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a-REDUNDANCY FOR INFINITE FRAMES
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This paper is concerned with the lower and upper redundancy of infinite
frames in a separable Hilbert space. For a given infinite frame, we introduce a new
quantitative notion of redundancy (a-redundancy), which is between its lower redundancy
and its upper redundancy and it is completely dependent on the number of repetitive
nonzero frame vectors.
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1. Introduction

The concept of frames in a Hilbert space was originally introduced by Duffin and
Schaeffer in the context of the non-harmonic Fourier series [7]. From the last decade, various
generalizations of the frames have been proposed such as frame of subspaces, pseudo-frames,
oblique frames, continuous frames, fusion frames, g-frames, and so on. The concept of equal
norm Parseval frames on finite-dimensional Hilbert spaces was first introduced by Casazza
and Leonhard in [5] and it been developed very fast over the last ten years, especially in the
context of wavelets and Gabor systems.

Given a separable Hilbert space H with inner product (.,.), a sequence {fx},; is
called a frame for H if there exist constants A > 0, B < oo such that for all f € K,

(oo}
ANFIZ < SIS FOP < BIAIP, (1)
k=1
where A, B are respectively the lower and upper frame bounds. The second inequality of
the frame condition (1) is also known as the Bessel condition for {fi}re;. {fi}re; is called
a tight frame, if A = B. A sequence {f;};—, in ¥ is called a frame sequence in H, if it is a
frame for span { fi},e ;-
The bounded linear operator T' defined by

T:ly(N) =3, T{elpey =D crf
k=1

is called the pre-frame operator or synthesis operator of {fj},-,. Also the bounded linear
operator S defined by

S:HH,  Sf=Y (f fi) fu

k=1
is called the frame operator of { fi}r- ;. A Riesz basis for H is a family of the form {Aey} ;- |,
where {ex },-, is an orthonormal basis for H and A € B () is an invertible operator. Every

Department of Mathematics Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran, e-mail:
m.hasankhani@vru.ac.ir

63



64 Mohammad Ali Hasankhani Fard

Riesz basis for H is a frame for H. Two frames {f},—, and {gi},., are dual frames for H
if

f= Z frfe) g Z f08) fr, Vf€H.
k=1 k=1

The frame {fk} defined by f, = S~1f; is a dual frame of the frame {fr}re, that is

called canonical dual frame of {fi}r ;.
A tight frame with frame bound 1 is called a Parseval frame. Parseval frames are
useful in applications, as they provide the decompostion

f= fok ) fr, Vf e
k=1

The sequence {S fk} is a Parseval frame for 3, if {f;},—, is a frame for H with

frame operator S[6]. A frame {f;},—, is a unit norm frame if || fx|| = 1 for all k. For more
information concerning frames refer to[1, 4, 6, 8, 9, 10].

Frames are redundant sets of vectors in a Hilbert space, which yield one natural repre-
sentation of each vector in the space, but may have infinitely many different representations
for any given vector. It is this redundancy that makes frames useful in applications. In
signal processing, this concept has become very useful in analyzing the completeness and
stability of linear discrete signal representations.

The number of frame vectors per dimension is defined as the redundancy of a frame
in the finite-dimensional setting which is not an unsatisfactory definition. A more precise
quantitative notion of redundancy for finite frames (lower and upper redundancies) has been
introduced in [2]. This quantitative notion of redundancy is generalized to infinite frames
in [3].

In this paper, we introduce a new quantitative notion of redundancy (a-redundancy)
for infinite frames, which is completely dependent on the number of the repetitive nonzero
frame vectors and we discuss some of its properties.

2. a-redundancy

Bodmann, Casazza, and Kutyniok introduced a quantitative notion of redundancy
for finite frames, and Cahill, Casazza, and Heinecke generalized it to infinite frames.

Definition 2.1. [3] Let {f;};2, be a frame for Hilbert space H. The redundancy function
of F is defined on the unit sphere S := {x € 3 ||z| = 1} in H by

Ry :S = RY, Ry (x) =Y [[Pes> ()]

where Py, is the orthogonal projection onto < f; >:= span{f;}.
The upper and lower redundancy of F are defined by

RE :=supRy (v) and Ry = inf Ry (z),
€S zeS

respectively.
Moreover, T has a uniform redundancy, if Ry = fR},

The properties of lower and upper redundancy for infinite frames can be found in [3,
Theorem 3.1].
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Since zero vectors have no effect on redundancy, throughout this paper, we assume that
fi #0, for all i € N. Thus

< |, fi)?
Ry (x) == e
7 g 1£:IP

The next example is a motivation to define a new quantitative notion of redundancy for
infinite frames. Before it, we need the next lemma.

Lemma 2.1. If Ry (z) =Y o2, ¢ |[(z, e’ ,Vx €S, for some orthonormal basis {e;}i2, and
sequence {c;}.o, of positive numbers such that {c;};-, has only a finite number of values,
then Ry = c and RE = C, where ¢ = minjey ¢; and C = max;ey ¢;.

Proof. For all x € S we have ¢ < Ry (x) < C. Thus ¢ < Ry < R; < (C. On the
other hand there is j,k € N such that ¢ = ¢; and C = ¢;. Thus Ry < Rg(ej) = ¢ and

Example 2.1. Let {e;};=, be an orthonormal basis for H and let Fy, := {e1,e1, €2, €2,..., e,
ks €kt1s €kt2y -« - 5 for any k € N. Then for all x € S, we have

R, (2) = 2|(w, en)|” + 2[(z, e0)|* + -+ 2|, en)|” + [, enrn)|* + ..

which implies R;k =1 and .’R;k =2, for all k € N by Lemma 2.1.
Thus fR;k and fR;k are independent of k and hence the repetitive elements do mot have
complete effect on the lower and upper redundancy of Fy,.

For a given infinite frame, we introduce a new quantitative notion of redundancy
(a-redundancy), which is between its lower redundancy and its upper redundancy and it is
completely dependent with the number of the repetitive nonzero frame vectors.

Definition 2.2. A redundancy coefficient function is a strictly increasing continuous func-
tion a of [0,00) onto [0,1) such that « (0) =0 and tlim a(t)=1.

—00
We assume that o be strictly increasing continuous function of [0, 00] onto [0,1] by a (00) :=
lim «(t) = 1.
t— o0
Example 2.2. The functions a(t) := %_H and B(t) ;=1 — et are redundancy coefficient
functions.

It is easy to show that if @ and g are redundancy coefficient functions, then so are
af, min (o, 8) and max («, §).

Definition 2.3. Let F = {f;};°, be a frame for H with lower and upper redundancy R
and ZR; < o0, respectively and let « be a redundancy coefficient function as above. The
a-redundancy function associated to F is the function

RG :[0,00] = R, R§(t) :=R5 + (R —R3) o (¢)

and the a-redundancy of F is Rg := R (ng), where
ng := card{i; f; is repetitive nozero vector} with ny := oo, if
{#;  fi is repetitive nozero vector} is infinite set.

Example 2.3. Let a be a redundancy coefficient function and let Fy, be the frame in Example
2.1, for any k € N. Then R§_ =1+ (2k). If T := {e1,€1,€2,€2,...}, then we see that
Ry = klim RG, -

o —00
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Example 2.4. Let {e;}.-, be an orthonormal basis for H and 0 < § < 1. Let F5 = {f;} i,
be the unit norm frame for H defined by f1 = fo =e1 and

1-6 146 1-46 1456
faic1 = T€i+ Tei-s-l, fai = 5 e; — 5 €i+1

for any integer number i > 2. Using parallelogram law for complex numbers we have

Ry, (2) = 2@, ) ? + (1 - 8) [{, e2) > + 2| (@, e5)]* + 2 |{a, ea) > + ...

for all x € S, which implies Ry =1 —6 and fR+ = 2 by Lemma 2.1 and hence RG, =
1—=04(1+49)a(2), for any redundancy coeﬁ?czent function «. If

Fo = {61,61,\/7624-\/7637\/762—\/763,\@634-\/;64,\/;63—\/264,...}, then we

see that R; =14+a(2)= hmiR

Example 2.5. If F = {f;}:, is a C-equal norm A- tzght frame, then for all x € S,

[, f)l
Z I1£:1?

=1
A
e
and hence Ry = IR; = %. Thus for any redundancy coefficient function o, the «-
redundancy function associated to F is the fixed function
(0% « A
:R.’:F: [0,00}—)R, fRfF(t):E

and the a-redundancy of F is RG = %.
Properties of a-redundancy are given in the following proposition.

Proposition 2.1. Let F,F1,Fo be frames for H and let € be an orthonormal basis for H.
Then for any redundancy coefficient function o we have

a) RG (0) = Rz, R§ (00) = RE and range (R) = [R7, RF],

b) F has uniform redundancy if and only if the a-redundancy function associated to F is a

fized function,

¢) range (‘rRa?lu?z) C range (fRE}l) + range (32:‘}2), In particular, if F1 and Fo have uniform

redundancy, then range (fR%lU,fz) = range (in}l) + range (R;Z),

d) range (R§ ) = 1 + range (RF),

e) For any unitary operator U € B (H) we have Ry ) (t) = R (¢), for all t € [0,00]. In

particular, we have fR‘g(rf) = Rg,

f) For any permutation m on N, we have fR?f o) (t) = Ry, (t), for all t € [0,00]. In
7 } oy =

particular :R{fﬂ(i)};xil = fR{fi o

g) For any sequencei{ci}fil of nonzero complex numbers, we have RY, 1 (t) =R, < (1),
for allt € [0,00]. In particular Riciye, = Ripy= ;

Proof. Parts a and b follow from definition of a—redundancy function associated to given
frames.
Proof ¢) Let A € range (R, ,,). Then X = R§ 5. (t), for some ¢ € [0, 00]. Thus

- - - _ + + +
CRStl +92'3:2 S IRSHU?Q S :R%ﬂ.ffz (t) =A S Rglugz S R(}l +32?2’
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which implies A € [IR;l,fR;l] + [fR;Q, 333}2] = range (fR%l) + range (IR%Z). In particular, if
F, and F5 have uniform redundancy, then
Tange (RglLJ?Q) = {R;1U§2}
= {Rg, + R3, }

={R5,} +{®5,}
= range (IR%I) + range ( 5}2) .

Proof d) range (Rue) = [Ryoe Rive] = [1+%5.1+%3] = 1+ [, %]]
range (R§).

Parts e, f and g follow from definition of a-redundancy function associated to given
frames and invariance of lower and upper redundancy under application of unitary operators

on frame vectors, scaling of the frame vectors and permutations of frame vectors[3, Theorem
3.1]. O

1+

The relation of fR;ﬁ , er;ax(a’ﬁ ) and fRI;in(a’ﬁ ) with RF and Rg is given in the following
proposition.

Proposition 2.2. Let F be frame for H with fR; < 00. Then for any pair of redundancy
coefficient functions a and B, we have

a) fR;ﬁ () < \/RE (1) fR’g (t), for all t € [0,00]. In particular R;ﬁ < \/fR%ng,

b) R;ﬂax(o"m (t) = max (fR% (t)ﬂ%g (t)), for all t € [0,00]. In particular fR;lax(o"ﬁ) =

max (fR%, fRfv) ,

c) Ruin(ef) (t) = min (RO‘ (t),R5 (t)) forallt € [0,00]. In particular, we have Rmin(eef)
F g \t), Xy ’ , OC]- p s F

min (fR?;, 92’2) .

Proof.

Proof a) For any ¢ € [0.00], we have

(%57 ()" = @5 + (R~ R5) a () B(1) (Rs + (RF ~ R5) a ()8 (1)
< Ry + (Ry = Rg) a (1) (Ry + (Ry = Ry) B(2))
= RG (1) RG (1)
Thus
RGP (1) < \/RE(H) RS (t). In particular, RG” (ny) < \/ﬁRgr (n) R (ng), which implies
R < \/RGRE.
Proof b) For any ¢ € [0.00], we have
RO (1) = R + (RE — R5) max (o, B) (1)
=max (R + (RF — R7) a(t), Ry + (RE — R5) B (1))
— max (mg (1), RE (t)) .

In particular, er;ax(a’ﬁ) (ny) = max (ngé (ng) ,th (ng)>, which implies

er;ax(a’ﬁ) = max (iR%, Rg) The proof of part c is similar to part b. O

For any = € R the least integer greater than or equal to x is denoted by [x].
The relationship between R§ and linearly independent subsets of F, is given in the next
proposition.
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Proposition 2.3. Let F be frame for H with IR; < 00 and let « be a redundancy coefficient
function. Then there exists to > 0 such that F can be partitioned into [R (to)] linearly
independent sets. In particular ty can be chosen as

ng R -1 <5,
to = o1 [ [RF]=Re 1
Proof. If [iR?H —1 < R, then (fR;] -1 < Ry < RG(ng) < IR; < [IRQ and hence
Tl_R-—
[RG (to)] = [R4] for to = ng. Otherwise there exists to > 0 such that a (to) = %
g~ Ny
Thus [RE] — 1 = R§ (to) < RE < [RE] and hence [RF (to)] = [R¥]|. Now the result is
obtained by [3, Theorem 3.1]. O
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