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A PARALLEL APPROXIMATION ALGORITHM FOR
MINIMUM AREA POLYGONIZATION BASED ON
CLUSTERING

Saeed ASAEEDI!, Mahsa Soheil SHAMAEE?

Minimum area polygonization is a well-known NP-complete problem in
computational geometry. It is the problem of finding a simple polygon with minimum
area for a given set of points in the plane. We present a parallel approximation
algorithm based on clustering to solve this problem in polynomial time. The
algorithm has four phases: clustering the points into the meaningful parts,
reclustering the big clusters to the smaller ones, finding minimum area polygon for
each cluster and, finally merging the polygons. We implement the algorithm and
present the results of experiments by comparing the previous works. We compare
the average score obtained by our algorithm and that of the previous methods. The
score obtained by an algorithm is the ratio given by the area of the computed
polygon using that algorithm divided by the area of the convex hull.

Keywords: Minimum area polygonization, Approximation algorithm,
Hierarchical clustering, Partitional clustering, Computational geometry

1. Introduction

Minimum Area Polygonization (MAP) was shown to be NP-complete by
Fekete [1, 2], who also proved that no polynomial time approximation algorithm
exists for MAP [3]. It is proved in [4] that computing a-Concave hull, as a
generalization of MAP, is still NP-complete. The a-Concave hull on a set of
points is the minimum area simple polygon containing those points with angular
constraint.

The most related problem to MAP is Traveling Salesman Problem (TSP).
Although there exist many algorithms to approximate and randomize TSP [5, 6, 7,
8, 9, 10], there are few studies on MAP. Taranilla et al. [11] presented three
heuristic algorithms to obtain approximate solutions for MAP. Crombez et al. [12]
proposed two algorithms, greedy method and local search, to find the maximum
and minimum area polygons on a set of points. Maximum area polygonization
(MAXP) is NP-hard same as MAP [1, 2]. Fekete presented a 1/2-approximation
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algorithm for MAXP [3]. Using the technique of randomized incremental
construction, Peethambaran et al. [13] presented a greedy heuristic for MAP and
MAXP. Muravitskiy and Tereshchenko [14] gave a greedy algorithm to solve
MAP. The idea of the algorithm is simple: Compute the convex hull of the points
and remove the largest possible triangle constructed by the inner points
decrementally. Osiponok and Tereshchenko proposed a divide and conquer
algorithm [15]: Divide the set of points into two subsets, construct approximated
minimum area polygon recursively, and finally merge them.

In [16] a randomized approximation algorithm is presented for minimal
and maximal volume polyhedronization of three-dimensional point sets. As the
recent study, Fekete et al. [17] developed exact methods for MAP and MAXP
based on integer programming. In recent years, a workshop was held at the 2019
Computational Geometry Week (CG Week) in Portland that focused on optimum
area polygonization [18, 19].

In [20, 21] cluster polygonization had investigated by Lee and Estivill-
Castro. They presented a linear time algorithm to transform point clusters into
polygons. In this paper, we use clustering algorithms to split the points into small
enough subsets, then transform each cluster into minimum area polygon locally
and finally merge the computed polygons trying to keep minimality.

Two main categories of clustering are partitioning and hierarchical.
Agglomerative or divisive hierarchical algorithms try to build a hierarchy of
clusters and they are generally parameter-less. In this paper, we use the
agglomerative hierarchical clustering algorithm presented in [22] to cluster the
points into the meaningful parts. In this step, the number of clusters is not
determined exactly, and it depends on the position of the points. The k-means
algorithm [23] is a well-known partitional clustering method. Here, we use the k-
means algorithm to recluster the big clusters to the fixed size smaller ones. We
find the minimum area polygon on each cluster and then merge them to construct
the approximated minimum area polygon on the points. In [24, 15] some polygon
merging algorithms are shown. We present a new merging algorithm to keep
minimality as much as possible. The rest of the paper is as follows: In the section
2, the parallel approximation algorithm is presented to solve MAP. In section 3,
the numerical results are presented and discussed. Finally in section 4, we
conclude the paper highlighting its achievements.

2. Approximation algorithm for MAP

Let S be a set of points in the plane and Pm(S) be the simple polygon on S
with the smallest possible area. In this section, we present a parallel
approximation algorithm to compute Pw(S). The algorithm has four phases: (1)
classify S into clusters of points close to each other by using agglomerative
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hierarchical clustering algorithm, (2) recluster the big clusters containing more
than 6 points into fixed size partitions, (3) parallelly, compute Pm(si) for each final
cluster si of points, and (4) merge all polygons Pm(si) by adding connecting
rectangles with smallest areas.

In [22], an agglomerative hierarchical clustering algorithm using a
sweeping approach was presented. The algorithm uses two horizontal sweep-lines
moving through S from bottom to top, and the clusters were constructed during
this process. The time complexity of the algorithm is O(n log n). We use this
clustering technique for the first phase of our algorithm. Fig. 1.b, Fig. 2.b and Fig.
3.b show how clustering algorithm works for random points, the dataset taken
from SPAETH cluster analysis database [25] and sample points from TSPLIB
benchmark data [26], respectively.
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Fig. 1. (a) Set of 500 random points, (b) Output of first phase, (c) Output of second phase.
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The presented algorithm in this paper is a divide and conquer algorithm.
The algorithm first split the points into the small enough subsets, then compute
minimum area polygon on each subset using the exact algorithm, and finally
merge the computed polygons. Some clusters obtained from the first phase may
be too large and therefore the exact algorithm is not efficient for these clusters. As
the second phase, we use a partitional clustering algorithm to recluster the big
clusters for obtaining small subsets.

We use the k-means algorithm to split the big clusters into fixed size
partitions. Since any exact algorithm is fast enough on the set of 6 points, we
consider this fixed size to be 6. We investigate the effect of different values for
this cluster size on the efficiency of our algorithm in section 3. Let S; be the set of
ni points of ith cluster such that ni>6. We run the k-means algorithm on S; with
k=ni/6 centroids. Fig. 1.c, Fig. 2.c and Fig. 3.c depict the subclusters on random
points, SPAETH and TSPLIB, respectively.

The outputs of the second phase of the algorithm are clusters each of
which contains at most 6 points. In the next phase, we parallelly compute the
minimum area polygon on each cluster using an exact algorithm. The exact
algorithm is a full search of all simple polygons to find the minimum one. The
time complexity of this algorithm is constant, O(6!). Fig. 4.b, Fig. 5.b and Fig. 6.b
show the output of this phase for the sets of 100, 200 and 500 random points,
respectively.

As the final phase, we merge the polygons computed from the previous
phase. We connect the polygons with minimum area rectangles. To address this
issue, we use a greedy method: find the minimum area empty simple rectangle R
that connects two polygons without intersecting with others, and merge them
using R. Fig. 4.c, Fig. 5.c and Fig. 6.c illustrate how this greedy method works on
the sets of 100, 200 and 500 random points, respectively.
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Fig. 4. (2) Final clusters on a set of 100 points, (b) Minimum area polygon on each cluster, (c)
Merge the polygons to compute the approximated minimum area polygon.
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Fig. 5. (a) Final clusters on a set of 200 points, (b) Minimum area polygon on each cluster, (c)
Merge the polygons to compute the approximated minimum area polygon.
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Fig. 6. (2) Final clusters on a set of 500 points, (b) Minimum area polygon on each cluster, (c)

Merge the polygons to compute the approximated minimum area polygon.

Consequently, the pseudo code of our algorithm is shown in algorithm 2.1.
The function agglomerativeClustering partitions the input parameter, points, to
the clusters based on the presented algorithm in [22]. kMeans is a function with
parameters s (the input points) and n/6 (n=the size of s) that returns n/6 clusters of
s based on k-means method. The function parallelExactAlgorithm runs the exact
algorithm of MAP on each cluster of "secondClusters"”, parallelly. The polygons
returned by parallelExactAlgorithm are merged together by mergePolygons.

Algorithm 2.1 Parallel Approximation Algorithm for MAP

Require: points € IR?
Ensure: approximatedPolygon
firstClusters < agglomerativeClustering(points)
secondClusters < ()
for each cluster s in firstClusters do
n « size(s)
if n > 6 then
newClusters < kMeans(s, ¢)
secondClusters < secondClusters + newClusters
else
secondClusters < secondClusters + s
end if
end for
polygons < parallel Exact Algorithm(secondClusters)
approzimated Polygon < mergePolygons(polygons)
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The function mergePolygons is described in algorithm 2.2:
Algorithm 2.2 mergePolygons

Require: polygons
Ensure: approzimatedPolygon
while size(polygons) > 1 do
recy j < Rectangle with the minimum area connecting two polygons P
and Pj in polygons
rec ¢ ming y recy y and i, j < arg ming yrecy j
newPolygon < Merge two polygons P; and P; using rec
Remove P; and P; from polygons
Add newPolygon to polygons
end while

approximatedPolygon < polygons

Since the time complexity of other phases are less than that of phase 4,
algorithm 2.2 and therefore algorithm 2.1 runs in O(n*) time where n is the
number of points.

3. Numerical results

In this section, we first compare our results with those of obtained from
the exact algorithm on the small datasets. Then we compare our algorithm with
previous studies such as [13], [15] and [27] on the uniform datasets of 2019 CG
Challenge [18, 19]. We implement the divide and conquer [15] and randomized
incremental [13] algorithms to compare with our approach. Fig. 7 shows the
results of these algorithms on the same set of 100 points. We also compare the
algorithms on the non-uniform datasets which are collections of the separate point
sets. Finally, we run our algorithm on existing datasets such as TSPLIB, SPAETH
and instances of 2019 CG Challenge and obtain approximated minimum area
polygon on these datasets.
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Fig. 7. (a) The wavy shape polygon constructed by divide and conquer algorithm, (b) The
constructed polygon by randomized incremental algorithm.
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Table 1 shows the results of analyses of datasets of 6-11 points. On each
dataset, our algorithm is compared with the exact full search algorithm. In table 1,
the area values are the average over 100 instances for each size. The average of
execution time for each size is compared as shown in Fig. 8.

Comparison of our algorithm with the exact algorithm
Dataset size | Minimum area | Approximated area | Percentage

6 1375.66 1421.23 96.80

7 1568.535 1762.48 89.00

8 1485.43 1887.93 78.68

9 1504.080808 2020.707071 74.43
10 1496.782828 2033.838384 73.59
11 1396.35 1945.9 71.75

1200

Execution Time (Second)

Fig. 8. Comparison of the execution time of our algorithm and the exact algorithm.

Our Algorithm

Instance Size

9

Exact Algorithm

Table 1

We run our algorithm on a collection of benchmark instances of 2019 CG
Challenge [18]. We compare our result with that of obtained by the approximation
algorithm, APX, presented in [15], the randomized algorithm, RAND, presented
in [13] and the greedy algorithm, Greedy, presented in [27]. The Greedy
algorithm is one of the best approximation algorithms presented in 2019 CG
Challenge (See [19]). We compare the scores obtained by the algorithms in Fig. 9.
The score obtained by an algorithm for each instance is the ratio given by the area
of the computed polygon using that algorithm divided by the area of the convex

hull.
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Fig. 9. The comparison results of our algorithm, APX, RAND and Greedy on uniform datasets.

Since our algorithm is based on clustering, it works better than other
algorithms on datasets with the collections of the separate parts, i.e., the points are
not located uniformly over the plane. Fig. 10 shows an example of these datasets
and the results of our algorithm and Greedy algorithm on it. Also, Fig. 11
illustrates the efficiency of our algorithm compared with APX, RAND and
Greedy on these datasets. In Fig. 11, the average scores are computed over 100
instances of non-uniform datasets of 10, 15, ..., 500 points.

Area=94735.5, Score=0.1164 Area=148388, Score=0.1822

. . o » o o o
.~ o o . o o B2 e M 1

(a) (b) (c)
Fig. 10. (a) A non-uniform dataset of points, (b) The polygon computed by our algorithm, (c) The
polygon computed by Greedy.
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Fig. 11. The comparison results of our algorithm, APX, RAND and Greedy on non-uniform

datasets.

Table 2 shows the results of our algorithm on datasets of TSPLIB,
SPAETH and CG Challenge. In this table, U100, U200 and U500 are uniform-
0000100-1, uniform-0000200-1 and uniform-0000500-1 instances of 2019 CG
Challenge, respectively. Also, bier127, pr439 and ali535 are instances of TSPLIB
and spaeth04, spaeth06 and spaeth08 are instances of SPAETH. The outputs of
our algorithm on U500, spaeth06 and bier127 are depicted in Fig. 12.

Table 2

Approximated minimum area polygon on instances of TSPLIB, SPAETH and 2019 CG

Challenge
Dataset App_roximated Execution time
minimum area (Seconds)

U100 6246074 351.1284912
U200 28521846 2880.690073
U500 168670866 33502.14948
d198 23297.26 2760.576258
ch150 96407.25203 957.4282641
bier127 31123728 444.6934746
spaeth04 387.5 261.4493785
spaeth06 148 111.4929528
spaeth08 379 227.0705052

Remark 3.1. We run our algorithm for the different values of the fixed
cluster size. Fig. 13 and Fig. 14 show the average score obtained by our algorithm
and the execution time of our algorithm over the datasets of 10, 20, 50, 80 and
100 points for the cluster size of 4, 5, 6, 7 and 8 points, respectively.
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(b) I R
Fig. 12. The computed polygon by our algorithm on (a) instance uniform-0000500-1 of 2019 CG
Challenge, (b) spaeth06 and (c) bier127.
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Fig. 13. The average score obtained by our algorithm over the datasets of 10, 20, 50, 80 and 100
points for the different cluster sizes.
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Fig. 14. The average execution time of our algorithm over the datasets of 10, 20, 50, 80 and 100
points for the different cluster sizes.
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4. Conclusions and future work

In this paper, we presented a parallel approximation algorithm for
minimum area polygonization based on clustering. On a set S of points, we
clustered S to meaningful parts and split the large parts to small enough subsets.
Parallelly, minimum area polygon is computed on each final subsets by exact
algorithm. Finally, the minimum area polygons are merged together to construct
an approximated polygon with minimum area on S. Based on our experimental
results, our algorithm is shown to be more efficient than previous studies on non-
uniform datasets. As a future work, we are going to use this algorithm to solve
maximum area polygonization and minimum and maximum perimeter
polygonization. Also, the constraints on the angles, area and perimeter can be
added to the considered problem. As another future work, the algorithm can be
extended to work with the points on the higher dimensions.121
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