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GROUPOID TRUNCATIONS

Paul FLONDOR!

O teorema celebra datorata lui Mundici [1] stabileste o stransa legatura
intre MV-algebre si anumite intervale in grupuri laticial ordonate. Trecerea de la
operatia de grup la cea de MV-algebra se face printr-un procedeu pe care lI-am
numit, in aceasta lucrare “trunchiere”. Acest articol este o incercare de a trata,
abstract, la nivel de grupoizi acest mod de a trunchia o operatie algebrica binara.

A famous theorem of Mundici gives a close connection between MV-
algebras and some intervals in lattice ordered groups. The procedure of inducing
the MV-algebra operation from the group operation was called, in this paper
“truncation”. We try, in this paper, to give a general abstract treatment, at the
groupoids level, of the truncation of a binary algebraic operation.
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1. Introduction

Let S be a (non empty) set and let S° be the monoid (with respect to the
composition) of all functions from S to S.
If ¢ is an idempotent (pop=¢ ) of S° then it defines a retraction of S onto

S, =o(S) (¢ isaleftinverse of the canonical inclusion of S into S).

It is easy to see that every non empty subset A of S is the image of (at least one)
idempotent of s%; for example, take a e A and define ¢(x) =xfor xe A and

p(x)=a for xeS—A.
Consider the equivalence relation “~” defined by ¢ ( X~y iff @(X) = @ (y) ), let
M, be the quotient set and let z be the canonical projection.

Lemma. The restriction @ of zto S is bijective.
Proof. We have ¢ (x)=x iff xe S, and the injectivity of & follows. Then,
as for every xe S, we have that x~ ¢ (x) the surjectivity of & also follows.

Remark 1. 8(p(x)) = z(X), for every x € S.
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Let now (S,+) be a groupoid ( “+” is a composition law on S, not necessary
associative or commutative) and let ¢ be an idempotent of S° (not necessary a

morphism of groupoids). We ask for conditions granting that the equivalence “~”
defined by ¢ is a congruence (meaning that if x ~y then x+ z~y+z and z+x~z+y

forevery zeS).

Theorem 1. The equivalence defined by an idempotent ¢ €S° is a
congruence iff :

p(x+y) = @(@(X) +o(y)) forevery xyes. (*)

Proof. Suppose, first, that “~” is a congruence. From Xx~¢(x) we obtain
that @ (@ (X) +y) = @(x+y ) ; in the same manner we get that ¢ (@ (X) +¢(y)) =
o (@(x) +y). Therelation (*) is proved.

If, now, we suppose the relation (*) to hold and taking x~y and zeS we get:
p(x+2) = p(p(X) +9(2)) = p(p(y) +9(2)) = p(y+z) and so x+z~y+z etc.

Remark 2. The condition (*) is trivially satisfied for x,y € S .

Remark 3. By modifying, in an obvious way, the condition (*) one
obtains a similar result for partial groupoids.

Examples.

1. Suppose that S is an idempotent groupoid (i.e x+x=x for every x). If
@:S — S satisfies the condition (*) then it is idempotent (in S°). In fact we
have that
P (X) = o (xtx) = @ (@ (x) +¢ (X)) = ¢ (¢ (x)).

2. Suppose that (S, <) is a chain and let (S, A) the associated inf-semilattice.
Then, every idempotent, increasing function ¢ satisfies the condition (*). In

fact, if x<ythen p(x)< @ (y)so p(xry) =)= @(pX)A @(y)).
Definition. An idempotent ¢ satisfying (*) is called a truncation.

Proposition 1. If ¢@,¢ are commuting truncations then ¢gog@ is a

truncation.
Proof. It is obvious that ¢ o ¢ is idempotent. Then we have:

po @ (x+y) = d(p(p(X) +o(Y))) = p(d(@(X) + @(¥))) = p(d( po @ (X)+dop (y))) =
P@(Po p(X) + @ o @(Y))) = po (o p(X)+pop(y)).
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Remark 4. If ¢ is a truncation then, with the notation above, M ; has a

canonical structure of a groupoid and ~ is a morphism of groupoids. If S is a
semigroup soisM .

Definition. Let ¢ be a truncation. On S, define x®y = ¢(x +y). Remark
that, if x+ye S, then x®y= x+Yy.

Theorem 2. With the notation above, € is an isomorphism of groupoids.
If (S, +) is a semigroup then (S ,,®) is a semigroup.

Proof. We have, by using Remark 1:
XD y)=0(p(x+Yy)=n(x+Yy)=7x(x)+7z(y), so & is a morphism of
groupoids etc.

Corollary. If we consider ¢ as taking values in S then ¢ is a morphism
of groupoids.

Remark 5. In general S, is not a subgroupoid of S.

Remark 6. If S is a monoid with unit O then S(p is @ monoid with unit
»(0).

Remark 7. Not every non empty subset of a groupoid can be turned into a
groupoid using a truncation. For example, take the set of rational numbers Q with
addition as composition law and take the subset Z of the integers. Any truncation
of image Z will induce the usual addition on Z and, by the previous corollary, a
surjective morphism from ( Q,+) to (Z,+) which is not possible.

Proposition 2. Let ( S, +, < ) be an ordered groupoid and ¢ an increasing
truncation. Then (S, @, <) is an ordered groupoid (we use the same notation for

the induced order as for the initial one).
Proof. Let x,y,z e S, X<, then,

X@z=p(X+2)<p(y+2)=y Dz etc.
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Remark 8. One can define a partial operation on S, (and in fact on every
subset of S) by restricting the operation “+” to those x,yeS, satisfying the
condition x+y e S, (in this case, of course, X®y =x+Y).

Examples.
1. Foragroupoid S take ¢ =id. Then, obviously, S =S as groupoids.

2. For agroupoid S let ¢ be the constant map ¢(x) =afor every x e S. Then
@ isatruncationand S, ={a} and the groupoid operation is trivial.

3. Let (S,A) be an inf-semilattice and let a € S . Define a function ¢:S — S by
p(x)=xAa forevery xeS. Itis clear that ¢ is an idempotent of S°. From
p(xAay)=(xay)ra=(xra)a(yra) =e(e(x) Ap(y))we get that ¢ is a
truncation. In this case the semigroup structure on S, = (,a] is the same as the

induced inf-semilattice structure (here, (,a]={x;x € S,x < a}).

4. Let A be a commutative ring with unit and let A be the monoid of the ideals
of A, the operation being the addition of ideals. Define ¢:A—> A,

(p(a)=\/g . It is known that ¢ is an idempotent and from the formula

Ja+p = \/\/E-F\/EWG obtain that ¢ is a truncation. The set A is the set

of radical ideals of A and the monoid structure is obtained as above (by taking
the radical of the sum of two radical ideals). The unit of A is the nilradical

of the ring (the ideal of the nilpotent elements of A).

5. Let S be the set of all subgroups of the additive group of the reals R together
with the addition of subgroups. It is well-known that a subgroup of R is either
discrete (of the form aZ with aeR) or dense in R. Consider the function

.S —S given by ¢(H)=H . Then ¢ satisfies the condition (*). Indeed,

if, say, H,K e Sare discrete then (*) obvious holds. If H is dense then so is
H+K and one obtains the condition (*). It is worth noting that, in general,

H+K ¢H+R(take, for example, H =Z and K =7Z2).

6. Let G be a lattice ordered group (I-group for short) and let G* be the set of
elements of G which are >0. G™is a lattice ordered monoid with respect to
the induced structures. Take 0<uand consider the function ¢:G" —> G~
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defined by @(x) =x Au. Itis clear that ¢ is idempotent. Let us prove that ¢
is a truncation with respect to the group operation “+” (not necessary
commutative). We prove, first, that if , for x,yeG",xAu=yAau then
(x+2)Au=(y+2z)aufor every zeG". In fact, if t<x+z,u we get that
t—z<x,u and so t—z<y,u and t<y+z,u etc. Now, using the trivial
identities X AU=(XAU) Au, YAU=(yAU)Au we obtain the condition (*)
(X+y)Au=(XAu+yAau)au. It is clear that, in this case, we have that
S,=[0,u] ={x;0<x<u}and, using the theorem above, we get a monoid
structure on [0,u] by putting x®y=(x+Yy)Au for every x,ye[0,u]. Of
course, if G is commutative then so is the monoid ([0,u],®) .

7. Consider the ring R[X] of polynomials with real coefficients and let R [X]

be the subset of the polynomials of degree less or equal than n. Consider the
function ¢ which associates to a given polynomial the polynomial obtained

by neglecting the terms of degree greater than n. It is clear that ¢ is

idempotent and trivially a truncation with respect to addition. More
interesting, maybe, is that ¢ is also a truncation with respect to multiplication.

This result is of some interest, for example, in the calculus of limited
expansions of functions.

8. Consider the additive group (Q, +) of the rationals and take S=2Z the
subgroup of the integers. Then no idempotent of image Z will be a truncation.
Indeed, if such a truncation exists, then the operation @ on Z will be the usual
addition and the truncation will induce a surjective homomorphism of Q onto
Z which is not possible.

Proposition 3. Suppose that ¢,¢ are commuting truncations. Then
S4p =(S,), (inanobvious sense).

Proof. From Proposition 1 we know that ¢o¢ is a truncation. Let @
denote the operation on S, 6 and @' the operation on S . We get that

X®y=gop(Xx+Yy)=e¢(x®'y) and this is what is needed. It is useful to note that,

if o(X)=x, then ¢(p(x))=¢(x) and, by commutativity, @(4(X))=@(X); this
means that ¢(S,) < S, so that (the restriction of)¢ could be thought as a

truncation on S(p.
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Corollary. In the conditions of the proposition above, one has that
(S¢)¢ = (S¢)¢7'

Proposition 4. Let 7:S —T be a morphism of groupoids and let
a:T —>S be a section of ~ in the category of sets (7o« =id;). Define
@ =aonx.Then ¢ isatruncation with S = a(T).

Proof. First we show that ¢:S — Sis an idempotent; we have that
pop=(aom)o(aorm)=ao(rea)or=aor=¢p. We have to check
condition (*). We need to show that a o 7(X+Yy) =aoz(a o z(X) + @ z(y)). It
is enough to prove that z(x + Yy) = z(a o 7(X) + a o 7z(Y)).

But, ~ being a morphism of groupoids, this reduces to
7(X) + 7(y) = 7((a o 7)(X)) + 7((e » z(y)) which is true due to the fact that « is

a section of r.

Remark 9. It follows that every congruence of a groupoid generates
truncations but not in a canonical way; it depends on the section one chooses.

Examples.
1. Consider the additive group R of the real numbers, let Z be the subgroup of the

integers and denote by T the quotient group R/Z . Let a(X) = x— | x ], where
| x] is the floor of x. Then « is well defined and is a section of the canonical
projection 7 :R —T. Using the previous proposition we obtain a truncation
¢ such that ¢(x) is the fractionary part of x e R. In this case R, =[0,1) and
the induced structure is given by the operation, say e, with xey=Xx+Yyif
X+y<land xey=x+y-1if x+y=>1.

2. LetS be asemigroup and | a proper two-sided ideal of S. Consider the Rees
congruence “~” defined by | : x~y iff either x=y or x,y € |. The quotient
semigroup S/~ consists of the class | and the classes {x} for every xeS—1.

It is easy to choose a section « of the canonical projection: take an element
ael and define a({x})=x for x¢l and «a(l)=a. We get that

S, ={a}u (S-1) and the operation @, on S, will be: x®a=a®x=a
and x@y=aif x+yelor x®y=x+yif x+ye| where, of course, “+”
denotes the operation of S. Remark that a is a zero of the semigroup S, and
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that, if S is a monoid so is S, - We also see that if S is cancellative then, in
general, S, will be not.

We shall now express some of the ideas above in the language of
categories. Consider the category A:

- the objects of A are the pairs (S,¢) where S is a groupoid and ¢ a
truncation on S.

- an arrow from (S,p) to (T,¢) is a morphism of groupoids

f:S—>Tsuchthat fop=gof.

- the composition of arrows is the usual composition of functions.
(it is trivial to check that A is, in fact, a category).

Proposition 5. Let f be an arrow from (S,¢) to (T,¢) and let S, T, be
as above. Then f naturally induces a morphism of groupoids o S, >T,.

Proof. It is trivial that f(S,)c T, and we define f as being the
restriction of f to S . We have (with obvious notations):

f(x@y)= F(x@y) = f(p(x+Y)) = (f (x+y)) = p(F (x) + F () =
- F()® f(y).

Proposition 6. If (S,¢),(T,¢$) are objects of the category A then
(SxT,px¢) is an object of A and, together with the natural projections, a direct

product of (S,¢),(T,9).
Proof. Easy checking.

It would be of some interest to treat the topological case also. So, let S be a
topological groupoid (meaning a groupoid together a topology on the support set
such that the operation is continuous viewed as a function of two variables).

It is then natural to consider continuous truncations.

Proposition 7. Let a given continuous truncation ¢:S — Sbe given.
Then the operation © on S, is continuous in the induced topology.

Proof. In fact we have that the operation @ on S is obtained as a
composition of continuous functions: shortly define x®@y = @(x+Y).
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