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A PREDICTOR-CORRECTOR SCHEME FOR THE
NONLINEAR CHAOTIC VARIABLE-ORDER FRACTIONAL

THREE-DIMENSIONAL SYSTEM

A. Shabani1, A.H. Refahi Sheikhani1, H. Aminikhah2, P. Gholamin3

This paper aims to study two-step fractional Adams-Bashforth-Moulton 
scheme for solving nonlinear fractional variable order differential equations. The 
fractional derivative used in this paper is the Hadamard fractional derivative. The 
predictor-corrector scheme is applied for the nu-merical solution of fractional 
variable-order chaotic systems. The illustrate scheme reduces these nonlinear 
fractional variable order differential equa-tions to a system of algebraic equations 
and then this system will be solved numerically by recursive scheme. Several 
numerical examples are reported
to show the applicability and validity of the illustrated scheme.

Keywords: Fractional calculus, Adams-Bashforth-Moulton, Hadamard frac-
tional derivative, Fractional-order chaotic systems.

1Introduction

Fractional operators involving fractional integrals and derivatives are as 
an extension of classical operators have been widely used in characterizing, 
integral equations, ordinary differential equations (ODEs) and partial differ-
ential equations (PDEs). Recently, subject of fractional calculus has attracted 
much attention, for this reason their plays an important and vital role in some 
fields of engineering and science, as ?uid mechanics, signal processing, diffusive 
transport, nonlinear biological systems, electrical networks, electrodynamics, 
nonlinear control theory, astrophysics, to name but a few [3–9]. Several various 
definitions of fractional integrals and derivatives are exist, for example, Coim-
bra, Riesz, Riemann-Liouville, Hadamard, Weyl, Grunwald-Letnikov, Mar-
chaud, Liouville-Caputo, Caputo-Fabrizio and Atangana-Baleanu [10–12]. In 
the past decades, the solutions of fractional ODEs and PDEs have been widely
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employed in of physical phenomena as dynamical systems [13–20]. In most
cases, these fractional differential equations (FDEs) do not have analytical
solution or exact solution then we are interested to obtain their numerical
solutions. Several numerical methods for finding the solution of FDEs use
in the literature, for example, finite difference method [16], spectral meth-
ods [14, 15, 18], variation iteration method [21] and Adomian decomposition
method [22].
A really strong numerical method to solve nonlinear fractional ODEs famous
like fractional Adams–Bashforth–Moulton (FABM) scheme [23] has been ap-
plied in some examples to handle many chaotic models. This scheme is distin-
guished as a stable method for fractional ordinary differential equations and
given chaotic models appearing in biology and other areas of science. This
approach has already been developed for fractional models with Riemann-
Liouville, Grunwald-Letnikov, Atangana-Baleanu and Caputo fractional op-
erators. To the best of our knowledge, an extension to Hadamard fractional
operators is new and no work has ever been performed in this direction. Con-
sequently, we study a simple but effective numerical scheme that authorizes
to deal with fractional order operators of Hadamard type. The Hadamard
fractional integral of order α > 0 is given in [23] as follows:

HJ
α
a f (x) =

1

Γ(α)

∫ x

a

(
ln
x

t

)α−1f(t)

t
dt.

Also, for α ∈ (0, 1), the Hadamard fractional derivative of order is introduced
by:

HD
α
a f (x) =

1

Γ (1− α)

d

dx

∫ x

a

(
ln
x

t

)−αf(t)

t
dt.

Uniqueness and continuous dependence of solutions for fractional differential
systems with Hadamard derivatives is proved in [24]. This work analyse the
Adams-Bashforth- Moulton scheme based on the Hadamard fractional differ-
ential operators for fractional variable-order chaotic systems.

As an important concept in nonlinear science, chaos is considered by un-
stable dynamic behavior with sensitive dependence on initial conditions and in-
cludes infinite unstable periodic motions. Since the pioneering work by Pecora
and Carroll [26], synchronization of chaotic systems has attracted a great deal
of interest among scientists from various areas due to its potential applications
in ecological and physical systems, modeling brain activity, system identifica-
tion, pattern recognition phenomena, and secure communications [?,27,28,30].
Many schemes are suggested to realize chaotic synchronization such as adaptive
control [31], sliding mode control [32], active control [33], optimal control [34],
back stepping design [35] and etc.

Existence of chaos in fractional-order systems is conceived by Grigorenko
in 2003 [36]. They have examined chaotic behavior in fractional-order Lorenz
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system and then some papers have been published dealing with the chaotic be-
havior in fractional-order systems [37–45]. Following this concept, many other 
fractional order chaotic systems have been established, such as fractional order 
Chuas [46], Lorenz [47], Chen [39], financial [48], Qi [49], Rabinovich-Fabrikant
[50], Rossler [41], a chaotic fractional damped-driven pendulum. In [51] Hopf-
bifurcation, chaos control and synchronization of a chaotic fractional- order 
system with chaos entanglement function. In [51] Review on smart grid con-
trol and reliability in presence of renewable energies:Challenges and prospects.
In [53] a robust simulation- optimization approach for predisaster multi-period 
location-allocation-inventory planning [54]. Chen et al. [55] have proved a uni-
fied analysis for finite-time anti-synchronization of a class of integer-order and 
fractional-order chaotic systems. In [56], fractional-order chaotic and hyper-
chaotic systems are proposed and their dynamics are investigated through 
numerical simulations. Li and Sun [57] have proposed an adaptive neural net-
work back stepping control in solving fractional-order Chua–Hartley chaotic 
system. Atangana and Qureshi have introduced a new method based on a new 
fractional operator for solving nonlinear fractional equations [58]. In [59] a new 
fractional-order chaotic system and an adaptive synchronization of fractional 
order chaotic system are reported.

This paper concerns about solving fractional variable-order chaotic sys-
tems. From a specific point of view, we put forward a new method that is 
named fractional Adams-Bashforth-Moulton based on Hadamard fractional 
operator (FABMH), which is a predictor-corrector method based on Adams-
Bashforth-Moulton scheme that is itself based on Hadamard fractional opera-
tor for solving fractional variable-order chaotic systems. This paper’s proposed 
approach is a new one with no similar work being performed in this direction 
until this moment. Applying the approach for solving some novel chaotic sys-
tems with fractional order will justify the applicability and suitability of our 
scheme. For demonstrating the effectivity of our new numerical scheme, we 
will compare the Adams-Bashforth-Moulton method involving Hadamard frac-
tional operator with the Bashforth forth-Moulton method involving Atangana-
Baleanu-Caputo fractional operator [2] for a couple of fractional variable-order 
ordinary differential equations.

The given article is outlined as follows. Section 2 briefly presents a num-
ber of basic definitions and properties of fractional calculus. In section 3, the 
fractional Adams-Bashforth-Moulton method based on Hadamard fractional 
operator for fractional ODEs is put forward. Section 4 deals with the results
of our extended numerical experiments. Finally in Section 5, brief conclusions 
and future work are presented.

2 . Preliminaries

In this section, we introduce some of the important and main concepts
of fractional calculus which are applied in next section.



190 A. Shabani, A.H. Refahi Sheikhani, H. Aminikhah, P. Gholamin

Definition 2.1. Let α ∈ R+ and f ∈ L1 [a, b] . Then for α ∈ (0, 1] , the
Riemann-Liouville fractional integral is defined as:

Jαa f (x) =
1

Γ (α)

∫ x

a

(x− t)α−1f (t) dt,

where a ≤ x ≤ b and Γ (.) is the Gamma function which is defined as:

Γ (x) =

∫ ∞
0

tx−1e−tdt.

Definition 2.2. Let α ∈ R+ and m = [α]. Then the Riemann-Liouville
fractional operator Dα

a of fractional order α is defined as:

Dα
a f = DmJm−αa f.

Definition 2.3. The Hadamard fractional integral of variable order α(x) for
a continuous function f is defined as:

HD
α(x)
a f (x) =

1

Γ (α (x))

∫ x

a

(
ln
x

t

)α(x)−1f(t)

t
dt, α (x) > 0. (1)

Definition 2.4. Let f : [1,∞)→ R be a continuous function. Then the
Hadamard derivative of fractional variable order α (x) is defined as:

HD
α(x)
a f (x) =

1

Γ (m− α (x))

(
x
d

dx

)m ∫ x

a

(
ln
x

t

)m−α(x)−1f (t)

t
dt,

m− 1 < α (x) < m, m = [α (x)] .

3Numerical scheme to solve the fractional variable-order equation
involving Hadamard fractional operator

In this section, we use numerical scheme based on one-step Adams-
Bashforth-Moulton scheme to solve the following kind of fractional variable-
order equation with initial condition:{

Dα(t)y (t) = f (t, y (t)) , a < t < T, a > 0,
y (a) = y0.

(2)

Here, we assume that f has a unique solution in interval [a, T ]. For solving
Eq. (2), we use the predictor-corrector scheme. For this purpose, suppose
that {tj = a+ jh : j = 0, 1, . . . , N} and h = T−a

N
, whereN ∈ Z. By applying

Hadamard fractional integral given by (2) on the interval [t0, tk+1] , we obtain:

y(tk+1) = y0 +
1

Γ (α (tk+1))

∫ tk+1

t0

(
ln
tk+1

u

)α(tk+1)−1
f (u, y (u))

u
du, (3)

The product trapezoidal quadrature formula subject to the weight function
(
In tk+1

u

)α(tk+1)−1

can be applied by replacing the integral, with nodes {tj : j = 0, 1, . . . , N} . The
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approximate solution for the right-hand side integral in Eq. (3) is calculated
as: ∫ tk+1

t0

(
ln tk+1

u

)α(tk+1)−1

u
f (u) du ≈

∫ tk+1

t0

(
ln tk+1

u

)α(tk+1)−1

u
f̃k+1 (u) du, (4)

where f̃k+1 is a piecewise linear interpolant for f, that it is obtained from the
trapezoidal rule. The integral introduced in Eq. (4) can be written as follows:∫ tk+1

t0

(
ln tk+1

u

)α(tk+1)−1

u
f̃k+1 (u) du =

k∑
j=0

∫ tj+1

tj

(
ln tk+1

u

)α(tk+1)−1

u
f̃k+1 (u) du

k∑
j=0

∫ tj+1

tj

(
ln tk+1

u

)α(tk+1)−1

u

[
f (tj)

u− tj+1

tj − tj+1

+ f(tj+1)
u− tj
tj+1 − tj

]
du

=
k∑
j=0

[
f (tj)

tj − tj+1

∫ tj+1

tj

(
ln tk+1

u

)α(tk+1)−1

u
(u− tj+1) du︸ ︷︷ ︸

+
f (tj+1)

tj+1 − tj

∫ tj+1

tj

(
ln tk+1

u

)α(tk+1)−1

u
(u− tj) du︸ ︷︷ ︸

II

. (5)

Now, we can obtain any part separately as:

I =

[
−1

α (tk+1)

(
ln
tk+1

u

)α(tk+1)

(u− tj)

]tj+1

tj

+

∫ tj+1

tj

(
ln tk+1

u

)α(tk+1)

α(tk+1)
du

=
−h

α (tk+1)

(
ln
tk+1

tj+1

)α(tk+1)

− tk+1

α(tk+1)

∫ ln
tk+1
tj+1

ln
tk+1
tj

e−udu

=
−h

α (tk+1)

(
ln
tk+1

tj+1

)α(tk+1)

− tk+1

α (tk+1)

(
Γ

(
α(tk+1) + 1, ln

tk+1

tj

)
−Γ

(
α (tk+1) + 1, ln

tk+1

tj+1

)

=
1

α(tk+1)

[
−h
(
ln
tk+1

tj+1

)α(tk+1)

+ tk+1Γ

(
α(tk+1) + 1, ln

tk+1

tj+1

)

−tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tj

)
,

and

II =
1

α(tk+1)

[
−h
(
ln
tk+1

tj

)α(tk+1)
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+tk+1Γ

(
α(tk+1) + 1, ln

tk+1

tj+1

)
− tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tj

)
,

By substituting the above equations into Eq. (5), we have:

k∑
j=0

[
f(tj)

hα(tk+1)

(
h

(
ln
tk+1

tj

)α(tk+1)

− tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tj+1

)

+tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tj

)
+

f(tj+1)

hα (tk+1)

(
−h
(
ln
tk+1

tj+1

)α(tk+1)

+ tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tj+1

)
−tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tj

)
. (6)

Then, we compute the summation in the following way:

=
f(t0)

ha(tk+1)

[
h

(
ln
tk+1

t0

)α(tk+1)

− tk+1Γ

(
α (tk+1) + 1, ln

tk+1

t1

)
+tk+1Γ

(
α (tk+1) + 1, ln

tk+1

t0

)
+

f(t1)

ha(tk+1)

[
−h
(
ln
tk+1

t1

)α(tk+1)

+ tk+1Γ

(
α (tk+1) + 1, ln

tk+1

t1

)
−tk+1Γ

(
α (tk+1) + 1, ln

tk+1

t0

)
+

f(t1)

ha(tk+1)

[
h

(
ln
tk+1

t1

)α(tk+1)

− tk+1Γ

(
α (tk+1) + 1, ln

tk+1

t2

)
+tk+1Γ

(
α (tk+1) + 1, ln

tk+1

t1

)
+

f(t2)

ha(tk+1)

[
−h
(
ln
tk+1

t2

)α(tk+1)

+ tk+1Γ

(
α (tk+1) + 1, ln

tk+1

t2

)
−tk+1Γ

(
α (tk+1) + 1, ln

tk+1

t1

)
+ . . .

+
f(tk)

ha(tk+1)

[
h

(
ln
tk+1

tk

)α(tk+1)

− tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tk+1

)
+tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tk

)
+
f(tk+1)

ha(tk+1)

[
−h
(
ln
tk+1

tk+1

)α(tk+1)

+ tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tk+1

)
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−tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tk

)
.

Then, we have:

=
f (t0)

ha (tk+1)

[
h

(
ln
tk+1

t1

)α(tk+1)

− tk+1Γ

(
α (tk+1) + 1, ln

tk+1

t1

)

+tk+1Γ

(
α (tk+1) + 1, ln

tk+1

t0

)

+
f(t1)

ha(tk+1)

[
−tk+1Γ

(
α (tk+1) + 1, ln

tk+1

t0

)
− 2tk+1Γ

(
α (tk+1) + 1, ln

tk+1

t1

)

−tk+1Γ

(
α (tk+1) + 1, ln

tk+1

t2

)

+ · · ·+ f (tk+1)

ha (tk+1)

[
tk+1Γ (α (tk+1) + 1)− tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tk

)]
.

By substituting the above equations into Eq. (3), we obtain the following rela-
tion:

y (tk+1) = y0 +
1

Γ (α (tk+1))

(
k∑
j=0

aj,k+1f (tj, yi) + ak+1,k+1f
(
tk+1, y

p
k+1

))
,

respect to the following weights:

aj,k+1 =
1

hα(tk+1)
×



h
(
ln tk+1

t0

)α(tk+1)

+ tk+1

[
Γ
(
α (tk+1) + 1, ln tk+1

t0

)
−Γ
(
α (tk+1) + 1, ln tk+1

t1

)
j = 0

tk+1

[
−Γ
(
α (tk+1) + 1, ln tk+1

tj−1

)
+ 2Γ

(
α (tk+1) + 1, ln tk+1

tj

)
−Γ
(
α (tk+1) + 1, ln tk+1

tj+1

)
1 ≤ j ≤ k

tk+1

[
Γ (α (tk+1) + 1)− Γ

(
α (tk+1) + 1, ln tk+1

tk

)]
, j = k + 1.

We obtain the predictor formula for ypk+1 later. This can be found by applying
the product rectangle rule to the last term of the right hand side of (4) in the
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same way as the corrector formula, to achieve,

∫ tk+1

t0

(
ln tk+1

u

)α(tk+1)−1

u
f̃k+1 (u) du =

k∑
j=0

∫ tj+1

tj

(
ln tk+1

u

)α(tk+1)−1

u
f̃k+1 (u) du

=
k∑
j=0

∫ tj+1

tj

(
ln tk+1

u

)α(tk+1)−1

u

[
f (tj)

u− tj+1

tj − tj+1

+ f (tj)
u− tj
tj+1 − tj

]
(u) du

=
k∑
j=0

[
f (tj)

tj − tj+1

∫ tj+1

tj

(
ln tk+1

u

)α(tk+1)−1

u
(u− tj+1) du

=
f (tj)

tj+1 − tj

∫ tj+1

tj

(
ln tk+1

u

)α(tk+1)−1

u
(u− tj) du

]

=
k∑
j=0

[
f (tj)

hα (tk+1)

(
h

(
ln
tk+1

tj

)α(tk+1)

− tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tj+1

)

+tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tj+1

))
+

f (tj)

hα (tk+1)

(
−h
(
ln
tk+1

tj

)α(tk+1)

+tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tj+1

)
− tk+1Γ

(
α (tk+1) + 1, ln

tk+1

tj+1

))]
=

k∑
j=0

f (tj)

α (tk+1)

[(
ln
tk+1

tj

)α(tk+1)

−
(
ln
tk+1

tj+1

)α(tk+1)
]
.

Substituting the above equations into Eq. (3) and the following predictor rela-
tion is obtained:

ypk+1 = y0 +
1

Γ (α (tk+1))

k∑
j=0

bj,k+1f (tj, yj) ,

respect to the following weight function:

bj,k+1 =
1

α (tk+1)

[(
ln
tk+1

tj

)α(tk+1)

−
(
ln
tk+1

tj+1

)α(tk+1)
]
.

Finally, the fractional Adams-Bashforth-Moulton scheme based on Hadamard
fractional derivative is obtained as:{

ypk+1 = y0 + 1
Γ(α(tk+1))

∑k
j=0 bj,k+1f (tj, yi) ,

ypk+1 = y0 + 1
Γ(α(tk+1))

(∑k
j=0 aj,k+1f (tj, yi) + ak+1,k+1f

(
tk+1,y

P
k+1

))
,

(7)
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respect to the following weight function:

aj,k+1 =
1

hα (tk+1)
×



h
(
ln tk+1

t0

)a(tk+1)

+ tk+1

[
Γ
(
α (tk+1) + 1, ln tk+1

t0

)
−Γ
(
α (tk+1) + 1, ln tk+1

t1

)
, j = 0

tk+1

[
−Γ
(
α (tk+1) + 1, ln tk+1

tj−1

)
+2Γ

(
α (tk+1) + 1, ln tk+1

tj

)
− Γ

(
α (tk+1) + 1, ln tk+1

tj−1

)
, 1 ≤ j ≤ k

tk+1 [−Γ (α (tk+1) + 1)

−Γ
(
α (tk+1) + 1, ln tk+1

tk

)
, j = k + 1

(8)
and

bj,k+1 =
1

α (tk+1)

[(
ln
tk+1

tj

)α(tk+1)

−
(
ln
tk+1

tj+1

)α(tk+1)
]
. (9)

Now, the fractional Adams-Bashforth-Moulton scheme based on Hadamard
fractional derivative is extended for the fractional variable-order systems:


D
α(t)
t x (t) = f1 (t, x (t) , y (t) , z (t)) ,

D
α(t)
t y (t) = f2 (t, x (t) , y (t) , z (t)) ,

D
α(t)
t z (t) = f3 (t, x (t) , y (t) , z (t)) ,

(10)

Where α(t) is variable order in terms of function time and initial condition(x0, y0, z0).
By applying the above method, systems (10) can be approximated as follows:


xk+1 = x0 + 1

Γ(α(tk+1))

∑k
j=0 aj,k+1f1 (tj, xj, yj, zj) + ak+1,k+1f1

(
tk+1, x

P
k+1, y

P
k+1, z

P
k+1

)
,

yk+1 = y0 + 1
Γ(α(tk+1))

∑k
j=0 aj,k+1f2 (tj, xj, yj, zj) + ak+1,k+1f2

(
tk+1, x

P
k+1, y

P
k+1, z

P
k+1

)
,

zk+1 = z0 + 1
Γ(α(tk+1))

∑k
j=0 aj,k+1f3 (tj, xj, yj, zj) + ak+1,k+1f3

(
tk+1, x

P
k+1, y

P
k+1, z

P
k+1

)
,

(11)
where


xPk+1 = x0 + 1

Γ(α(tk+1))

∑k
j=0 bj,k+1f1 (tj, xj, yj, zj) ,

xPk+1 = y0 + 1
Γ(α(tk+1))

∑k
j=0 bj,k+1f2 (tj, xj, yj, zj) ,

xPk+1 = z0 + 1
Γ(α(tk+1))

∑k
j=0 bj,k+1f3 (tj, xj, yj, zj) ,

(12)
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and

aj,k+1 =
1

hα (tk+1)
×



h
(
ln tk+1

t0

)a(tk+1)

+ tk+1

[
Γ
(
α (tk+1) + 1, ln tk+1

t0

)
−Γ
(
α (tk+1) + 1, ln tk+1

t1

)
, j = 0

tk+1

[
−Γ
(
α (tk+1) + 1, ln tk+1

tj−1

)
+2Γ

(
α (tk+1) + 1, ln tk+1

tj

)
− Γ

(
α (tk+1) + 1, ln tk+1

tj−1

)
, 1 ≤ j ≤ k

tk+1 [−Γ (α (tk+1) + 1)

−Γ
(
α (tk+1) + 1, ln tk+1

tk

)
, j = k + 1

(13)

bj,k+1 =
1

α (tk+1)

[(
ln
tk+1

tj

)α(tk+1)

−
(
ln
tk+1

tj+1

)α(tk+1)
]
. (14)

4Numerical Results

The purpose of this section is to apply our method which is described earlier
for obtaining the approximate solution of fractional variable-order differential
equations. To do this aim, we show some equations to demonstrate the proposed
method performance. The applicability of the proposed scheme is extended
to solve some chaotic systems modeled by the Hadamard derivatives in terms
of function time. Also, in this section, we compare proposed scheme with
Adams-Bashforth-Moulton method based involving Atangana-Baleanu-Caputo
fractional operator [2].

4.1Fractional variable-order chaotic

The Lorenz oscillator is a three-dimensional system that exhibits chaotic now.
A new three dimensional system, which is similar to Lorenz and other chaotic
attractors, but has a different topological structure from any existing chaotic
attractors, which is presented in [45] and it is described by the following equa-
tions: 

D
α(t)
t x (t) = −ax (t) + by (t) z (t) ,

D
α(t)
t y (t) = cy (t)− dx (t) z(t),

D
α(t)
t z (t) = −kz (t) +mx (t) y (t) .

(15)

Simulation results at the instances of fractional variable-order α (t) = tanh
(
π
2

+ t
)
,

for initial conditions and parameters choice (x0, y0, z0) = (3, 2, 1) , a = 4, b =
3, c = 1, d = 7, k = 1 and m=2 are represented in Fig. 1. Figs. 2 and
3 illustrates the time series solution at t = 200 with time step h = 0.02
for the proposed method in comparison with the method that was introduced
in [2]. Moreover, Table 1 provides the results obtained from Adams-Bashforth-
Moulton method based on Hadamard fractional operator in comparison with
Adams-Bashforth-Moulton method based on Atangana-Baleanu-Caputo frac-
tional operator [2].
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Figure 1. simulation results Adams-Bashforth-Moulton
Hadamard of variables (a), (b), (c), (d) and Adams-Bashforh-
Multon-Atanganu (e), (f), (g), (h) methods for the order
α(t) = tanh(π

2
+ t).
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Figure 2. Time-series results reecting chaotic spatio-temporal
oscillations at time t = 200 for Hadamard method (a) and Atan-
gana method (b).

Figure 3. Comparison of time-series results between Adams-
Bashforth-Moulton-Hadamard and Adams-Bashforth-Moulton-
Atangana methods of variables (a), (b), (c).
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Table 1. Comparing Adams-Bashforth-Moulton-Hadamard
(a) and Adams-Bashforth-Moulton-Atangana (b) for α(t) =
tanh(π

2
+ t) .

t Adams−Bashforth−Moulton−Hadamard
(x(t), y(t), z(t))

10 (−2.13× 10−01,−4.36× 10−1, 5.69× 10−01)
30 (−1.76× 10−01,−3.48× 10+00, 1.72× 10−01)
50 (−4.76× 10−02,−7.77× 10−01, 9.18× 10−02)
100 (−2.76× 10−01,−6.21× 10−01, 6.25× 10−01)
150 (−2.62× 10−02,−4.94× 10−01, 6.35× 10−01)
200 (2.58× 10−01, 3.45× 10−01, 6.01× 10−01)

Adams−Bashforth−Moulton− Atangana
(x(t), y(t), z(t))

10 (−1.68× 10−01,−4.37× 10−01, 4.95× 10−01)
30 (8.98× 10−02, 7.40× 10−01, 1.76× 10−01)
50 (2.08× 10−02, 1.48× 10−01, 2.41× 10−01)
100 (6.79× 10−01, 2.79× 10−01, 1.21× 10+00)
150 (−1.78× 10−01,−2.49× 10−01, 5.06× 10−01)
200 (−4.84× 10−02,−5.58× 10−01, 1.21× 10−01)

By then Hadamard derivatives in time. Chaos has been shown to be more use-
ful in many engineering and scientific applications, and there has been strong
and increasing demand for formulating chaos at will. Also, we compare our
method with Adams-Bashforth-Moulton method based on Atangana-Baleanu-
Caputo fractional operator [2].

5 Conclusions and future work

This paper studied a new two-step Adams-Bashforth-Moulton method based on
the Hadamard fractional derivative. In order for demonstrating the effective-
ness of the new numerical scheme, we compared the proposed method with
the method that is introduced in [2] for two fractional variable-order ordinary
differential equations. The applicability and suitability of the scheme is proved
when it is applied for solving two fractional variable-order chaotic systems. Ac-
cording to the diagrams and numerical results obtained, the two methods have
shown good performance. The mathematical idea which is proposed in this
study to solve fractional ordinary differential equations is extendable to frac-
tional partial differential equations. Accordingly, developing this scheme for
fractional PDEs will be our concern in our future research, in which we will
also take into account higher-dimensional computational problems, theoretically
investigating and analyzing the stability and convergence of our scheme.
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