Adxxf
b

x

=∫
2

)(                   (37) 

Since )()( xfxf Q=  depends on the value of the trial energy Q , the 
turning points 1x , 2x  as well as the cutoff points a and b, depend on the value of 
Q . As Q  increases, the outer turning point x2 and the outer cutoff point b move 
further out (increase in value), whereas the inner turning point 1x  and the inner 
cutoff point a move inwards (decrease in value).In principle, a and b ought to be 
recalculated when the trial energy Q  changes. 

6. Numerical example and discussion of results 

We take into account the Woods-Saxon potential: 

2
10

)1()1(
)()(

q
qu

q
uxVxV WS +

+
+

==              (38) 

where ⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

xx
q 0exp ,  with ,5000 −==Vu  a = 0.6, 0x  = 7 and auu /01 −= . We 

consider Eq. (1) for this potential in rather large domain of energies, minE = - 50, 

maxE =1010. For negative energies we solve the bound state problem, with the 
boundry conditions 

0)0( =y ,    ( )Exy −−= exp)(                     (39) 
for large values of x . For positive energies one has the so called open channel 
problem. This consists either to determine the phase shifts )(Eδ or to find those 
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E ’s at which δ  equals 2/π . We actually solve the latter problem, known as “ the 
resonance problem” when the eigenenergies lie under the potential barrier. The 
boundary conditions for this problem:  

        0)0( =y ,   )cos()( xExy =                   (40) 
for large x . The domain of  numerical integration is [0,15]. One of the authors (C. 
Tatu) has developed a software application in Fortran programming language for 
Numerov method begining with the three point scheme and the iteration scheme 
of second-order.  

The numerical example consiste in the integration of the differential 
equation using Wood-Saxon potential: 

                        
]/)exp[(1

)( 0

aRr
V

rVVWS −+
−

==             (41) 

where xr = , 0V  = potential depth,  R = width of the potential, and  a = surface 
thickness. After compilation of this program he used in Linux OS a Gnuplot 
software for graphical representation of  )(xV  (Wood-Saxon potential) and )(xy  
function (Figs. 1 and 2, 3, 4, respectively). Some eigenvalues, errors and number 
of iterations are presented in Table 1.  

Table 1. 
 Eigenvalues  Errors Xmatch-Xi Iterations 
1 -49.45778872900700 9.24D-10 -0.00000000140718 35 
2 -48.14843004409380 2.09D-08 1.27513E-09 35 
3 -46.29075410649230 1.52D-07 -8.43995E-10 35 
4 -43.09683190659410 6.34D-07 8.98532E-10 35 
5 -41.23260969553620 1.92D-06 -3.37735E-10 35 
6 -38.12278984299330 4.75D-06 -1.41659E-10 35 
7 -34.67232334252640 1.01D-05 -6.84757E-11 35 
8 -30.91226692618510 1.94D-05 4.50828E-10 35 
9 -26.87348318285510 3.43D-05 -1.66361E-10 36 
10 -22.58865865646650 5.64D-05 -2.12436E-10 36 
11 -18.09477582683750 8.75D-05 -2.12082E-10 36 
12 -13.43699793696420 1.29D-04 -8.28638E-11 37 
13 -8.676261823904500 1.80D-04 3.68863E-11 37 
14 -3.908469327185230 2.37D-04 2.91823E-11 38 

 
      In the case when the Woods-Saxon potential (Fig.1) is negative for 1xx < , is 
also negative and has increasing exponential for 21 xxx <<  and becomes positive 
an decresing exponential for 2xx > , where 1x  , 2x  are the classical turning points 
(solutions of  ( ) 0=xf , with ExVxf −= )()(  ). 
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In Figs. 2-4 we present  the dependence of  function )(xy (from equation 
(1): )()('' xyxfy = ), for 1=N , 2=N  and 14=N  nodes. 
 

 
Fig 1. The dependence of Woods-Saxon potential )(xV  on the coordinate x . 

 
As can be seen it will have an oscillatory behavior until turning point and 

an exponential behaviour after it. 
 

 

 
Fig. 2, 3, 4. The dependence of  function )(xy , for: 2) 1=N , 3) 2=N  and 4) 14=N  nodes. 
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7. Conclusions 

Starting from Taylor expansion, we use the convergence scheme with 
halving method (bisection method) starting from a trial energy value Q (to find the 
real energy E ). The halving method require bounds 1Q , 2Q  on the true eigenvalue 

NE .Once 0E  and 1E  are known  the polinomical extrapolation of the list ME  
becomes possible. At the integration we replace the integral using the trapezoidal-
rule approximation. These involve choice of a step size, changing step size, 
iteration on the eigenvalue, setting upper and lower bounds on the eigenvalue, 
setting upper and lower bounds on the eigenvalue, determining a useful range of 
the coordinate for the numerical integration, a numerical example with Wood–
Saxon potential and a comparation between Numerov method and other methods. 

R E F E R E N C E S 

[1]  L. Gr. Ixaru, and M. Rizea, A Numerov-like scheme for the numerical solution of Schrödinger 
equation in the deep continuum spectrum of the energies. Comput. Phys. Commun. Vol. 19, 
p. 23-27, (1980). 

[2]  J. M. Blatt, Practical Points Concerning the Solution of the Schrodinger Equation. Journal of 
computational physics, Vol. 1, p. 382-396, (1967). 

[3] M. Dinu, Gh. Linca, Algoritmi şi teme speciale de analiză numerică, pages1-14, MATRIX 
ROM – Bucharest, (1999). 

[4] Zhongcheng Wang, Qimang Chen, A trigonometrically-fitted one-step method with multi-
derivative for the numerical solution to the one-dimensional Schrodinger equation, Comput. 
Phys. Commun., Vol. 170, p. 49-64, (2005). 

[5] E. Bieniasz, K. LesLaw, Improving the accuracy of the spatial discretization in finite-difference 
electrochemical kinetic simulations, by means of the extended Numerov method, Journal of 
Computational Chemistry, Vol. 25, No. 8, p. 1075-1083, (2004).  

 


