
U.P.B. Sci. Bull., Series C, Vol. 76, Iss. 1, 2014 ISSN 2286 – 3540

OFFLOADING FOR MOBILE DEVICES: A SURVEY

Alexandru-Corneliu OLTEANU1, Nicolae ŢĂPUŞ2

We survey existing research efforts regarding offloading for mobile devices.
We propose a General Offloading Model and a Taxonomy for Offloading Concerns.
We also identify research directions: the balance between offloading and
adaptation, and the opportunity for finding novel offloading mechanisms or
conducting design space exploration.

Keywords: offloading, smartphones, cloud computing, taxonomy

1. Introduction

Modern handheld devices, such as smartphones and tablets, offer
portability, increased computational power, and communication capabilities.
Among their characteristics there are: connectivity, processing capabilities,
sensing abilities, pervasiveness, heterogeneity, and limited battery supply. The
limited battery supply and processing capabilities, at least in respect to the user
demand, are the characteristics that trigger most the interest in offloading
research. The connectivity supports the offloading process, while the
heterogeneity provides several challenges.

Given the characteristics mobile devices possess, they are an attractive
option for users to interact with each other, through social applications, and with
their environment, through home automation. The popularity of mobile devices
can be seen in many ways. Facebook, who has announced recently their increase
to over 1 billion monthly active users, reports that more than a half of their users
reach their social network using a mobile device [6].

People use mobile devices daily in activities ranging from entertainment to
solving professional tasks. Mobile applications span a vast application-domain,
being developed for various purposes, such as gaming, multimedia streaming,
travel, communication, etc. Many of these types of applications rely on
connectivity and on data stored remotely. Also, many of them make a lot of use of
the high computation power of mobile devices. Among this generous application
space, there are several types of applications that would benefit from offloading:

• applications that are computational intensive (e.g. Chess)

1 Teaching Teaching Assistant, Faculty of Automatic Control and Computers, University

POLITEHNICA of Bucharest, Romania, e-mail: alexandru.olteanu@cs.pub.ro
2 Professor, Faculty of Automatic Control and Computers, University POLITEHNICA of

Bucharest, Romania, e-mail: nicolae.tapus@cs.pub.ro

4 Alexandru-Corneliu Olteanu, Nicolae Ţăpuş

• applications that rely on data from server side (e.g. object recognition)
• applications with pipeline-based processing (e.g. image processing)
• applications that already interact with the cloud (e.g. m-commerce)
Although mobile devices are growing in functionality and computing

power, we believe the role of more powerful infrastructure, to augment the
capabilities of mobiles, will increase, due to limitations in battery performance
and power dissipation, due to ever increasing user demands, and due to social
interactions among users. As shown in [36], the convergence of mobile computing
and cloud-based services is one of the leading ways in which cloud computing
will evolve in the near future.

Software that uses the interaction of mobile devices with the cloud is
already on the market. However, recent research efforts have also identified the
cloudlet as an offloading target [31], emphasizing the trade-off between
communication and computation costs. Inspired by this research, we see mobile
devices as part of a hierarchy of computing systems people are using today,
comprised of wearable devices, handheld devices, cloudlets, and clouds.

We survey existing research efforts regarding offloading for mobile
devices. We propose a General Offloading Model and a Taxonomy for Offloading
Concerns. We also identify research directions. We emphasize the balance
between offloading and adaptation, as an alternative or as a complement to
offloading. Moreover, we outline the opportunity for novel offloading
mechanisms, like partial and parallel offloading, and the importance of design
space exploration.

2. General Offloading Model

In this section, we present a general offloading model that describes a
generic offload system. In this chapter we offer an overview of each of the key
components involved in offloading and we will detail their functionality through a
taxonomy in Section 3.

We divide the components of an offloading system in two planes:
components on the client – the mobile device – and components in the
environment – either a cloud, a cloudlet, a peer device, or a hybrid environment,
as discussed in Section 1. The components are depicted in Fig. 1 and are detailed
in the remainder of this section.

Many of the current research efforts focus on thoroughly understanding
the application to be offloaded. Therefore, the Application Monitoring part of the
offloading system is key in obtaining a beneficial offloading process. The
Profiling component is able to assess the way in which the application is
functioning through various mechanisms, such as static or dynamic analysis. The
information obtained from the Profiling component may be used by the

Offloading for mobile devices: a survey 5

Partitioning component, which aims to split the application in components of
predefined granularities and identify which of them can be offloaded.

Fig. 1. General offloading model.

There is also a need to assess the resources, both local and remote, that are

available for running the application. Thus, the Resource Management component
spans both the client and the environment plane. In the client plane, the Resource
Monitoring component assesses parameters such as battery level, CPU load,
wireless connection quality, and so on. In the environment plane, the Resource
Supply component manages the external resources that may be used in offloading,
through mechanisms such as discovery and provisioning. Resource discovery is
useful in opportunistic approaches, such as cyber foraging, in which the mobile
device tries to find available offloading targets in its environment. Resource
provisioning is a proactive approach, highly utilized in cloud environments, in
which resources are dynamically created to adjust to computing needs.
The Offload Process itself needs to be an iterative process, due to mobility and the
changing nature of the execution conditions. For example, the mobile client may
switch from WiFi to 3G, or may reach a critical battery level, with consequences
on the offloading process. The Offload Decision component receives information
from Application Monitoring and Resource Management, to assess the current
offloading needs and conditions, and from previous iterations of the Offload
Operation, to assess their benefits and defects. Offload Decision can choose:

• what to offload, among the sets of partitions offered by the Partitioning
component

6 Alexandru-Corneliu Olteanu, Nicolae Ţăpuş

• when to offload, as sometimes it may be not worth offloading at all
• where to offload, and instruct the Allocation component to use the

appropriate offloading target.

Fig. 2. Our taxonomy for offloading concerns.

Besides the basic offloading process, research efforts also address a

number of orthogonal concerns. Some approaches focus on adaptability, e.g. a
game may turn o animations if the offloading system is not able to sustain a
reasonable frame rate, or the device may switch communication networks through
handover. Security concerns derive from offloading to remote resources that
usually belong to third-parties. Logging may be used for accountability, billing
and monitoring the whole process.

3. Taxonomy for Offloading Concerns

In this Section, we present a novel taxonomy for offloading concerns,
structured on the model presented in Section 2. The model identifies four major
areas of offloading-related topics: Application Monitoring, Resource
Management, Offload Process and Orthogonal Concerns. Each of these areas has
a number of key topics of interest. Fig. 2 shows our three-level taxonomy.

A. Application Monitoring

Many research efforts on offloading for mobile devices use only on a

couple of applications, thus simplifying the Application Monitoring area.
However, there are some that strive for an automated solution, which would work
on many types of applications, and thus need to employ complex mechanisms (see
Table 1).

A.1. Profiling. Profiling can be done through various mechanisms and
using various application metrics.

Offloading for mobile devices: a survey 7

A.1.1. Profiling Mechanism. Many researchers, like [5][33][2], employ a
mix of static and dynamic analysis. Notably, there are a few efforts [17][4][13]
that employ online pro ling, which monitors the application behavior while
offloading.

Table 1
Mapping Application Monitoring approaches with our taxonomy

 Profiling Application Partition Partition
 Mechanism Metrics Mechanism Granularity

Eom, 2012 (Snarf) [5] S,D,P C,P C J
Hong, 2009 [16] S,D E,T M T
Kemp, 2012 (Cuckoo) [18] S,P M,C,T M M
Huerta, 2010 [17] S,O T,L M,C M
Lagerspetz, 2011 [22] S E M C
Cuervo, 2010 (MAUI) [4] D,O,P P C M
Ou, 2007 [28] S M,C,P,F M C
Gu, 2004 [13] O M,P,L,F,D G C
Zhang, 2010 [37] S,P M,C,E M,C C
Satyanarayanan, 2009 [31] P - M V
Verbelen, 2012 (AIOLOS) [32] S,D,O C,E,D G V,T

Legend: Profling Mechanism: S=static analysis, D=dynamic ofline profling, O=dynamic
online pro ling, P=programmer input (a priori); Application Metrics: M=memory usage,
C=CPU time, T=operational time, E=energy, P=portability, F=access frequency,
L=location, D=input/output data; Partition Mechanism: M=manual partition, C=code an-
notation, S=chunk splitting, G=graph processing techniques; Partition Granularity: V=vm,
J=job, P=process, T=thread, C=component/object, M=method.

A.1.2. Application Metrics. Most of the research efforts on this topic

measure, per component, performance related metrics, such as CPU usage,
memory usage, energy consumption and operational time. Some works
[28][13][32] also employ statistical metrics such as the number of invocations a
component has and the amount of data it communicates, which have a role in
graph specific algorithms used in partitioning. Qualitative metrics such as
portability and location of the component are also collected for the offloading
decision [33][11].

A.2. Partitioning serves as starting point in the offload process. The
application is split in components of various granularities and an offload decision
is made about each of them. The decision is taken by modeling the components as
a graph, quantifying each node and each edge with specific metrics and applying
graph specific algorithms to decide which components are going to be offloaded
and which are going to be computed locally.

8 Alexandru-Corneliu Olteanu, Nicolae Ţăpuş

A.2.1. Partition Mechanism. A number of algorithms can be used when
partitioning, such as clustering. Some solutions rely on code annotation from the
developer, while others strive for an automatic approach.

A.2.2. Partition Granularity. Partitioning the application can be performed
at various levels. Components can differ in size from an approach to another,
ranging from a method or piece of code, to full threads or processes, and even to
entire virtual machines.

B. Resource Management

In offloading works that focus on resource management (see Table 2), it

can be noted that opportunistic or cyber foraging approaches are often based on
collocation, as mobile devices will use computational power available in their
vicinity. Only a few deal with resource supply, as many researchers prefer to
statically de ne the remote resources in their experiments.

Table 2

Mapping Resource Management approaches with our taxonomy

 Resource Offloaded Discovery Offload Target
 Metrics Resource Mechanisms Placement

Ferber, 2012 [7] T,X C S CC
Kemp, 2011 [19] E,Bat N,C S CC, HC
Hassan, 2011 (map-reduce) [14] C,E,X C,D S CC,RC
Huerta, 2010 [17] $,C,M C,M C P
Balan, 2007 [1] C,M,B,Bat C S RC
Yan, 2010 [35] X,$ C B CC
Ou, 2007 [28] M, C, B C S RC, HC, HS
Zhang, 2010 [37] C, M, Bat, N C, S, N C CC, CS
Satyanarayanan, 2009 [31] C,M,X C B CL
Flores, 2013 [8] C,B C,D S CC,CS
Marin, 2013 [23] C,M,B,Bat C B CC

Legend: Resource Metrics: C=CPU load, M=memory load, N=network latency, B=bandwidth
usage, T=total execution time, X=interaction delay, E=energy consumption, Bat=battery level,
$=cost; Offloaded Resource: C=computation, N=communication, D=data/content, M=memory,
S=storage; Discovery Mechanisms: S=static, C=collocation, B=broker; Offload Target
Placement: CC=cloud computing, CS=cloud storage, CD=CDN, CL=cloudlet, RC=residential
computers, HC=home computer, HS=home server, HM=home mobile devices, P=peers.

B.1. Resource Monitoring is present in most of the works about offloading

for mobile devices. All of them select one or a combination of resources to be

Offloading for mobile devices: a survey 9

offloaded and many also employ a mechanism to monitor existing resources on
the device and in the environment.

B.1.1. Offloaded Resource. Most of the solutions we studied focused on
methods to offload computation. However, there are some notable variations.
Huerta et al. [17] offload processing that has high memory requirements and thus
is not suitable for mobile devices. Hassan [14] and Flores cite ores2013adaptive
perform offloading to use the data already present in the cloud rather than
bringing it to the mobile device. Communication offloading in the form of push
notifications, shown in research works like [19], has already been implemented as
a commercial solution by many mobile technology producers, like Google [12].

B.1.2. Resource Metrics mirror the application metrics presented in A.1.2.
and are used when deciding whether the mobile device has enough resources to
perform the operations locally or not. Most of the approaches monitor some form
of computational load [14][17]and battery level on the device [1][37][23]. Many
also measure the impact of network transfers as network latency [37], bandwidth
usage [1][28][23] or interaction delay [7][14][35][30].Huerta [17] and Yan [35]
also take into account the monetary cost of using remote resources.

B.2. Resource Supply is a more niche topic, as many offloading
approaches are only tested on a statically defined resource pool, on various levels
of target placement, such as laptops [1] or virtual machines in commercial
infrastructures like Amazon Web Services [7][18][14]. However, some
approaches deal with resource supply in the form of discovery or provisioning,
where resources can as well be located on various levels of target placement.

B.2.1. Offload Target Placement. Kemp et al [19] investigate offloading
communication to a single push server. They note that one may want to use elastic
cloud resources when load gets too high, but they admit that Cuckoo, their
framework, does not support migration of code between servers. Kumar et al [21]
highlight the benefits of using the cloud storage, that has beneficial effects on the
amount of transferred data and thus on the performance of the offloading process

B.2.2. Discovery Mechanisms. Zhang et al [37] focus on two scenarios that
require massive resources in constrained locations that encourage the use of
devices in the vicinity, by leveraging collocation. In [31], the authors describe the
Kimberley Control Manager, that supports browsing and publishing services using
the Avahi mechanism in Linux. This module acts as a broker in identifying and
maintaining connections with the remote resources. In the work presented by
Marin et al [23], a component named Cloud Receiver also acts as a broker in
deciding which cloud resource to use.

10 Alexandru-Corneliu Olteanu, Nicolae Ţăpuş

C. Offload Process

Table 3 summarizes efforts regarding the Offload Process in existing

scientific literature.
C.1. Offload Decision gathers some of the most diverse ideas in offloading

for mobile devices, depending on the benefit assessment. The approaches differ in
the way they assess benefits, how they collect feedback from previous iterations
of the offloading process and how they take into account context.

C.1.1. Benefit Assessment. Most researchers take into account the
performance of the mobile device with and without offloading, expressed as
running times. Some also optimize the energy consumption, like [21][22][37], or
the monetary costs, like [7][35][37]. Satyanarayanan[31] and Verbelen[33] also
refer to the quality of the result when offloading, like better image resolution.

C.1.2. Feedback Collection. Most of the solutions based on remote code
execution discuss methods to integrate the results obtained on the remote
resources back into the mobile device. Some solutions, based on virtual machines,
like [31] and [32] only discuss state integration. Notably, some approaches, like
[14][35][28] get into the complexities of handling failures in remote processing.

Table 3

Mapping Offload Process approaches with our taxonomy

 Benefit Feedback Mechanism Parallelism
 Assessment Collection

Ferber, 2012 [7] P,C N R,S S
Kumar, 2010 [21] P,E S M,R S,P
Hassan, 2011 (map-reduce) [14] P R,F MR P
Lagerspetz, 2011 [22] P,E R R,S P
Cuervo, 2010 (MAUI) [4] P S R S
Yan, 2010 [35] P,C R,F S P
Ou, 2007 [28] P R,F R S
Zhang, 2010 [37] P,C,E S,R M P
Satyanarayanan, 2009 [31] P,Q S C P
Verbelen, 2012 [33] Q R R S
Verbelen, 2012 (AIOLOS) [32] P S M S
Flores, 2013 [8] P R MR P

Legend: Benefit Assessment: P=performance, C=cost, E=energy consumption, Q=quality;
Feedback Collection: S=state migration, R=result integration, F=handling failure, N=none;
Mechanism: J=job partition, C=cloning / replication, M=migration
(class/object/process/thread), R=remote execution (opportunistic cyber foraging, data stag-
ing), MR=map-reduce, S=Service; Parallelism: S=sequential, C=concurrent, P=parallel.

Offloading for mobile devices: a survey 11

C.2. Offload Operation. The offload mechanism is usually one of the focal
points in most of the papers on mobile offloading, as there are many variations
and some correlations with the granularity of the application. Parallel offloading is
considered by some researchers, as a method to increase performance, but its
benefits are application specific and bounded by the additional complexity that it
brings. Processing division is at the core of the offloading process, which usually
splits the processing spatially, and, less often, temporally. Data division is rarely
considered.

C.2.1. Mechanism Lagerspetz et al [22] focus on le indexing among
devices and between devices and the cloud. The offloading process is described as
remote execution among devices and as a service from the cloud. Zhang et al [37]
propose an application model based on migrating application components named
weblets. In [31], the authors use entire VM migration and dynamic VM synthesis
to replicate the work.

C.2.2. Parallelism. In [35], the authors propose a solution that uses the
Amazon Mechanical Turk, a service where tens of thousands of people are
actively working on simple tasks for monetary rewards, to perform image search.
The sollution is parallel, in a sense that each person matches the query to a set of
photos. In [37], the authors conduct offloading on an image processing
application. A weblet pool is created on the cloud, and images are processed in
parallel by pool members.

D. Orthogonal Concerns

Studying papers that deal with Orthogonal Concerns while offloading (see

Tablet 4), it can be noted that very few research efforts address all types of
orthogonal concerns, but many address at least one.

Table 4

Mapping Orthogonal Concerns with our taxonomy

Paper Adaptability Security & Privacy

Kumar, 2010 [21] - S,P
Kemp, 2011 [19] - S,P

Eom, 2012 (Snarf) [5] - S
Kemp, 2012 (Cuckoo)

[18] Q S,P
Klein, 2010 [20] H -
Wang, 2010 [34] Q -

Hoang, 2012 [15] A -

Legend: Adaptability: H=Handover /Network Adaptation, Q=Quality

12 Alexandru-Corneliu Olteanu, Nicolae Ţăpuş

Adaptation, Security; Privacy and Logging: S=security, P=privacy.

D.2. Adaptability. In [20], the authors describe Heterogeneous Access

Management schemes in the context of Mobile Cloud Computing that is
performing network handover, based on location awareness, network load, user
movement predictions, and so on. In [34] the authors propose a rendering
adaptation technique with a focus on user experience.

D.3. Security & Privacy. Kumar et al [21] discuss several privacy concerns
related to using cloud resources, giving examples such as bugs, third-party
vendors and location tracking. Eom et al [5] propose to use SocialVPN, a
tunneling technique through Virtual Private Networks that has a double benefit:
better security and virtualization.

4. Research Directions

Improvements in mobile applications derived from offloading are
increasingly reaching the users. For example, the communication offloading
technique presented by Kemp [19] is also implemented commercially by major
mobile service providers, like in [12]. Also on the market, applications such as
Shazam use re-mote processing as a basic way of functioning. However, many
research efforts still face a number of challenges until they can be implemented
for the general public.

Application Monitoring: most of the research focuses on increasingly
automatic ways of partitioning applications at an operations level. We believe that
application monitoring can also be understood from a workload perspective, with
results such as load predictions, that in turn can lead to better resource
provisioning and smarter offloading systems. For details we refer to [26] and [27].

Resource Management: resource discovery and provisioning is hardly
considered. Many approaches refer to opportunistic offloading [3], resource
scavenging, cyber foraging [1], and so on. However, cloud providers, with
expertise in discovery and provisioning, can efficiently offer their resources to the
mobile software market, a market with hundreds of millions of users. [25]

Offload Process: research can be made on partial and parallel offloading,
as well as exploiting the region of interest. Moreover, experimental setup can be
better tuned for real-life applications, as most of the current efforts propose
experiments with few clients and sometimes with laptops instead of mobiles. We
refer to [25] for details on a novel Exploratory Space of offloading concerns.

As an example of our work on offloading, we experiment with several
offloading techniques on OpenTTD, a popular open-source simulation game. We
modify it for instrumentation, repeatability and offloading capabilities. Fig. 3
shows two of the metrics we collect, CPU load and in-game time, throughout 10

Offloading for mobile devices: a survey 13

minute gaming sessions, using a mobile device as client and a laptop as cloudlet
resource provider.

Fig. 3. Comparison of local running of AIs (red) with offloaded running of AIs (green)

Both charts indicate that, without offloading, the game slows down, to

compen-sate for the lack of processing power of the client device. As indicated by
the values in the right-hand chart, as well as by the number of spikes in the left-
hand chart, in a 10 minute gaming session, the offloaded version covers almost 8
in-game months, while the local version covers only 4 in-game months.

Orthogonal Concerns: our taxonomy identifies at item D.2. the
adaptability of the system as a key orthogonal concern. Adaptation can be
performed in terms of quality of the result, network access or admission control. It
is often a good companion to offloading and sometimes even a better alternative.
Finding a good balance between offloading and adaptation can be a novel
approach for performance optimization.

For details, we refer to our application domain exploration, published in
several papers. In [24] and [29] we investigate Communication Adaptation and
Offloading for distributed applications for the mobile device and custom hardware
extensions, such as sensor devices and home automation networks. In [9] and [10]
we investigate Computation Adaptation and Offloading for loop-based
applications, with a focus on video processing – e.g. augmented reality application
– and video rendering applications – e.g. popular simulation game.

5. Conclusion

In this paper, we survey existing research efforts regarding offloading for
mobile devices and, to structure this vast material, we propose a primer on
offloading, a General Offloading Model and a Taxonomy for Offloading
Concerns. We also identify research directions: we emphasize the balance
between offloading and adaptation, and outline the opportunity for novel

14 Alexandru-Corneliu Olteanu, Nicolae Ţăpuş

offloading mechanisms, such as parallel offloading and partial offloading. We
believe focusing on a specific appli-cation domain can o er better insights on
application monitoring and offloading techniques, while maintaining a high level
of applicability. We refer to our studies on online social applications in terms of
statistically modeling the workloads [26] and conducting offloading design space
exploration [25].

Acknowledgments

The authors would like to thank Alexandru Iosup. This work is funded by
the Sectoral Operational Programme Human Resources Development 2007-2013
of the Romanian Ministry of Labour, Family, and Social Protection through
POSDRU/107/1.5/S/76909.

Offloading for mobile devices: a survey 15

R E F E R E N C E S

[1] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb. Simplifying cyber foraging for
mobile devices. MobiSys '07, pages 272-285. ACM, 2007.

[2] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud: elastic execution
between mobile device and cloud. CCS '07, pages 301-314. ACM, 2011.

[3] R. I. Ciobanu, C. Dobre, and V. Cristea. Sprint: Social prediction-based opportunistic
routing. 2013.

[4] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl.
Maui: making smartphones last longer with code offload. MobiSys '10, p 49-62. ACM, 2010.

[5] H. Eom, P. St Juste, R. Figueiredo, O. Tickoo, R. Illikkal, and R. Iyer. Snarf: a social
networking-inspired accelerator remoting framework. MCC '12, pages 29-34. ACM, 2012.

[6] Facebook reaches one billion users, 2012. online: http://bit.ly/QSHk1P, access May 2013.
[7] M. Ferber, T. Rauber, M. Torres, and T. Holvoet. Resource allocation for cloud-assisted

mobile applications. IEEE Cloud '12, pages 400 -407, june 2012.
[8] H. R. Flores and S. Srirama. Adaptive code offloading for mobile cloud applications: ex-

ploiting fuzzy sets and evidence-based learning. ACM MCS'13, pages 9-16. ACM, 2013.
[9] A. Fasui, A. C. Olteanu, and N. Tapus. Fault tolerant surveillance system based on a network

of mobile devices. In RoEduNet, 2013. Available: http://bit.ly/WCOr0K.
[10] A. Gherghina, A. C. Olteanu, and N. Tapus. A marker-based augmented reality system for

mobile devices. In RoEduNet, 2013. Available: http://bit.ly/XXPLYV.
[11] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso. Calling the cloud: enabling mobile

phones as interfaces to cloud applications. In Middleware 2009. Springer, 2009. p.83-102.
[12] Google, Inc. Android Cloud to Device Messaging Framework, 2012.
[13] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic. Adaptive offloading for

pervasive computing. Pervasive Computing, IEEE, 3(3):66-73, 2004.
[14] M. A. Hassan and S. Chen. Mobile mapreduce: Minimizing response time of computing

intensive mobile applications. In MobiCASE, pages 41-59, 2011.
[15] D. T. Hoang, D. Niyato, and P. Wang. Optimal admission control policy for mobile cloud

computing hotspot with cloudlet. WCNC '12, pages 3145-3149. IEEE, 2012.
[16] Y.-J. Hong, K. Kumar, and Y.-H. Lu. volume ISCAS '09, pages 1673 -1676, may 2009.
[17] G. Huerta-Canepa and D. Lee. A virtual cloud computing provider for mobile devices. MCS

'10, pages 6:1-6:5, New York, NY, USA, 2010. ACM.
[18] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo: A computation offloading frame-

work for smartphones. volume 76 of MCAS'12, pages 59-79. Springer, 2012.
[19] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Energy e cient information monitoring

applications on smartphones through communication offloading. Mobicase, 2012.
[20] A. Klein, C. Mannweiler, J. Schneider, and H. D. Schotten. Access schemes for mobile cloud

computing. MDM'10, pages 387-392. IEEE, 2010.
[21] K. Kumar and Y.-H. Lu. Cloud computing for mobile users: Can offloading computation

save energy? IEEE Computer, 43(4):51-56, 2010.
[22] E. Lagerspetz and S. Tarkoma. Mobile search and the cloud: The benefits of offloading.

PERCOM'11, pages 117 -122, march 2011.
[23] R.-C. Marin and C. Dobre. Reaching for the clouds: contextually enhancing smartphones for

energy efficiency. 2013.
[24] A. Olteanu, G. D. Oprina, N. T~apus, and S. Zeisberg. Enabling mobile devices for home

automation using zigbee. In CSCS, pages 189-195. IEEE, 2013.
[25] A. C. Olteanu, N. Tapus, and A. Iosup. Extending the capabilities of mobile devices for

online social applications through cloud offloading. In CCGRID, pages 160-163, 2013.
[26] A. C. Olteanu, A. Iosup, and N. T~apus. Towards a workload model for online social appli-

cations: Icpe 2013 work-in-progress paper. In ICPE, pages 319-322. ACM, 2013.

16 Alexandru-Corneliu Olteanu, Nicolae Ţăpuş

[27] A. C. Olteanu, A. Iosup, N. Tapus, and F. Kuipers. A workload evolution model for online
social games. Internet Computing. submitted.

[28] S. Ou, K. Yang, and J. Zhang. An e ective offloading middleware for pervasive services on
mobile devices. Pervasive and Mobile Computing, 3(4):362-385, 2007.

[29] D. O. Rizea, D. S. Tudose, A. C. Olteanu, and N. Tapus. Adaptive query algorithm for
location oriented applications. In RoEduNet, 2013. Available: http://bit.ly/WGXRbg.

[30] M. Satyanarayanan. Pervasive computing: Vision and challenges. Personal Communica-
tions, IEEE, 8(4):10-17, 2001.

[31] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based cloudlets in
mobile computing. IEEE Perv. Comp., 2009.

[32] T. Verbelen, et al. Aiolos: Middleware for improving mobile application performance
through cyber foraging. Journal of Systems and Software, 85(11):2629-2639, 2012.

[33] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt. Cloudlets: Bringing the cloud to the
mobile user. In MCCS, pages 29-36. ACM, 2012.

[34] S. Wang and S. Dey. Rendering adaptation to address communication and computation
constraints in cloud mobile gaming. In GLOBECOM '10, IEEE, pages 1-6. IEEE, 2010.

[35] T. Yan, V. Kumar, and D. Ganesan. Crowdsearch: exploiting crowds for accurate real-time
image search on mobile phones. In MSAS, pages 77-90. ACM, 2010.

[36] ZDNet. 10 ways cloud computing will change in 2013. online: http://zd.net/SA6d1F, last
access Jan 2013.

[37] X. Zhang, S. Jeong, A. Kunjithapatham, and S. Gibbs. Towards an elastic application model
for augmenting computing capabilities of mobile platforms. In Mobile wireless middleware,
operating systems, and applications, pages 161-174. Springer, 2010.

