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GROUPOID TRUNCATIONS 
 

Paul FLONDOR1 
 
 

O teorema celebra datorata lui Mundici [1] stabileste o stransa legatura 
intre MV-algebre si anumite intervale in grupuri laticial ordonate. Trecerea de la 
operatia de grup la cea de MV-algebra se face printr-un procedeu pe care l-am 
numit, in aceasta lucrare “trunchiere”. Acest articol este o incercare de a trata, 
abstract, la nivel de grupoizi acest mod de a trunchia o operatie algebrica binara.  

 
A famous theorem of Mundici gives a close connection between MV-

algebras and some intervals in lattice ordered groups. The procedure of inducing 
the MV-algebra operation from the group operation was called, in this paper 
“truncation”. We try, in this paper, to give a general abstract treatment, at the 
groupoids level, of the truncation of a binary algebraic operation. 
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1. Introduction  
 

Let S be a (non empty) set and let SS be the monoid (with respect to the 
composition) of all functions from S to S. 
If ϕ  is an idempotent ( ϕϕϕ =  ) of  SS  then it defines a retraction of S onto 

)(SS ϕϕ =  (ϕ  is a left inverse of the canonical inclusion of  S ϕ  into S). 
It is easy to see that every non empty subset A of S is the image of (at least one) 
idempotent of  SS ; for example, take Aa∈  and define xx =)(ϕ for Ax∈  and  

ax =)(ϕ  for ASx −∈ . 
 Consider the equivalence relation “~” defined by ϕ  ( x~y iff ϕ (x) = ϕ (y) ),  let 
M ϕ  be the quotient set and let π be the canonical projection. 

 
Lemma. The restriction θ  of π to S ϕ  is bijective. 
Proof. We have ϕ (x)=x iff  x ϕS∈  and the injectivity of θ  follows. Then, 

as for every x S∈ , we have that x~ϕ (x) the surjectivity of θ  also follows. 
 

Remark 1. )())(( xx πϕθ = , for every .Sx∈  
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Let now (S,+) be a groupoid ( “+” is a composition law on S, not necessary 
associative or commutative) and let ϕ  be an idempotent of  SS  (not necessary a 
morphism of groupoids). We ask for conditions granting that the equivalence “~” 
defined by ϕ  is a congruence (meaning that if x ~y then zx + ~y+z and z+x~z+y 
for every Sz∈ ). 
 

Theorem 1. The equivalence defined by an idempotent ϕ SS∈  is a 
congruence iff : 
 

       ϕ (x+y ) = ϕ (ϕ (x) +ϕ (y))  for every x,y S∈ .            (*) 
 

 Proof. Suppose, first, that  “~” is a congruence. From   x~ϕ (x)  we obtain 
that ϕ (ϕ (x) + y) = ϕ (x+y ) ; in the same manner we get that ϕ (ϕ (x) +ϕ (y)) = 
ϕ (ϕ (x) + y) . The relation  (*) is proved. 
If, now, we suppose the relation  (*) to hold and taking  x~y and  z S∈  we get: 
ϕ (x+z ) = ϕ (ϕ (x) +ϕ (z)) = ϕ (ϕ (y) +ϕ (z)) = ϕ (y+z ) and so  x+z~y+z etc. 
 
 Remark 2. The condition (*) is trivially satisfied for ϕSyx ∈, . 
 
 Remark 3. By modifying, in an obvious way, the condition (*) one 
obtains a similar result for partial groupoids. 
 

Examples. 
1. Suppose that S is an idempotent groupoid (i.e x+x=x for every x). If 

SS →:ϕ  satisfies the condition (*) then it is idempotent ( in  SS ). In fact we 
have that  

     ϕ (x) = ϕ (x+x) = ϕ (ϕ (x) +ϕ (x)) = ϕ (ϕ (x)). 
2. Suppose that (S, ≤ ) is a chain and let (S, ∧ ) the associated inf-semilattice. 

Then, every idempotent, increasing function ϕ  satisfies the condition (*). In 
fact, if  x≤ y then ϕ (x)≤  ϕ (y) so ϕ ( x y∧ ) = ϕ (x) = ϕ (ϕ (x)∧  ϕ (y)). 

 
Definition. An idempotent ϕ  satisfying (*) is called a truncation. 
 
Proposition 1. If φϕ,  are commuting truncations then ϕφ  is a 

truncation. 
Proof. It is obvious that ϕφ  is idempotent. Then we have: 

ϕφ (x+y) = (()))()((()))()((( φϕϕϕφϕϕϕϕφ =+=+ yxyx ϕφ (x)+ ϕφ (y))) = 
  )).()(()))()((( yxyx ϕφϕφϕφϕφϕφϕφ +=+  
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Remark 4. If  ϕ  is a truncation then, with the notation above, M ϕ  has a 

canonical structure of a groupoid and π  is a morphism of groupoids. If S is a 
semigroup so is M ϕ . 
 

Definition. Let ϕ  be a truncation. On S ϕ  define x⊕ y = )( yx +ϕ . Remark 
that , if ϕSyx ∈+  then  x⊕ y = yx + . 
 

Theorem 2. With the notation above, θ  is an isomorphism of groupoids. 
If  (S, +) is a semigroup then (S ϕ , )⊕  is a semigroup. 

Proof. We have, by using Remark 1: 
)()()()(()( yxyxyxyx πππϕθθ +=+=+=⊕ , so θ  is a morphism of 

groupoids etc. 
 

Corollary. If we consider ϕ  as taking values in  S ϕ  then ϕ  is a morphism 
of groupoids. 
 

Remark 5. In general S ϕ  is not a subgroupoid of  S. 
 

Remark 6. If S is a monoid with unit 0 then S ϕ  is a monoid with unit 
).0(ϕ  

 
Remark 7. Not every non empty subset of a groupoid can be turned into a 

groupoid using a truncation. For example, take the set of rational numbers Q with 
addition as composition law and take the subset Z of the integers. Any truncation 
of image Z will induce the usual addition on Z and, by the previous corollary, a 
surjective morphism from ( Q,+) to (Z,+) which is not possible. 
 

Proposition 2. Let ( S, +, ≤  ) be an ordered groupoid and ϕ  an increasing 
truncation. Then (S ϕ , ⊕ , ≤ ) is an ordered groupoid (we use the same notation for 
the induced order as for the initial one). 

Proof.  Let ϕSzyx ∈,, , yx ≤ ; then,  
zyzyzxzx ⊕=+≤+=⊕ )()( ϕϕ ,etc. 
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Remark 8. One can define a partial operation on S ϕ  (and in fact on every 
subset of S) by restricting the operation “+” to those ϕSyx ∈,  satisfying the 
condition ϕSyx ∈+  (in this case, of course, yxyx +=⊕ ). 
   

Examples.  
1. For a groupoid  S  take Sid=ϕ . Then, obviously, S ϕ =S  as groupoids. 
 
2. For a groupoid  S  let ϕ  be the constant map ax =)(ϕ for every Sx∈ . Then 

ϕ  is a truncation and }{aS =ϕ  and the groupoid operation is trivial. 
 
3. Let ),( ∧S  be an inf-semilattice and let Sa∈ . Define a function SS →:ϕ  by 

axx ∧=)(ϕ  for every Sx∈ . It is clear that ϕ  is an idempotent of SS. From 
)()()()( ayaxayxyx ∧∧∧=∧∧=∧ϕ ))()(( yx ϕϕϕ ∧= we get that ϕ  is a 

truncation. In this case the semigroup structure on ](, aS =ϕ  is the same as the 
induced inf-semilattice structure (here, (,a]= },;{ axSxx ≤∈ ).  

 
4. Let  A be a commutative ring with unit and let Λ  be the monoid of the ideals 

of A, the operation being the addition of ideals. Define Λ→Λ:ϕ , 
ααϕ =)(  . It is known that ϕ  is an idempotent and from the formula 

βαβα +=+ we obtain that ϕ  is a truncation. The set ϕΛ  is the set 
of radical ideals of A and the monoid structure is obtained as above (by taking 
the radical of the sum of two radical ideals). The unit of  ϕΛ  is the nilradical 
of the ring (the ideal of the nilpotent elements of A). 

  
5. Let S be the set of all subgroups of the additive group of the reals R together 

with the addition of subgroups. It is well-known that a subgroup of R is either 
discrete (of the form aZ with a∈R) or dense in R. Consider the function 

SS →:ϕ  given by HH =)(ϕ . Then ϕ  satisfies the condition  (*). Indeed, 
if, say, H,K S∈ are discrete then  (*) obvious holds. If H is dense then so is 
H+K and one obtains the condition  (*). It is worth noting that, in general, 

KHKH +≠+ (take, for example, ZH =  and ZK π= ). 
 
6. Let G be a lattice ordered group (l-group for short) and let +G  be the set of 

elements of G which are 0≥ . +G is a lattice ordered monoid with respect to 
the induced structures. Take 0 < u and consider the function ++ → GG:ϕ  
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defined by uxx ∧=)(ϕ . It is clear that ϕ  is idempotent. Let us prove that ϕ  
is a truncation with respect to the group operation “+” (not necessary 
commutative). We prove, first, that if , for +∈Gyx, , uyux ∧=∧  then 

uzyuzx ∧+=∧+ )()( for every +∈Gz . In fact, if uzxt ,+≤  we get that 
uxzt ,≤−  and so uyzt ,≤−  and uzyt ,+≤  etc. Now, using the trivial 

identities )( uxux ∧=∧ u∧ , )( uyuy ∧=∧ u∧  we obtain the condition (*)  
uuyuxuyx ∧∧+∧=∧+ )()( . It is clear that, in this case, we have that 

S ϕ = ],0[ u }0;{ uxx ≤≤= and, using the theorem above, we get a monoid 
structure on ],0[ u  by putting x⊕ y uyx ∧+= )(  for every ],0[, uyx ∈ . Of 
course, if G is commutative then so is the monoid )],,0([ ⊕u . 

 
7. Consider the ring R ][X  of polynomials with real coefficients and let ][XRn  

be the subset of the polynomials of degree less or equal than n. Consider the 
function ϕ  which associates to a given polynomial the polynomial obtained 
by neglecting the terms of degree greater than n. It is clear that ϕ  is 
idempotent and trivially a truncation with respect to addition. More 
interesting, maybe, is that ϕ  is also a truncation with respect to multiplication. 
This result is of some interest, for example, in the calculus of limited 
expansions of functions. 

 
8. Consider the additive group (Q, +) of the rationals and take ZS =  the 

subgroup of the integers. Then no idempotent of image Z will be a truncation. 
Indeed, if such a truncation exists, then the operation ⊕  on Z will be the usual 
addition and the truncation will induce a surjective homomorphism of Q onto 
Z which is not possible. 

 
 

Proposition 3. Suppose that φϕ,  are commuting truncations. Then 

φϕϕφ )(SS =  (in an obvious sense). 
 

Proof. From Proposition 1 we know that ϕφ  is a truncation. Let ⊕  
denote the operation on ϕφS  and '⊕  the operation on  ϕS . We get that 

)'()( yxyxyx ⊕=+=⊕ φϕφ  and this is what is needed. It is useful to note that, 
if xx =)(ϕ , then )())(( xx φϕφ =  and, by commutativity, )())(( xx φφϕ = ; this 
means that ϕϕφ SS ⊆)(  so that (the restriction of)φ  could be thought as a 
truncation on ϕS . 
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Corollary. In the conditions of the proposition above, one has that 

.)()( ϕφφϕ SS =  
 

Proposition 4. Let TS →:π be a morphism of groupoids and let 
ST →:α  be a section of π  in the category of sets ( Tid=απ ). Define 
παϕ = . Then ϕ  is a truncation with ).(TS αϕ =  
Proof. First we show that SS →:ϕ is an idempotent; we have that 

ϕπαπαπαπαπαϕϕ ==== )()()( . We have to check  
condition (*). We need to show that ))()(()( yxyx παπαπαπα +=+ . It 
is enough to prove that ))()(()( yxyx παπαππ +=+ . 
But, π  being a morphism of groupoids, this reduces to 

))((()))((()()( yxyx παππαπππ +=+  which is true due to the fact that α is 
a section of π . 
 

Remark 9. It follows that every congruence of a groupoid generates 
truncations but not in a  canonical way; it depends on the section one chooses. 
 

Examples. 
1. Consider the additive group R of the real numbers, let Z be the subgroup of the 

integers and denote by T the quotient group ZR / . Let −= xx)(α ⎣ ⎦x , where 

⎣ ⎦x  is the floor of x . Then α is well defined and is a section of the canonical 
projection .: TR →π  Using the previous proposition we obtain a truncation 
ϕ  such that )(xϕ is the fractionary part of x R∈ . In this case )1,0[=ϕR  and 
the induced structure is given by the operation, say • , with yxyx +=• if 

1<+ yx  and 1−+=• yxyx  if 1≥+ yx .  
 
2. Let S  be a semigroup and I a proper two-sided ideal of S. Consider the Rees 

congruence  “~”  defined by I :  x~y iff either x=y or Iyx ∈, . The quotient 
semigroup S/~  consists of the class I and the classes }{x  for every ISx −∈ . 
It is easy to choose a section α  of the canonical  projection: take an element 

Ia∈  and define xx =})({α  for Ix∉  and aI =)(α . We get that 
)(}{ ISaS −∪=ϕ  and the operation ⊕ , on ϕS  will be: axaax =⊕=⊕  

and ayx =⊕ if Iyx ∈+ or yxyx +=⊕ if Iyx ∉+ where, of course, “+” 
denotes the operation of S. Remark that a is a zero of the semigroup ϕS  and 
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that, if S is a monoid so is ϕS  . We also see that if S is cancellative then, in 
general, ϕS  will be not. 

We shall now express some of the ideas above in the language of  
categories. Consider the category Δ : 

- the objects of Δ  are the pairs ),( ϕS   where S is a groupoid and ϕ  a 
truncation on S. 

- an arrow from ),( ϕS  to ),( φT  is a morphism of groupoids 
TSf →: such that ff φϕ = . 

- the composition of arrows is the usual composition of functions. 
(it is trivial to check that Δ  is, in fact, a category). 
  

Proposition 5. Let f  be an arrow from ),( ϕS  to ),( φT  and let φϕ TS ,  be 

as above. Then f  naturally induces a morphism of groupoids φϕ TSf →
−

: . 

Proof. It is trivial that φϕ TSf ⊆)(  and we define 
−

f  as being the 
restriction of  f  to ϕS . We have (with obvious notations): 

=+=+=+=⊕=⊕
−

))()(())(())(()()( yfxfyxfyxfyxfyxf φφϕ  

).()( yfxf
−−

⊕=  
 

Proposition 6. If ),(),,( φϕ TS  are objects of the category Δ  then 
),( φϕ ××TS  is an object of Δ  and, together with the natural projections, a direct 

product of ),(),,( φϕ TS . 
Proof.  Easy checking. 

 
It would be of some interest to treat the topological case also. So, let S be a 

topological groupoid (meaning a groupoid together a topology on the support set 
such that the operation is continuous viewed as a function of two variables). 
It is then natural to consider continuous truncations. 
 

Proposition 7. Let a given continuous truncation SS →:ϕ be given. 
Then the operation ⊕  on ϕS  is continuous in the induced topology. 

Proof. In fact we have that the operation ⊕  on ϕS  is obtained as a 
composition of continuous functions: shortly define x⊕ y = )( yx +ϕ . 
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