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ON PRIME A-IDEALS IN MV-MODULES

F. Forouzesh', E. Eslami?, A. Borumand Saeid?

In this paper, we study A-ideals in MV -modules. We introduce the no-
tion of --prime ideals in PMYV -algebras and study the relations between --prime
ideals and MV F-algebras. Also we define prime A-ideals in MV -modules and
annihilator of A-ideals in MV -modules. We investigate some relations between
prime A-ideals and annihilators of A-ideals in MV -modules.
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1. Introduction and Preliminaries

In 2003, Di Nola, et.al. introduced the notion of MV -modules over a PMV -
algebra and A-ideals in MV-modules [5]. These are structures that naturally corre-
spond to lu-modules over lu-rings [5]. Recall that an [u-ring is a pair (R,u), where
(R, ®, -, 0, <) is an [l-ring and wu is a strong unit of R (i.e, u is a strong unit of
the underlying l-group) such that - u < u and l-ring is a structure (R, +, -, 0, <)
that (R, 4, 0, <) is an l-group such that for any z,y € R, z > 0 and y > 0, we
have x - y > 0. They proved that the category of lu-modules over a given lu-ring
(R,v) is equivalent to the category of MV-modules over I'(R, v). They also proved
there is a natural equivalence between MV -modules and truncated modules [5]. A.
Dvurecenskij and A. Di Nola in [6] introduced the notion of PMV-algebras, that is
MV -algebras whose product operation (-) is defined on the whole MV '-algebra. This
operation is associative and left /right distributive with respect to partially defined
addition. They showed that the category of product MV -algebras is categorically
equivalent to the category of associative unital [-rings. In addition, they introduced
and studied MV F-algebras [6]. They also introduced --ideals in PMV-algebras.
Then they showed that: Any MV F-algebra is a subdirect product of subdirectly
irreducible MV F-algebras [6, Corollary 5.6]. Thus they concluded that a product
MYV-algebra is an MV F-ring if and only if it is a subdirect product of linearly or-
dered product MV-algebras [6, Theorem 5.8].

1 Assistant Professor of Math, Higher Education complex of Bam, Iran, e-mail:
frouzesh@bam.ac.ir

2 Professor of Math, Dept. of Math., Shahid Bahonar University of Kerman, Kerman, Iran,
e-mail: esfandiar.eslami@uk.ac.ir

3 Associate Professor of Math, Dept. of Math., Shahid Bahonar University of Kerman, Kerman,
Iran, e-mail: arsham@mail.uk.ac.ir

181



182 F. Forouzesh, E. Eslami, A. Borumand Saeid

In the present paper, we define --prime ideals in PMV-algebras. Using this no-
tion of ideals we construct the quotient PM V-algebras and investigate the relations
between --prime ideals and MV F-algebras. Moreover, we study A-ideals in MV-
modules, and introduce the notion of prime A-ideals and annihilators of these ideals
in MV -modules.

We investigate the relations between prime A-ideals and annihilators of A-ideals in
MYV-modules. Finally we prove that if h : M — N is an A-module homomorphism
then all prime A-ideals of N and prime A-ideals of M that contain kerh are in one
to one correspondence.

Definition 1.1. [3] An MV -algebra is a structure (M, @, *, 0) where @ is a binary
operation, *, is a unary operation, and 0 is a constant such that the following
conditions are satisfied for any a,b € M :

(MV1) (M, @, 0) is an abelian monoid,

(MV2) (@*)* = a,

(MV3) 0* @ a=0"

(MV4) (a* @b)* D b= (b*®a) Da.

If we define the constant 1 = 0* and the auxiliary operations @,V and A by:
a®b=(a"Hb")", aVb=a® (boa"),
aANb=a® (bda") aSb=a®b",

then (M, ®,1) is an abelian monoid and the structure (M, V, A, 0, 1) is a bounded
distributive lattice. In an MV-algebra M, the Chang distance function is

d: M x M — M, d(a,b) :=(a®b")® (b®a™).

We recall that an lu-group is an algebra (G, +, -, 0, V, A, u), where the

following properties hold:

(a) (G, +, -, 0) is a group,

(b) (G, Vv, A) is a lattice,

(c) For any z,y,a,b € G, x <y impliesa+z+b<a+y+b,

(d) u > 0 is strong unit for G (that is, for all x € G there is some natural number
n > 1 such that —nu < z < nu) [1].

We will denote by MV the category whose objects are M V-algebras and whose
morphisms are MV -algebra homomorphisms and US the category of lu-groups. The
elements of this category are pairs (G, u) where G is an Abelian I-group and u is a
strong unit of G. The morphisms will be [-group homomorphisms which preserve
the strong unit. The functor that establishes the categorical equivalence between
MYV and UG is

r:ug — mv.
such that T'(G,u) := [0,u]g for any lu-group (G,u), T'(h):= h ||, for any lu-
groups homomorphism [9].
The above result allows us to consider an MV -algebra, when necessary, as an inter-
val in the positive cone of an [-group.
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Thus, many definitions and properties can be transferred from [-groups to MV-
algebras. For example, the group addition becomes a partial operation when it is
restricted to an interval so we may define a partial addition on an MV-algebra M
as follows:

for any =,y € M, x + y is defined iff x < y*

and, in this case, x + y := x @ y, where + is the partial addition on M [7].

Also, cancellation rule holds in it, That is, if z 4+ 2 < z + y then x < y [5].

Lemma 1.1. [3] Let M be an MV-algebra. If z,y,2z,t € M and d is a Chang
distance function, then

(1) z <y iff y* <",

(2) Ifx <y, thenz®z2<ydzandz®z<yoz,

(3) (@Vy) =a"ANy", (xAy)" =2" V",

(4) d(z,y) =0 iff x =y,

(5) d(x,0) = z,d(x,1) = x*,

(6) d(z, z) < d(z,y) & d(y, 2),

(7) d(z*,y*) = d(z,y),

(8) If t <y and z <t, thenx ®z <y dt.

Lemma 1.2. [3] Let M be an MV-algebra. For z,y € M, the following conditions
are equivalent:

) z*py=1,

(2)zo0y* =0,

(3) There is an element z € M such that =z ® z = y,

4 y=z®(your).

For any two elements z,y € M, x <y iff z and y satisfy the equivalent conditions
(1)-(4) in the above lemma.

Definition 1.2. [3] An ideal of an MV-algebra M is a nonempty subset I of M
satisfying the following conditions:

(I)Ifzel,ye Mandy <z thenycel,

(I2) Ifx,y eI, thenzdyel.

We denote by Id(M) the set of ideals of an MV-algebra M.

Definition 1.3. [3] A proper ideal P is a prime ideal of an MV-algebra M, if
x ANy € P, thenx € Porye P, forall z,y € M.

Definition 1.4. [6] A product MV -algebra (or PMV -algebra, for short) is a struc-
ture (A4, ®, *,-, 0), where (A, @, *, 0) is an MV-algebra and - is a binary associative
operation on A such that the following property is satisfied:

if z + vy is defined, then - z+y -z and z - x 4+ z - y are defined and

(x+y)-z=z-2+y-2, z-(x4+y)=z-x+2-y
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If A is PMV-algebra, then a unity for the product is an element e € A such that
e-x=x-e=gx forany x € A. A PMV-algebra that has unity for the product will
be called unital.

A -ideal of PMV-algebra A is an ideal I of MV -algebra A such that if a € I and
be Aentaila-belandb-a € I.

Lemma 1.3. [6] If A is a unital PMV-algebra, then:
(a) The unity for the product is e = 1,
(b) z-y <x Ay for any z,y € A.

Definition 1.5. [5] Let (4, @&, *, -, 0) be a PMV-algebra and (M, @, *, 0) an
MYV -algebra. We say that M is a (left) MV -module over A (or, simply, A-module)
if there is an external operation:

p: AxXM— M, ¢la,z)=az,

such that the following properties hold for any x,y € M and «a, 3 € A:
(1) If x + y is defined in M, then ax + ay is defined and

alx +y) = ar + oy,
(2) If a + S is defined in A then ax + Sz is defined in M and
(a+ p)z = ax + pz,

3) (a- f)z = aBx).
We say that M is a unital MV-module if A is a unital PMV-algebra and M is an
MYV -module over A such that 142z = x for any = € M.

Example 1.1. [5] Let M3(R) be the ring of square matrices of order 2 with real
elements and 0 be the matrix with all element 0. If we define the order relation on
1/2 1/2
1/2 1/2 )’
then A = I'(M2(R),v) is a PMV-algebra. Let R? = R xR be the direct product with
the order relation defined on components. If M = I'(R% ) is an M V-algebra, where
u=(1,1), then M is an A-module, where the external operation is the usual matrix

components A = (a;;)i j=1,2 > 0iff a;; > 0 for any ¢, j, such that v = (

multiplication (A, (x,y)) — A( o > . The above construction can be generalized
Y

for any order n > 2.
(1) TF (2, )+ (2, £) is defined in M, 50 (,y) < (21)* = (1,1)— (2,1) or (z,5)+ (2, ) <
(1,1), suppose that A = (aj)ij=1,2 such that a;; < 1/2 for i,j = 1,2. Hence

A(i)—l—A(i)SA( 1 > S(l,l).ThenA(flj>+A<i>isdeﬁnedinM.
(2) If A+ Bisdefinedin A,;so A< B*=v—Bor A+ B <w. Let X = (x,y) e M

such that (z,y) < (1,1) or z,y < 1. HenceA( Z: )+B( g > §v< 5 > < (1,1).
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x
Y

(3) (A.B) ( z > — A(B ( “”; >).

Definition 1.6. [5] Let M and N be two MV-modules over a PMV-algebra A. An

A-module homomorphism is an MV -algebra homomorphism h : M — N such that
h(ax) = ah(z), for any o € A and x € M.

ThenA( )—I—B(Zj)isdeﬁnedinM.

Definition 1.7. [5] Let M be an A-module. Then ideal I C M is called an A-ideal
if it satisfies the following condition:
ifeel and o € A, then ax € I.

Lemma 1.4. [5] If M is an A-module, then the following properties hold for any
x,y € M and «,8 € A:

(ax)* = oz + (1x)*, if + is defined,
x <y implies ax < ay,

a < B implies ar < fz,

i) (a2) © (ay)” < alz O y7),

) ale & y) < az d ay,

) d(az, ay) < ad(z,y).

Proposition 1.1. [5] If A is a unital PMV-algebra and M is a unital A-module,
then any ideal of M is an A-ideal. Thus, the ideals and the A-ideals of M coincide.

Remark 1.1. [5] Let M be an A-module and I C M an A-ideal of M. We recall
that the relation ~; defined by:

x ~yy ifand only if d(z,y) € I,
for any x,y € M, is a congruence with respect to the MV -algebra operations. We

notice that x ~y y implies ax ~1 ay, for any o € A. Thus, the quotient MV -algebra
M /I has a canonical structure of A-module

alz); = lax]l; or ax/I) = (azx)/I,
where [z]; is the congruence class of z. z/I = y/I if and only if d(x,y) € I and if
x,y € M, then /I <y/I if and only if x ® y* € I.

Definition 1.8. [4] A residuated lattice is an algebra (A, A, V, ®, —, 0, 1) of type
(2,2, 2,2,0,0) equipped with an order < satisfying the following:
(LRy) (A, A, V, 0, 1) is a bounded lattice,
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(LR2) (A, ®, 1) is a commutative monoid,
(LR3) ® and — are form an adjoint pair, i.e., ¢ < a — b if and only if a ©® ¢ < b, for
all a,b,c € A.

Remark 1.2. [2] Any Boolean algebra can be regarded as a residuated lattice where
the operations ® and A coincide and x — y = z* V y.

2. Some results on A-ideals in MV-modules

In the sequel A is a PMV-algebra and M is an A-module.

Remark 2.1. In general, the union of any family of A-ideals of M is not an A-ideal

of M.

Example 2.1. Let M be I'(R? u) such that v = (1,1), A = I'(Ma(R),v) and

v = 1/2 1/2 . By Example 1.1, M is an A-module but M = I'(R? u) =
1/2 1/2

1/2 1/2

1/2 1/2

We denote by Ida(M) the set of A-ideals of an MV-module over a PMV-
algebra A.
We recall that for a nonempty subset N C M, the smallest A-ideal of M which
contains N, i.e., (\{I € Ida(M): N C I}, is said to be the A-ideal of M generated
by N and will be denoted by (N].

[(0,0),(1,1)] and A = T(Mz(R), v) = [0, ( )]. Then Id4(M) = {(0,0), M}.

Proposition 2.1. Let M be an A-module.
(1) If N C M is a nonempty set, then we have (N|={ze M :2 <z, ®... Dz, P
a1y D ... d amym for some x1,...,Tn,Y1,...Ym € N,aq,...apy € A}, where by
(N], we mean the ideal generated by N.

In particular, for a € M,

(a] ={zx € M :x <na®m(aa) for some integer n,m >0},

(23) If I, Iy € Ida(M), then
LhivIb=(LUDLl={aeM:a<z®xzy forsome z1€l; and zy€ I},

(7i1) If z,y € A, then (z Ay] C (z] N (y].

Proof. (i) Wedenote I = {x € M : x < 21®...0x,Ba1y1®. . Dy, for some x1,...,2n,Y1,...Ym €
N,ai,...apny € A} and prove that I is the smallest A-ideal containing N. It is clear
that N C I,ifx € N,thenx € M,z <x®0 for some x € N,0€ A, hence, z € I.
Let a < band b € I. So there exist n > 1 and z1,...2, € N such that a < b <
T1D... DT, Pary1 D ... PR amYm. It follows that a € I. Now, let a,b € I. Then a <
21D, . . DT, P ®. . . Pamy,m for some x1,...,Tn,Y1,...Ym € N,aq,...0, € A,
and b < t1 & ... Bt ® P121 D ... D Pszs forsome ty,...,t5 21,...25 € N and
Bi,...0s € A, by Lemma 1.1 (8), we have a®b <21 ® ... Dx,, Dt1 D ... Dt D
Y1 D ... D anYm D L1721 D ... D Pszs,s0adbel. Let a € A, x € I. Then z <
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1P, . . Pr, a1 P. . . Pamymy, for some zi,...,Tn,Y1,...Ym € N, aq,...qm, € A,
by Lemma 1.4 (h), (j), we have az < ar1®...Qax, ® (a-a1)y1 D ... ® (- am)ym
for some Z1,...,Zn, Y1, -Ym € N, ¥1,...Ym € A such that v, = - a4, =1,...m.
Hence, axz € I. Thus, I is an A-ideal containing N. Let K be another A-ideal of
M that contains N and @ € I. Hence, a < 21 ® ... DTp ® a1y1 D ... D qpmym for
SOME X1, ..., Tn, Y1, --Ym € N, aq,...qy, € A. Since K is an A-ideal, it follows that
1®...0x, € Kand ayy; € K fori=1...m. Hence, 21 ® ... Bz, Da1y1 ®... P
amym € K, so a € K, we deduce that I C K. Therefore (N] = 1.

Clearly, for a € M

(a] ={z € M : 2z <na®m(aa) for some integers n,m > 0}.

(73) Follows by (1).
(731) Obviously, z € (z] and y € (y]. Since x Ay < x,y, we get that z Ay € (z] and
z Ay € (y]. It follows that z Ay € (2] N (y].
Now, let ¢t € (x Ay]. Then, t < n(x Ay) & m(a(z Ay)) for some integers n,m > 0,
we deduce that t € (z] N (y], so (x Ay] C (z] N (y].

g

If in the above theorem, we consider M unitary A-module, then we have:

Corollary 2.1. Let M be a unitary A-module. If N C M is a nonempty set, then
we have: (i) (N]={x € M : 2z < a1z1 D ... d apzr, forsome z1,...,z, €
Nand ai,...a, € A}, In particular, for a € M,

(a] ={x € M : x <n(aa) for some integer n >0},

(i) It Ih, I3 € Ids (M), then [1 VI = (I1UI) ={a € M : a < 1®Pxe for some x; €
Il,mg (S IQ},
(7i1) If z,y € A, then (z Ay] = (z] N (y].

For I € Ida(M) and a € A — I, we denote by I(a) = (a] VI = (I U{a}].

Remark 2.2. Let M be an A-module. Then
Ia)={zeM:z<y®madn(aa), forsome yecl, integers n,m>0,«a¢€
A}

Proof. Let T={zx e M : x <y®dmadn(aa), forsomey eI, integers n,m >
0, € A}. We suppose that, x € I(a) = (a]VI ={z € M : x < x1®y for some =z €
(a] and y € I}. Since 21 € (a], then x; < ma @ n(aa), for some integer m,n > 0
and a € A, we have x < z1 &y < ma ® n(aa) ®y, it follows that =z € T
Conversely, if © € T, then we get that < y @ ma @ n(aa), for some y € I and
integer n > 0,21 = ma ® n(aa) € (a], so x < y @ x; such that x; € (a] and y € 1.
It follows that x € (a] V I = I(a). O

Remark 2.3. Let M be a unitary A-module. We have: I(a) = {z € M : z <
y®n(aa), for some ye€l and integer n > 0}.
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Corollary 2.2. Let [ € IdaM and a,b € A— 1. Then I(a Ab) C I(a) NI(b).

Proof. We have aAb < y@m(aAb)®n(a(aAd)) for some y € I and integers m,n > 0.
Then a Ab € I(aAb). Since aAb<a,band a € (a], be (b],soaAbe (a] CI(a)
and a A b e (b] C I(b), also I C I(a), I C I(b), we deduce that a Ab € I(a) N I(D),
if x € I{(aAb), then <y ®m(aAb) Bn(alaAb)). It follows that = € I(a) N I(D),
Thus I(a Ab) C I(a)NI(b). O

Corollary 2.3. Let M be a unitary A-module, I € Idg4M and a,b € A — I. Then
I(aNb) =I(a)NI(D).

Proof. Since M is a unitary A-module, by Proposition 1.1, it is clear that I € Id(M),
so [(aAb)=1I(a)NI(b) [11]. O

We recall that if A : My — M> is an A-module homomorphism, then ker(h) =
{z € M; : h(xz) = 0} is an A-ideal of M; [5].

Lemma 2.1. Let M, N be MV-modules over a PMV-algebra A and f: M — N
be an A-module homomorphism. Then the following properties hold:

(i) For each ideal J € Ida(N), the set f~1(J) = {z € M : f(x) € J} is an ideal of
A. Thus, in particular, ker(f) € Ida(M),

(1) f(z) < f(y) if and only if x &y € ker(f),

(73t) f is injective if and only if ker(f) = {0},

(iv) ker(f) # M if and only if N is nontrivial.

The well-known isomorphism theorems have corresponding versions for M V-
modules. We mention only the first and the second isomorphism theorem.

Theorem 2.1. (The first isomorphism theorem) If M and N are two MV -modules
and f: M — N is an A-module homomorphism, then M/ker(f) and Im(f) are
isomorphic MV-modules.

Theorem 2.2. (The second isomorphism theorem) If M is an MV-module and
I,J are two A-ideals such that I C J, then (M/I)/P;(J) and M/J are isomorphic
MV-module, such that Pr: M — M/I is the quotient module of M.

Proposition 2.2. If ~ is a congruence relation on M, then I. ={x € M : z ~
0} € Ida(M) and x ~ y if and only if d(z,y) ~ 0 [11].

Proposition 2.3. Let I be an A-ideal of M and ~ be a congruence relation on M.
The assignment I ~»~; is a bijection from the set Ida(M) of A-ideals of M onto
the set of congruences on M; more precisely, the function « : Ids(M) — Con(M)
defined by a(I) =~7 is an isomorphism of partially ordered sets [11].

3. Prime A-ideals in an MV-module

In the sequel A is a PMV-algebra and M is an MV-module.
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Definition 3.1. Let N be an A-ideal of M.
(N:M)={reA:rM C N}
such that M = {rm :m € M}.

Definition 3.2. Let N be an A-ideal. We denote annihilator of N by Anna(N),
which is defined as Anna(N) ={r € A:rN = 0}.

Using Lemma 3.11 from [5], we obtain more properties of MV -modules.

Lemma 3.1. The following properties hold for any x,m € M and o, 3 € A:
(a) am + (fm)* > (a + 5*)m,

() (@ ® B)m > am & Bm,

(c) (ax)* © (Bz) < (a* © Pz,

(d) d(ax, Bz) < (e B)z,

(e) (a® B)r < ax & fz.

Proof. (a) by Lemma 1.4 (e), we have 8*m < (Sm)*, hence
am + (fm)* > am + *m = (a + *)m.

(b) Since a ® f < a, 8, (@ B)m < am, Bm. It follows that (« ® f)m = (. ® B)m A
am = [(@ ® B)m + (am)*] © (am), using (a), we get (@@ A)m > ((a ® ) +a*)m ©
(am) = (a* V f)m ® am > fm © am.

(c) Since a, f < aV 3, by Lemma 1.4 (h), we get that ax V Sz < (aV B)z. Thus,
we have

((az) © (B2)%) + Bz = ax V bz < (aV flz = ((a © ) + Bz = (¢ © f7)z + fu.

Since cancellation rule holds in it [5], the desired inequality is straightforward.

(d) d(ax, Bx) = [ax ® (Bz)*] ® [(ax)* © Bz] by using (c), we get that
d(ox,fzr) < z(a @ %)+ x(a” © ) = ((a© B) + (o © B))x = d(a, B)x.

(e) By using (¢) and Lemma 1.4 (h), we get that
(@® Bz o (ax)” < (@ ) © )z = (A B)z < f.
It follows that (e« ® f)r = (a@ f)zVax < [(a® p)z O (ax)* | @axr < frdaxr. O

Proposition 3.1. Let N be an A-ideal of M. Then Anns(N) is a --ideal of a
PMV-algebra A.

Proof. Suppose that a,b € A such that a < b, and b € Anng(N), then a < b and
br = 0 for every z € N, it follows from Lemma 1.4 (h), az < bz and bx = 0, then
ax = 0, for every x € N. Hence aN = 0. Therefore a € Anna(N).
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If a,b € Annas(N), then aN = 0 and bN = 0. By Lemma 3.1 (e), for every z € N,
we have
(a®b)x < azx®bxr =D0.

So (a @ b)N =0, hence a b € Anna(N).

Let « € A, r € Anna(N). We show that o -r € Anna(N). Since r € Anny(N), it
follows that 7N = 0 or for every x € N, rz = 0. Now, we have

(a-r)r=a(rr) = a0 =0
for every x € N, then o - r € Anng(N). Therefore Anns(N) is a -ideal of A. O

Remark 3.1. If N is an A-ideal of a M'V-module M, then (N : M) = Anna(M/N).
Hence (N : M) is a --ideal of A.

Definition 3.3. Let N be an A-ideal of M and T(N) ={n € N :30 #a € A;an =
0}. Then T'(N) is called torsion A-ideal of N.

Definition 3.4. Let P be a -ideal of A. P is called a --prime if (i) P # A, (ii) for
every a,b€ A,ifa-b€ P,thena € Porbe P.

Remark 3.2. Let N be an A-ideal of M and {0} be a --prime ideal of A. Then
T(N) is an A-ideal of M.

Proof. (i) Let n,m € T(N). Then there exist 0 # a,b € A such that an =0, bm =
0. We consider ¢ := a-b # 0, by Lemma 1.4 (j), we have (a - b)(m & n) <
(a-b)ma® (a-b)n = a(bm)®b(an) = 0. Then (a-b)(m@n) = 0. Hence mdn € T'(N)
(73) For every m,n € M such that m < n, and n € T(N), we show that m € T'(N)
Since n € T(N), there exists 0 # a € A; an = 0. Since m < n, by Lemma 1.4 (g)
we get that am < an and an = 0, it follows that am = 0, so m € T(N).

(731) Let m € T(N) and a € A. Then there exists 0 # b € A; bm =0, a(bm) =
a0 = 0, by Lemma 1.4 (b), a(bm) = 0 or b(am) = (b-a)m = (a-b)m = a(bm) = 0.
Therefore am € T'(N).

)

0

Example 3.1. Let Q@ = {1,2} and M = A = P(Q) = {{1},{2},{1,2},0}. Then A
is a PMV-algebra with & = U, and ® = - =N. Hence M is an MV-module over A
with the external operation defined by AX := AN X for every A € Aand X ¢ M
[5]. Clearly, I = {0} is an A-ideal. We have
TM)={BeM:30#Ac A, ANB =0} ={0,{1},{2}}, TW0)={B=0:3¢#
Ae A; AN B =0} = {0},
Anng{0} ={AeA: AD=0} = A, AnngaM)={AecA: AM =0} = {0},
DM ={AcA AMCO}={0}, M:M)={AcA: AMCM} =A.
Also I1 = {0, {1}} is an A-ideal of M, so Anny(I) = {B € A: B, =0} = {0, {2}},
T(Lh)={Cel,:30#Aec A;CA=0} ={{1},0} and
(I : M) ={BeA:BMCIL}={0,{1}}.
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Example 3.2. In Example 2.1, A = I'(Mz(R),v) is a PMV-algebra such that
v = <]-/2 1/2> P:{ﬁ} iSnOta-_pI‘ime ldealofA’ lfC: (0 1/2) and

1/2 1/2 0 1/2
12 1/2
D—( 0 0 ),then

(0 1)2 1/2 1/2\ -
C.D_<O 1/2>.< [ >_0.
But C # 0 and D # 0.

It is well known that if A is a unital PMV-algebra, then x -y < x Ay, for any
x,y € A. From this, we can prove the following lemma:

Lemma 3.2. if A is a unital PMV-algebra and P is a --prime ideal of A, then P is
a prime ideal of A.

Proof. Let P be a --prime ideal of A. Suppose that x Ay € P, for any =,y € A. It
follows from Lemma 1.3 (b), x-y <z Ay € P and P is a --ideal, so = -y € P. Since
P is a --prime ideal, hence x € P or y € P. Thus P is a prime ideal of A. O

We recall that a product MV-algebra A is said to be an MV F-algebra if for
all a,b,c € A,

aAb=0implies (a-c) A\b=0=(c-a)Ab.
Also, any linearly ordered PMV-algebra is an MV F-algebra [6].

Theorem 3.1. Let A be a unital PMV-algebra and P be a --prime ideal of A.
Then A/P is a chain PMV-algebra.

Proof. By Lemma 3.2, we deduce that P is a prime ideal of A. Then x ©® y* € P or
yox* € P, for any z,y € A. It follows from Remark 1.1, 2/P < y/Pory/P < z/P.
Hence A/P is a chain PMV-algebra. u

By the above theorem, we imply that if P is a --prime ideal of unital A, Then
A/P is a MV F-algebra.
The following example, we show that the converse of above theorem is not true.

Example 3.3. Let I3 = {0,1,2} be a linearly ordered set (chain). I3 is an MV-
algebra with operations A = min, t®y = min{2,z+y} and 20y = maz{0, x+y—2},
for every x,y € A which is not a Boolean algebra. Also, A is a PMV-algebra by
operation - such that z-y = 0, for every x,y € A. Clearly, - is associative and if x4y
isdefinedie, x <y*=2—yorx+y <2, thenzx-2+y-2<2,z-x+z -y <2and
(x+y)-z=z-2z4+y-zand z- (r+y) =2-x+2-y. Let P={0}. Then A/{0} ~ A
is an MV F-algebra but P = {0} is not --prime ideal of A. Since 2-1 € P but 2#0
and 1 # 0.
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Definition 3.5. Let M be an A-module. Then an A-ideal P of an MV-module M
is a prime A-ideal, if (i) P # M (ii) for every o € A, x € M if ax € P, then x € P
ora€ (P:M).

Example 3.4. Let A = {0,a,b,1}, where 0 < a,b < 1. Define ®, @ and * as
follows:

©l0 a b 1 @0 a b 1

0]lo0o o 0 o 00 a b 1 o @ b1
a 0 a 0 a a a a 1 1 ‘ 1 b

blo 0o b b blb 1 b 1 “
110 a b 1 11 1 1 1

Then (A, ®,®,%,0,1) is an MV-algebra. If we define ax := a -2 = 0 for any
a € Aand x € A, them A becomes an A-module. It is clear that P, = {0,a} and
P, = {0,b} are prime A-ideals of A. Let ax = 0 € P;. If x € P, then the proof is
clear. If z ¢ P, then o € (P : M). Since aM = {0} C P;. Hence P; is a prime
A-ideal of A. Similarly P, is a prime A-ideal of A.

Example 3.5. Let A = {0,1,2} be a linearly ordered set (chain). A is an MV-
algebra with operations A = min, x®y = min{2, z+y} and 2Oy = maz{0, x+y—2},
for every x,y € A [11]. Also, A is PMV-algebra with the following operations:

@0 1 2 o 1 2
0/0 1 2 00 0 0 « [0 1 2
11 2 2 1[0 0 0 | 2 0
2 |2 2 2 210 0 1

Clearly, A ia a PMV-algebra and A becomes an A-module over A with the external
operation defined by ax = a -z, for any @ € A and x € A. Then P = {0} is not
a prime A-ideal. Since 2-1 € P and 1 ¢ P, also for « = 2 and z = 1, we have
2M ¢ P, because 2-2 =1 ¢ P. Hence P is not a prime A-ideal of M.

Example 3.6. Let M be I'(R% u) such that v = (1,1), A = I'(M>(R),v) and
1/2 1/2

v = ( 1§2 1?2 > . By Example 1.1, M is an A-module such that M = I'(R? u) =

1/2 1/2

[@ﬁ%ﬂ@ﬂmdA:F@b@%@zﬂQ(lm 1/2

)]fThen]dA(Al)::{(OJD,AJL

1/2
but M has not prime A-ideal. If P = (0, 0) is a prime A-ideal, then B = < 142 8 > €

A,(QM%GALWMMW<1Z 8)(1%>::<8>6Rbm<1g S)Mg

P and (0,1/2) ¢ P. Let m = (1/2,1/2) € M. Then <ﬁi§§ 8 ) < 1?3 ) -
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< 1?3 ) ¢ P and (0,1/2) ¢ P. Therefore, (0,0) is not a prime A-ideal of a MV-

module M.
We denoted that Zo(M) ={r € A:3m e M —{0};rm = 0}.

Proposition 3.2. Let M be an A-module. Then P = {0} is a prime A-ideal of M
if and only if Anna(M) = Zs(M).

Proof. Let P = {0} be a prime A-ideal. suppose that a € Ann4 (M), then am = 0
for every m € M. It follows that a € Z4(M). Now, let a € Z4(M). Then for
some 0 #m € M, am = 0 € P, by hypothesis, we deduce that m € P = {0} or
a € (P: M). Since m # 0, hence a € (P : M), it follows that aM = 0. Thus,
a € Anna(M).
Conversely, let Anna(M) = Z4(M). We show that P = {0} is a prime A-ideal. For
every a € A, m € M, suppose that am =0, m #0, thena € Zo(M) = Anna(M).
It follows that aM =0 or a € ({0} : M).

O

Remark 3.3. Let A be a unital PMV-algebra. Then every --ideal of A is a --prime
if and only if it is a prime A-ideal of an A-module A.

Proposition 3.3. Let h: M — M’ be an onto A-module homomorphism. If P is a
prime A-ideal of M’, then h~!(P) is a prime A-ideal of M.

Theorem 3.2. Let h : M — M’ be an onto A-module homomorphism. Then
prime A-ideals of M’ and prime A-ideals of M that contain kerh are in one to one
correspondence.

Proof. Let ¢p: T — S, where T'= {Q : Q@ is prime A-ideal of M’} and S = {P :
P is a prime A-ideal of M such that kerh C P}. We define ¥(Q) := h~1(Q). By
Proposition 3.3, v is well defined. Also v is injective. Let @ € kert. Then ¢ (Q) = 0,
hence h=1(Q) = 0, it follows that Q = h(h~1(Q)) = h(0) = 0. Therefore Q = 0, so
1) is injective.

Now, we show that 1 is a surjective. Let P € S or on the other hand, P
be A-ideal of M that contains kerh. We claim that there exists a prime A-ideal
Q = h(P) of M’ such that ¥(Q) = ¢ (h(P)) = P.

Firstly, @ = h(P) is an ideal of M’.

(1) Suppose that a,b € h(P), then a = h(z) and b = h(y) for some x,y € M.
a®b=nh(z)®h(y) =h(zdy) € h(P)

(i7) Suppose that a € M’, b € h(P) such that, a < b and b € h(P), then b = h(z),
for some x € P, and a € M’, h is surjective, there exists y € M such that h(y) = a;
but h(y) < h(z), hence by Lemma 1.2, h(y) ® (h(z))* =0 or y ©® z* € kerh C P,
then (y @ z*)@®x € PorxzVy € Pand y < xVy, hence, y € P. Therefore,
a = h(y) € h(P).
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(731) Let x € h(P) and a € A.
Since x € h(P), then x = h(b) for some b € P and a € A, hence ab € P and

ax = ah(b) = h(ab) € h(P).

It follows that h(P) is A-ideal of M’.
Second, we show that @ = h(P) is a prime A-ideal of M’.

(i) h(P) is a proper A-ideal of M'. If h(P) = M' = h(M).
Hence for x € M, we have h(z) € h(M) = h(P), hence h(x) = h(y) for some y € P.
Therefore, h(z) < h(y) and h(y) < h(z). By Lemma 1.2, h(z) ® (h(y))* = 0, hence
r@y* €kerh CPandye€ P, then (x0y*)dye PorxzVyeP. Sincex<zVy
and x Vy € P, then x € P. Thus, M C P. It follows that M = P which is a
contradiction.
(i1) Let a € A, x € M’ such that ax € h(P), we show that = € h(P) or a € (h(P) :
M"). Since x € M’, there exists y € M such that h(y) = z. Also, since ax € h(P),
ar = h(t) for some t € P, we have ax = ah(y) = h(ay) = h(t), so h(ay) < h(t),
by Lemma 1.2, (ay) ® t* € kerh C P and t € P, therefore ((ay) ®t*) @t € P,
then t V (ay) € P and ay < tV (ay) and P is A-ideal, hence ay € P for some
a € A, y € M; but P is a prime A-ideal of M, then y € Pora € (P : M). If
y € P, then h(y) € h(P), if we have a € (P : M), then aM C P. It follows that
h(aM) C h(P). This implies ah(M) C h(P), hence aM’ C h(P) or a € (h(P) : M’).
Therefore, h(y) € h(P) or a € (h(P) : M"). Thus, h(P) is a prime A-ideal of M’.
Now, we show that ¥(Q) = ¥(h(P)) = h=*(h(P)). Let x € h=Y(h(P)). Then
h(z) € h(P), hence h(z) = h(y) for some y € P, h(x) < h(y), by Lemma 1.2,
r@y* € kerh C P and y € P, it follows that xtVy = (x©y*)®y € Pand z < xVy,
so x € P. Thus, h"*(h(P)) C P, so h~Y(h(P)) = P or ¢(h(P)) = P, therefore 1 is
surjective.

O

Theorem 3.3. Let M be a unitary A-module and P an A-ideal of M. P is a prime
A-ideal of M if and only if P is a prime A/Ann(M)-ideal of M.

Proof. Let P be a prime A-ideal. We show that P is a prime A/Ann(M)-ideal of
M. Firstly, M is a A/Ann(M)-module with operation A/Ann(M) x M — M such
that (a/Ann(M),z) — az or [a/Ann(M)|z = az, for every a € A,x € M.

(1) It well defined, since a/Ann(M) = b/Ann(M), for every a,b € A, by Remark
1.1, we have d(a,b) € Ann(M), hence d(a,b)M = 0. It follows that d(a,b)1y = 0.
Hence, d(a,b) = 0, by Lemma 1.1, a = b. For z,y € M,a,b € A:

(1) If 4+ y is defined in M, then we show that [a/Ann(M)|z + [a/Ann(M)]y is
defined in M or ax + ay is defined in M.

Since M is an A-module and z + y is defined in M, so ax + ay is defined in M.

(2) If a/Ann(M),b/Ann(M) € A/Ann(M) such that a/Ann(M)+b/Ann(M) is de-
fined in A/Ann(M).

We prove that [a/Ann(M)]|z+[b/Ann(M)]x is defined M. If a/Ann(M)+b/Ann(M)
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is defined, then a/Ann(M) < (b/Ann(M))* = b*/Ann(M), by Remark 1.1, a ®
(") € Ann(M), s0 a®b € Ann(M) or (a®b)M =0or (a®b)lpy =00ra®b=0.
Therefore, a < b*. i.e., a + b is defined in A, since M is an A-module, for every
x € M ax + bx is defined in M. Thus, [a/Ann(M )]z + [b/Ann(M )]z is defined M.
(3) (a/Ann(M)-b/Ann(M))z = [(a-b) /Ann(M)]z = (a-b)x = a(bx) = (a/Ann(M))(bzx) =
(a/ Ann(M))[(b/Ann(M))z).

Now, let P be a prime A-ideal of M. Then, for every a/Ann(M) € A/Ann(M) and
x € M such that [a/Ann(M)]z € P, then ax € P, since P is a prime A-ideal of
M, then a € (P : M) or x € P. Consider a € (P : M), then aM C P and for
every x € M, az € P if and only if (a/Ann(M))z € P, for any x € M, if and
only if (a/Ann(M))M C P if and only if a/Ann(M) € (P : M). Hence, x € P or
a/Ann(M) € (P : M). We deduce that P is a prime A/Ann(M)-ideal.

Conversely, let P be prime A/Ann(M)-ideal and for every a € A,x € M such that
ax € P. We show that x € P or a € (P : M).

Let ax € P. Then (a/Ann(M))x € P, by hypothesis, = € P or a/Ann(M) € (P :
M), so x € P or (a/Ann(M))M C P, hence xz € P or aM C P. Therefore, x € P
ora€ (P:M). O

Proposition 3.4. Let N be an A-ideal of a MV-module M such that (N : M) is a
maximal --ideal of A. Then N is a prime A-ideal of M.

Proof. Let am € N and a ¢ (N : M), for every a € A,m € M. Since (N : M) is a
maximal, then (N : M)V (a] = A, hence there exist t € (N : M) and s € (a], such
that 1 =t @ s. Hence by Lemma 3.1 (e), we have m = m(t & s) < mt & ms. Since
te (N :M),sotM C N, hence for every m € M, tm € N. Also since s € (a], hence
for some integer n > 0, s < na, then, by Lemma 1.4 (¢) sm < (na)m = n(am) and
by hypothesis, n(am) € N, it follows that sm € N, so m < tm @& sm € N. Thus, N
is a prime A-ideal of M. O

Theorem 3.4. Let M be a unitary A-module. Then A-ideal N of a MV-module
M is a prime if and only if P = (N : M) is a -prime ideal of A, and A/P-module
M/N is a torsion free.

Proof. Let N be a prime A-ideal of M. We claim that (N : M) is a --prime ideal of
A. Firstly (N : M) is a proper ideal. If (N : M) = A, then 1 € (N : M), it follows
that 1M C N, so M = N. Which is a contradiction. Now, let a,b € A such that
a-be(N:M)anda ¢ (N : M). Then (a-b)M C N and aM ¢ N, it follows that
for every m € M, (a-b)m € N and there exists x € M such that ax ¢ N, also we
have b(ax) = (a - b)x € N. Hence by hypothesis, b € (N : M), thus (N : M) is a
--prime ideal of A.

Now, we show that M/N is A/P-module, by operation: (a/P,m/N) — (am)/N.
We prove that it is well defined, for every ay,as € A and my, mo € M. Suppose that
a1/P = ay/P, mi/N = my/N, then by Remark 1.1, we have

d(ai,a2) € P and d(mi,m2) € N, (1)
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this results d(ai,a2) € P = (N : M), it follows that d(ai,a2s)M C N, hence
d(ai,az)1 € N, then

d(al, ag) € N, (2)
by Lemma 1.4 (k) and Lemma 3.1 (d), we have:

d(alml, a2m2) < d(alml, almg) &) d(almg, CLQ’/TLQ)

< ayd(my,ms) @ d(ay, az)ms

and by (1), (2) we deduce that d(aym,azms) € N.
(1) If a1 /P + a9/ P is defined in A/P,
we show that (a;m)/N+(agm)/N is defined in M /N, for every aj, a2 € A,m € M. If
a1/P+ag/P is defined in A/ P, then a1 /P < (az/P)*, it follows that by Remark 1.1,
a1 ®az € P=(N: M), then (a3 ®as)M C N, so (a1 ® ag)m € N, for any m € M
but by Lemma 3.1 (b), we have a;m ® aam < (a1 ® ag)m. Thus, aym © agm € N.
So by Remark 1.1, we have (aym)/N < [(agm)/N]*, therefore, (aym)/N + (agm)/N
is defined in M/N, for any m € M and aj,as € A.
(i7) If m1/N +mga/N is defined in M /N, then we show that (am1)/N + (ams)/N is
defined in M/N.
Let mi/N + ma/N be defined in M/N. Then m;/N < (mg/N)*, it follows from
Remark 1.1, m; ® mg € N, we have by Lemma 3.1 (b), ami ® ama < a(m; ® ma),
then am; ©® amg € N, so by Remark 1.1, we have (am1)/N < [(amz2)/N]*. Thus,
(am1)/N + (amz)/N is defined in M/N.
(i7i) For any aj,as € A and m € M, we have: (a;/P - az/P)(m/N) = [(a; -
a2)/Pl(m/N) = [(a1 - az)m}/N = [ar(am)]/N = (a1/P)[(a2/P)(m/N)]. Thus,
M/N is an A/P-module.

Now, we prove that M /N is torsion free A/P-module. For every a € A, m €
M, such that (a/P)(m/N)=0/N, a/P # 0/P. Then (am)/N = 0/N, by Remark
1.1, it follows that d(am,0) € N, so by Lemma 1.1, we have am € N. Now,
let m/N # 0/N or m = d(m,0) ¢ N. Since P is a prime A-ideal of M, hence
a € (N:M)= P, soa=d(a0) € P, it follows that a/P = 0/P, which is a
contradiction. Thus, M/N is a torsion free.
Conversely, we prove that N is a prime A-ideal. Let am € N anda ¢ (N: M) =P
for every m € M, a € A. Then (a/P)(m/N) = (am)/N = 0/N,a/P # 0/P, by
hypothesis, since M/N is torsion free A/P-module, it follows that m/N = 0/N,
then m € N. Also, suppose that N = M, thus P = (N : M) = A, which is a
contradiction. Thus N is a prime A-ideal of M. ([l

Proposition 3.5. Let N be a proper A-ideal of a unitary MV -module M such that
(N : M) = P. Then the following are equivalent:

(a) N is a prime A-ideal of M,

(b) M/N is a torsion free A/P-module,

(c) Foreveryre A—P, N={meM:rme N},

(d) For every --ideal J of A such that J ¢ P, N ={m € M : Jm C N},

(e) For every m € M — N, P = (N : (m]),
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(f) For every A-ideal L of M such that L ¢ N, P = (N : L),
(9) For every m € M — N, Anny(m/N) = P,
(h) Z4(M/N) = P.

Proof. (a) = (b) is straightforward by Theorem 3.4.

(b) = (¢) Let T ={m € M : rm € N} for every r € A — P. Suppose that
m € T, then rm € N, it follows that by Lemma 1.1, rm = d(rm,0) € N, so by
Remark 1.1, we have (r/P)(m/N) = (rm)/N = 0/N, hence by hypothesis, since
M/N is torsion free, so m/N = 0/N, it follows that m € N. Thus, N = {m € M :
rm € N}.

(¢) = (d) Let J be a --ideal of A such that J ¢ P. Then there exists r € J—P.
We show that {m € M : Jm C N} C N. Let m € M such that Jm C N. Hence
rm € N and r ¢ P. By (c¢), we deduce that m € N. Thus N = {m € M : Jm C N}.

(d) = (e) Let m € M — N and r € (N : (m]). Suppose that r ¢ P, consider
J = (r], then Jm C N and J ¢ P by hypothesis, we have m € N, which is a
contradiction. So r € P, hence (N : (m]) C P. Now, let r € P = (N : M). Then
rM C N, sorm € N for every m € M, we prove that r € (N : (m]) or r(m] C N.
Suppose that ¢t € (m], hence ¢t < nm for some integer n > 0, so by Lemma 1.4
(¢), 1t < r(nm) = n(rm) and rm € N, it follows that ¢t € N or r(m] C N or
r € (N : (m]).

() = (f) Let N # L C M. Then there exists m € L — N, then by (e), we
have (N : (m]) = P. Now since m € L and (N : M) = P, hence (N : L) = P.

(f) = (9) Let m € M — N. Suppose that r € Anna(m/N), then r(m/N) =
0/N, it follows that by Remark 1.1, rm € N, consider that L = (m], by hypothesis,
we deduce that (N : (m]) = P. Let r € (N : (m]) = P. We show that r(m] C N,
suppose that ¢ € (m], so t < nm for some integer n > 0, hence rt < r(nm), by
Lemma 1.4 (¢), rt < n(rm) and we have rm € N, sort € N and since (N : (m]) = P,
hence r € P. Therefore, Ann(m/N) C P.

Conversely, let r € P. Consider L = (m], we deduce by (f), P = (N : (m]).
It follows that r € (N : (m]), then r(m] C N. Hence rm € N then by Lemmal.l
and Remark 1.1, we have d(rm,0) € N or (rm)/N = 0/N or r(m/N) = 0/N, hence
r € Anna(m/N). Therefore, P C Anna(m/N). Thus, Anna(m/N) = P.

(9) = (h) Let

ZA(M/N)={re A:r(m/N)=0/N for some m/N &€ M/N and m/N #0/N}
={reA:d(rm,0) € N forsome meM— N}

={reA:rmeN forsome meM— N}

Now, let r € Z4(M/N). Thenr € Anna(m/N) but we deduce by (g), Anna(m/N) =
P, hencer € P.

Conversely, let m € M — N and r € P. This implies by (g), Anna(m/N) = P,
sor € Anna(m/N). It follows that by Remark 1.1, we have (rm)/N = 0/N or
d(rm,0) € N or rm € N, thus, r € Z4(M/N). Therefore, P C Zo(M/N).
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(h) = (a) Let Z4(M/N) = P. Suppose that r € A, m € M such that
rm € N and m ¢ N, by definition of Z4(M/N) and hypothesis, we deduce that
r€ P = (N:M). Thus, N is a prime A-ideal of M. O

4. Conclusion and future research

MYV-modules over a PMV-algebra A and A-ideals in MV-modules are in-
troduced by Di Nola, et.al. They proved equivalence between the category of lu-
modules over (R,v) and the category of MV-modules over I'(R, v), where (R, v) is
an lu-ring [5]. Also A. Dvurecenskij and A. Di Nola in [6] introduced the notions
of PMV-algebras, MV F-algebras and -ideals in PMV-algebras. We introduced
--prime ideals in PM V' -algebras and investigated the relation between --prime ideals
and MV F-algebras. We studied A-ideals in MV -modules and introduced the no-
tion of prime A-ideals in an MV-module and annihilator of an A-ideal in an M V-
module. We give some conditions on an A-ideal to become prime and proved that if
h: M — N is an A-module homomorphism then all prime A-ideals of N and prime
A-ideals of M that contains kerh are in one to one correspondence.

In our future study of MV-modules, we are planning:
(1) to get more results on A-ideals.

(2) to define another types of A-ideals in M.

(3) to get more results on prime A-ideal.
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