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CLASSIFICATION OF 3-DIMENSIONAL LEFT-INVARIANT
STATISTICAL LIE GROUPS

AND STATISTICAL WALLACH THEOREM

S. Mehrshad1, B. Najafi2, H. Faraji3

We first characterize left-invariant statistical structures on Lie groups
and determine the dimension of the affine space of all left-invariant statisti-
cal connections on an n-dimensional Lie group. Then, we classify all 2- and
3-dimensional left-invariant statistical Lie groups with the Cartan connec-
tion. As an application of this classification, we obtain a statistical Wallach
theorem.
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1. Introduction
The study of natural geometric structures arising from families of probability
distributions is known as information geometry. Indian scientist C. R. Rao
introduced this geometry for defining the distance between statistical distri-
butions that remains invariant under nonsingular parametrization transforma-
tions [14]. This potent branch of mathematics applies differential geometry
methods to the realm of probability theory. The primary focus in this field is
on statistical connections and statistical manifolds.
A manifold wherein each point corresponds to a probability distribution is re-
ferred to as a statistical manifold. More precisely, a statistical manifold is a
triple (M, g,∇) where (M, g) is a Riemannian manifold, (g,∇) is a Codazzi pair
and ∇ is a without torsion connection on M [13]. These geometric structures
have been studied in differential geometry. However, statistical manifolds and
dual affine connections were rediscovered in statistics to construct geometric
theory for statistical inferences. Information geometry has numerous applica-
tions in various research fields such as physics, computer science and machine
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learning, as exemplified in [3, 12, 15].
In the second part of this article, we introduce the necessary definitions and
preliminaries. In Section 3, we present the class of left-invariant statistical
structures which forms a novel class of statistical structures with potential ap-
plications in the field. We provide an equivalent condition for the statistical
nature of the pair (g,∇) on a Lie group G by utilizing the one-to-one corre-
spondence between left-invariant connections ∇ and bilinear maps µ on its Lie
algebra g. In case µ(X,Y ) = 1

2
[X,Y ], we refer to the associated left-invariant

connection to µ as Cartan connection. We have the following characterization.
Theorem 1.1. Let G be a Lie group, g be a left-invariant Riemannian metric,
and ∇ be the left-invariant torsion-free connection associated with a bilinear
map µ on Lie algebra of G, denoted by g. Then, (G, g,∇) is a statistical
manifold if and only if

⟨[X,Y ], Z⟩ = ⟨µ(Y, Z), X⟩ − ⟨Y, µ(X,Z)⟩, ∀X,Y, Z ∈ g, (1)
where ⟨ , ⟩ is the inner product induced by g on g.
Theorem 1.2. Let G be an Abelian Lie group. For each left-invariant metric
g on G, the triple (G, g,∇) is a left-invariant statistical manifold with µ = 0.
Subsequently, using the condition (1), we classify all left-invariant statistical
structures on 2- and 3-dimensional Lie groups. We demonstrate that a 2-
dimensional left-invariant Lie group admits a statistical structure with Cartan
connection only if it is Abelian; consequently, 2-dimensional non-Abelian Lie
groups do not admit a statistical structure with the Cartan connection.
Theorem 1.3. Let G be a 2-dimensional non-Abelian Lie group. There is no
left-invariant metric g on G such that (G, g,∇) is left-invariant statistical Lie
group, where ∇ is the Cartan connection of G.

Then, we shift our attention to 3-dimensional Lie groups. Referring to the
notations in Table 1, we derive the following classification theorem, which
succinctly states that the only 3-dimensional left-invariant Lie groups that
possess a statistical structure with Cartan connection are R3, SU(2) and GI .
Theorem 1.4. Let G be a simply connected 3-dimensional Lie group. Then
G admits a left-invariant statistical structure with the Cartan connection if it
falls into one of the following cases:

i. R3.
ii. The simple Lie group SU(2) for γ = υ = κ.
iii. The non-unimodular Lie group GI .

Finally, we establish statistical Wallach’s Theorem in the context of statistical
structures on Lie groups. Specifically, we prove that the only 3-dimensional
simply connected Lie group that admits a statistical structure with the Cartan
connection and positive sectional curvature is SU(2).
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Theorem 1.5. (Statistical Wallach Theorem) The only 3-dimensional 
simply connected Lie group that admits a left-invariant positively curved sta-
tistical structure with Cartan connection is SU(2).

2. Preliminaries
Let M be a smooth n-dimensional manifold. A Riemannian metric g on M
is expressed as a family of maps (gp)p∈M , such that for each p ∈ M , the map
gp : TpM × TpM → R is an inner product. If g is a Riemannian metric on M ,
then the pair (M, g) is called Riemannian manifold. A connection on a smooth
manifold M is an R-bilinear map ∇ : χ(M) × χ(M) → χ(M) satisfying the
following properties:

∇fUV = f ∇UV, ∇U fV = (U · f)V + f ∇UV, (2)

for any smooth scalar function f ∈ C∞(M) and any vector fields U, V ∈ χ(M).
For any Riemannian manifold (M, g) there exists a unique connection ∇ on
M satisfying the subsequent properties:

U · g(V,W ) = g(∇UV,W ) + g(V,∇UW ), [U, V ] = ∇UV −∇V U. (3)

This unique connection is called the Levi-Civita connection of (M, g) and will
be denoted by ∇g.
For a group G with an identity element denoted, by e if G is a smooth manifold
and the group operation is smooth, then G is called a Lie group. Consider a
Lie group G endowed with a Riemannian metric g. If g is such that each left
translation of G acts as isometry, then g is called left-invariant Riemannian
metric. Similarly, g is called right-invariant if each right translation behaves
as an isometry. When g is both left and right-invariant, it is termed the
designation of being bi-invariant. A vector field X on a Lie group G is called
left-invariant if it remains invariant under every left translation of G. The
Lie algebra g of a Lie group G is the tangent space TeG, equipped with a Lie
bracket operation defined by

[X,Y ] = [XL, Y L](e), ∀X,Y ∈ g.

Here, XL and Y L represent left-invariant vector fields corresponding to X and
Y , respectively. For each X ∈ g, the mapping ad(X) : g → g is defined by
ad(X)(Y ) = [X,Y ].
A one-to-one correspondence between left-invariant metrics on a Lie group G
and inner products on Lie algebra g of G can be established as follows [6, 8].
Consider an inner product ⟨, ⟩ on g and define the inner product ⟨Xa, Ya⟩a on
TaG for all Xa, Ya ∈ TaG and a ∈ G as follow:

⟨Xa, Ya⟩a = ⟨(La−1)∗a(Xa), (La−1)∗a(Ya)⟩.

Let ⟨, ⟩ be the inner product induced on g by left-invariant Riemannian metric
g. Then
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(i) g is bi-invariant if and only if the following equation is satisfied:

⟨[X,Y ], Z⟩ = ⟨X, [Y, Z]⟩. (4)

(ii) If g is a bi-invariant metric, then the sectional curvature is obtained from
the following relation:

K(X,Y ) =
1

4

⟨[X,Y ], [X,Y ]⟩
⟨X,X⟩⟨Y, Y ⟩ − ⟨X,Y ⟩2

. (5)

If, for each two left-invariant vector field U and V on G, the vector field ∇UV is
left-invariant, then ∇ is called a left-invariant connection on G. A bi-invariant
connection is defined similarly, using both left and right vector fields. It is
worth mentioning that Laquer classified bi-invariant affine connections on Lie
groups in [10]. Let g be a left-invariant Riemannian metric on a Lie group G.
In this case, the Riemannian connection of g is also a left-invariant connection.
There exists a one-to-one correspondence between left-invariant connections on
a Lie group G, and bilinear maps µ : g×g → g. This correspondence is defined
as follows [6, 8]. Given a left-invariant connection ∇ on G, we obtain the map
µ : g× g → g defined by

µ(X,Y ) = (∇XLY L)e, ∀X,Y ∈ g. (6)

Every bilinear map µ : g×g → g can be decomposed as µ = µA+µS, where µA

is the anti-symmetric part of µ and µS is its symmetric part. The left-invariant
connection associated with a bilinear map µ on g is torsion-free if and only if

µ(X,Y )− µ(Y,X) = [X,Y ], ∀X,Y ∈ g. (7)

Hence
µA(X,Y ) =

1

2
[X,Y ], ∀X,Y ∈ g,

therefore,

µ(X,Y ) =
1

2
[X,Y ] + µS(X,Y ), ∀X,Y ∈ g. (8)

Let ∇g be the Levi-Civita connection of a left-invariant Riemannian metric
g on a Lie group G and µg be the associated bilinear map to ∇g. For all
left-invariant vector fields X, Y and Z, the famous Koszul formula reads

2⟨Z,∇XY ⟩ = ⟨Z, [X,Y ]⟩+ ⟨[Z,X], Y ⟩+ ⟨[Z, Y ], X⟩. (9)

Thus, the symmetric part of µg satisfies

2⟨Z, µg
S(X,Y )⟩ = ⟨[Z,X], Y ⟩+ ⟨[Z, Y ], X⟩. (10)

Remark 2.1. A symmetric bilinear map µ on a Lie algebra g is torsion-free
if and only if g is Abelian. Thus, considering symmetric bilinear maps µ is
very restrictive condition.
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Thus, we merely consider the anti-symmetric torsion-free bilinear map µ with 
µS = 0. In this case, µ is called the Cartan connection of G which is the Levi-
Civita connection of any bi-invariant metric on G [4]. The Riemann curvature 
of the Cartan connection is given by

R(X,Y )Z = −1

4
[[X,Y ], Z], ∀X,Y, Z ∈ g.

A pair (g,∇) is called a Codazzi pair on a manifold M , if ∇ is a connection
and g is a Riemannian metric such that the covariant derivative ∇g is a totally
symmetric tensor field on M . If ∇ is torsion-free, then the pair (g,∇) is called a
statistical structure, and the triple (M, g,∇) is called a statistical manifold [2].

Example 2.1. Consider Riemannian space (R2, g) where g = dx2 + dy2. Let
{e1, e2} be an orthonormal basis and the connection ∇ be defined as follows:

∇e1e1 = e2, ∇e2e2 = 0, ∇e1e2 = ∇e2e1 = e1.

Then the triple (R2, g,∇) is a non-trivial statistical manifold.

Let G be a Lie group. Then a statistical structure (g,∇) on G is said to
be left-invariant if both g and ∇ are left invariant. In this case, the triple
(G, g,∇) is called a left-invariant statistical Lie group. Clearly, for any left-
invariant Riemannian metric g on a Lie group G, the triple (G, g,∇g) is a left-
invariant statistical Lie group. Our research shows that very little information
is available on statistical Lie groups and very limited research has been done
in this area. A connection ∇∗ on a manifold M is referred to as the dual of ∇
with respect to a Riemannian metric g on M if the following equation holds
for all vector fields U, V,W ∈ χ(M):

U · g(V,W ) = g(∇UV,W ) + g(V,∇∗
UW ). (11)

If (g,∇) is a Codazzi pair on a manifold M , then the pair (g,∇∗) constitutes
a Codazzi pair on M too and we have the following relationship

2∇g = ∇+∇∗. (12)
If a Riemannian metric g and a connection ∇ on a Lie group G are left-
invariant, then it can be easily verified that ∇∗ is also a left-invariant connec-
tion on G.

Example 2.2. Let M = {f(x, θ) : θ = (µ, σ) ∈ R2, σ > 0}, where

f(x, µ, σ) =
1√
2πσ

exp(−|x− µ|2

2σ2
).

The Fisher information matrix is given by

[gij(θ)] =

[
1
σ2 0
0 2

σ2

]
,
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where θ = (θ1, θ2) = (µ, σ) and

gij(θ) =

∫ +∞

−∞
f(x, θ)

∂lnf(x, θ)

∂θi

∂lnf(x, θ)

∂θj
dx.

Let g = 1
σ2 dθ

2
1 +

2
σ2 dθ

2
2. Then (M, g) is isometric with (H, h), where

H = {(x, y) ∈ R2| y > 0},
and

h =
dx2 + dy2

y2
.

Hence, (M, g) is a left-invariant statistical manifold. Since H has the group
structure, (M, g) can be regarded as a left-invariant statistical Lie group. Ac-
tually, this example served as our inspiration to define and study left-invariant
statistical Lie groups.

3. Left-Invariant Statistical Lie Groups
This section delves into the studying and characterizing left-invariant statis-
tical structures on Lie groups. Let (M, g) be a Riemannian manifold. We
explore that A(M,g), the set of all connections ∇ on M such that (M, g,∇)
is a statistical manifold, is an affine space whose associated vector space is
D1

2(M)ss which is the set of all (1, 2)-tensor fields D : χ(M)× χ(M) → χ(M)
satisfying:

D(X,Y ) = D(Y,X), g(D(X,Z), Y ) = g(X,D(Y, Z)). (13)
It is obvious that ∇g is a special and noteworthy element of A(M,g). By con-
sidering ∇g as the origin of A(M,g), one can see that every ∇ ∈ A(M,g) can be
expressed as ∇ = ∇g +D, for some D ∈ D1

2(M)ss.
Now, let G be a Lie group and g be a left-invariant Riemannian metric on G.
In general, suppose that (G, g,∇) is a left-invariant statistical Lie group. For
each α ∈ R, let us set

∇α = (1− α)∇g + α∇.

∇α is called the α-connection [5]. Since A(G,g) is an affine space, it follows that
the triple (G, g,∇α) is also a left-invariant statistical Lie group.
A natural question is: How large is A(G,g)? To provide an answer to this
question, we suppose that ∇ is an arbitrary left-invariant connection which
belongs to A(G,g) and let µ be the bilinear map associated with ∇. Then

µ(X,Y ) = µg(X,Y ) +D(X,Y ) =
1

2
[X,Y ] + µg

S(X,Y ) +D(X,Y ), (14)

where µg is the bilinear mapping associated with the Levi-Civita connection of
g and D : g× g → g belongs to D1

2(g)
ss. The description of elements of A(G,g)

given by (14) tells us that A(G,g) is the same size as the vector space D1
2(g)

ss.
Let {e1, e2, ..., en} be an orthonormal base for g with respect to the inner prod-
uct ⟨, ⟩ on g. For an arbitrary D ∈ D1

2(g)
ss, let us define Dijk = ⟨D(ei, ej), ek⟩.



Classification of 3-dimensional left-invariant statistical Lie groups and statistical Wallach theorem              119

Then, conditions proposed in (13) are equivalent to Dijk = Djik and Dijk = 
Djki for all indices i, j and k. It is a straightforward combinatorial problem to 
compute the number of all Dijks satisfying the two conditions. Indeed, finding 
the dimension of the vector space D1

2(g)
ss, we obtain the following.

Proposition 3.1. A(G,g) is a n(n+1)(n+2)
6

-dimensional affine space, where n
denotes the dimension of the Lie group G.
Remark 3.1. Note that Hirica and et al. presented the same result as Propo-
sition 3.1 in Proposition 4 in [9] with a different approach.
Theorem 3.1. Let G be a Lie group, g a left-invariant Riemannian metric,
and ∇ a torsion-free left-invariant connection associated with a bilinear map
µ on G. Then, the triple (G, g,∇) is a left-invariant statistical Lie group if
and only if

⟨[X,Y ], Z⟩ = ⟨µ(Y, Z), X⟩ − ⟨Y, µ(X,Z)⟩, ∀X,Y, Z ∈ g, (15)
where ⟨ , ⟩ is the inner product induced by g on g.
Proof. Let (G, g,∇) be a left-invariant statistical Lie group and X, Y and
Z ∈ g. Since the pair (g,∇) is a Codazzi pair, we have

(∇XLg)(Y L, ZL) = (∇Y Lg)(XL, ZL), (16)
where XL, Y L and ZL represent left-invariant vector fields corresponding to
X,Y and Z, respectively. By definition, (16) can be expressed as follows

XL · g(Y L, ZL) − g(∇XLY L, ZL)−g(Y L,∇XLZL)

= Y L · g(XL, ZL)−g(∇Y LXL, ZL)−g(XL,∇Y LZL).(17)
Since g and vector fields XL, Y L and ZL are left-invariant, it follows from (17)

g(∇XLY L, ZL) + g(Y L,∇XLZL) = g(∇Y LXL, ZL) + g(XL,∇Y LZL), (18)
and

g(∇XLY L −∇Y LXL, ZL) = g(XL,∇Y LZL)− g(Y L,∇XLZL). (19)
Since ∇ is torsion-free, (19) gives us

g([XL, Y L], ZL) = g(XL,∇Y LZL)− g(Y L,∇XLZL). (20)
Evaluating (20) at the point e ∈ G, we have (15).
Conversely, suppose that (15) holds and assume that g is the left-invariant
Riemannian metric associated with ⟨ , ⟩ and ∇ is the left-invariant torsion-free
connection associated with µ. Substituting µ = µg + D into (15) and taking
into account (G, g,∇g) is a left-invariant statistical Lie group, we infer that D
satisfies

⟨D(X,Z), Y ⟩ = ⟨X,D(Y, Z)⟩, ∀X,Y, Z ∈ g. (21)
Since ∇ and ∇g are torsion-free, it follows that D is symmetric. Thus, D sat-
isfies conditions (13), and consequently, (G, g,∇) is a left-invariant statistical
Lie group. This completes the proof. □
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For computational purposes, we are going to express (14) in a local coordinates.
Let us consider an orthonormal base {e1, e2, ..., en} for g with respect to the
inner product ⟨, ⟩ on g. Since [ei, ej] ∈ g, there exists a set of real numbers
cijk (i, j, k = 1, 2, ..., n) such that [ei, ej] =

∑
k cijkek. In [11], J. Milnor proved

that if g is a left-invariant Riemannian metric on G and ∇g is the Levi-Civita
connection of g, then

µg(ei, ej) = ∇g
ei
ej =

1

2

∑
k

(cijk − cjki + ckij)ek.

Since µg is a map from g × g to g, we have µg(ei, ej) =
∑

k µ
g
ijkek. With this

assumption, we have the following result.
Theorem 3.2. Let (G, g,∇) be a left-invariant statistical Lie group and let µ
be the bilinear mapping corresponding to ∇. If ∇g is the Levi-Civita connection
of g and µg is the bilinear mapping corresponding to ∇g, then

µ(ei, ej) =
1

2

∑
k

{(µg
jki − µg

ikj)− (µg
kij − µg

jik) + (µg
ijk − µg

kji) + 2Dijk}ek, (22)

where Dijk = ⟨D(ei, ej), ek⟩.
Proof. By equation (14), we have∑

k

µijkek = µ(ei, ej) = µg(ei, ej) +D(ei, ej) =
∑
k

(µg
ijk +Dijk)ek.

Since µg is the Levi-Civita connection of g and {e1, e2, ..., en} is an orthonormal
basis for g, we have

µg(ei, ej) =
1

2

∑
k

(cijk − cjki + ckij)ek. (23)

Since the pair (g,∇g) is a statistical structure on the Lie group G, we have
cijk = ⟨[ei, ej], ek⟩

= ⟨µg(ej, ek), ei⟩ − ⟨ej, µg(ei, ek)⟩
= µg

jki − µg
ikj .

Similarly, we have
ckij = µg

ijk − µg
kji,

and
cjki = µg

kij − µg
jik.

Hence

µ(ei, ej) =
1

2

∑
k

(cijk − cjki + ckij + 2Dijk)ek

=
1

2

∑
k

{(µg
jki − µg

ikj)− (µg
kij − µg

jik) + (µg
ijk − µg

kji) + 2Dijk}ek.

□
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Example 3.1. [5] Consider the left-invariant statistical Lie group (G, g, ∇),
where G = {(x, y) ∈ R2| y > 0} and g = dx

2+2
2 
dy2 

. Let {e1, e2} be an orthonor-
y

mal basis for g such that the Levi-Civita connection of g in this basis is given
as follows:

∇g
e1
e1 =

1√
2
e2, ∇g

e1
e2 = − 1√

2
e1, ∇g

e2
e1 = ∇g

e2
e2 = 0.

If D : g× g → g is defined by

D(e1, e1) = −
√
2

2
e2, D(e1, e2) = D(e2, e1) = −

√
2

2
e1, D(e2, e2) = −

√
2e2,

then we have

µg
212 = µg

122 = µg
111 = µg

211 = µg
221 = µg

222 = 0, µg
121 = − 1√

2
, µg

112 =
1√
2
,

and

D212 = D111 = D221 = D122 = 0, D112 = D121 = D211 = −
√
2

2
, D222 = −

√
2.

Hence
∇e1e1 = µ(e1, e1)

=
1

2

∑
k

{(µg
1k1 − µg

1k1)− (µg
k11 − µg

11k) + (µg
11k − µg

k11) + 2D11k}ek

= D111e1 + {(µg
112 − µg

211) +D112}e2 = 0.

∇e1e2 = µ(e1, e2)

=
1

2

∑
k

{(µg
2k1 − µg

1k2)− (µg
k12 − µg

21k) + (µg
12k − µg

k21) + 2D12k}ek

= {(µg
211 − µg

112) +D121}e1 +D122e2 = −
√
2e1.

Similarly, we have ∇e2e1 = − 1√
2
e1 and ∇e2e2 = − 2√

2
e2.

Corollary 3.1. With the above assumptions, if K is the sectional curvature
of µ, then

K(ei, ej) =
1

2

∑
k

{(µg
jjk − µg

kjj) +Djjk}
∑
t

{(µg
ktt − µg

ttk) +Dtkt}

− 1

4

∑
k

{(µg
jki − µg

ikj)− (µg
kij − µg

jik) + (µg
ijk − µg

kji) + 2Dijk}

×
∑
t

{(µg
ktj − µg

jtk)− (µg
tjk − µg

kjt) + (µg
jkt − µg

tkj) + 2Djkt}

− 1

2

∑
k

(µg
jki − µg

ikj)
∑
t

{(µg
jtk − µg

ktj)− (µg
tkj − µg

jkt) + (µg
kjt − µg

tjk) + 2Dkjt}.
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Proof. We know that
K(ei, ej) = ⟨R(ei, ej)ej, ei⟩

= ⟨∇ei∇ejej, ei⟩ − ⟨∇ej∇eiej, ei⟩ − ⟨∇[ei,ej ]ej, ei⟩
= ⟨µ(ei, µ(ej, ej)), ei⟩ − ⟨µ(ej, µ(ei, ej)), ei⟩ − ⟨µ([ei, ej], ej), ei⟩.

Now, by using equation (22) and performing a straightforward calculation, the
result is obtained. □
Example 3.2. With the notations of Example 3.1, we have

K(e1, e2) =
1

2

∑
k

{(µg
22k − µg

k22) +D22k}
∑
t

{(µg
ktt − µg

ttk) +Dtkt}

− 1

4

∑
k

{(µg
2k1 − µg

1k2)− (µg
k12 − µg

21k) + (µg
12k − µg

k21) + 2D12k}

×
∑
t

{(µg
kt2 − µg

2tk)− (µg
t2k − µg

k2t) + (µg
2kt − µg

tk2) + 2D2kt}

− 1

2

∑
k

(µg
2k1 − µg

1k2)
∑
t

{(µg
2tk − µg

kt2)− (µg
tk2 − µg

2kt) + (µg
k2t − µg

t2k) + 2Dk2t}

=
1

2
{(µg

221 − µg
122) +D221}{(µg

122 − µg
221) +D212}+

1

2
D222{(µg

211 − µg
112) +D121}

− {(µg
211 − µg

112) +D121}{D211 + (µg
122 − µg

221) +D212}
− {(µg

221 − µg
122) +D122}{(µg

221 − µg
122) +D221 +D222}

− {(µg
211 − µg

112)}{(µ
g
211 − µg

112) +D121 +D122}
− {(µg

221 − µg
122)}{(µ

g
221 − µg

122) +D221 +D222}
= −2 +

√
2.

Proposition 3.2. Let G be an Abelian Lie group. If µ ≡ 0, then for each
left-invariant metric g on G, the triple (G, g,∇) is a left-invariant statistical
Lie group.

Proof. Let G be an Abelian Lie group. Then g is Abelian, and hence [X,Y ] =
0, for all X,Y ∈ g. Now, if µ ≡ 0, then the equation (15) holds trivially. □
Up to isomorphism, there exists a unique 2-dimensional non-Abelian Lie alge-
bra. Indeed, any 2-dimensional non-Abelian Lie algebra g has a basis {X,Y }
with the bracket given by [X,Y ] = X.

Theorem 3.3. Let G be a 2-dimensional non-Abelian Lie group and ∇ be the
Cartan connection on G. Then, there is no left-invariant metric g on G such
that (G, g,∇) is a left-invariant statistical Lie group.

Proof. Let G be a 2-dimensional non-Abelian Lie group and suppose that ⟨, ⟩
is an inner product on g such that (G, g,∇) is a left-invariant Lie group, where
g is the left-invariant Riemannian metric on G induced by ⟨, ⟩ and ∇ is the
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Cartan connection on G. Suppose that {X, Y } is an orthonormal basis with 
respect to ⟨, ⟩ for g such that [X, Y ] = X. For every vector Z = λX + ηY ∈ g 
with non-zero λ ∈ R, we have

⟨[X,Y ], Z⟩ = λ, ⟨µ(Y, Z), X⟩ − ⟨Y, µ(X,Z)⟩ = −1

2
λ. (24)

By (15), we must have λ = 0 which is a contradiction. This completes the
proof. □
Corollary 3.2. Let G be a 2-dimensional Lie group and ∇ be the Cartan
connection on G. Then, G admits a left-invariant statistical structure (g,∇)
if and only if G is an Abelian group.

4. Classification of Left-Invariant 3-Dimensional Lie Groups
Now, we deal with 3-dimensional Lie groups. In the context of 3-dimensional
Lie groups, the work of Ha-Bumlee in [7], focused on 3-dimensional Lie al-
gebras and the classification of Left-invariant Riemannian metrics on simply
connected 3-dimensional Lie groups. Considering a basis {x, y, z} for a 3-
dimensional Lie algebra, it can be shown to be isometric isomorphic to one of
the presented Lie algebras endowed with the given inner product in Table 1
(for more details see Table 1). In this section, building upon Ha-Bumlee’s find-
ings and utilizing (15), we classify all left-invariant 3-dimensional Lie groups
endowed with the Cartan connection. This classification is essential in delin-
eating the scope of the class of left-invariant statistical Lie groups.

Theorem 4.1. Let G be a simply connected 3-dimensional Lie group and ∇
be the Cartan connection on G. Then, G admits a left-invariant statistical
structure (g,∇) if and only if it falls into one of the following cases:

i. R3.
ii. The simple Lie group SU(2) for γ = υ = κ.
iii. The non-unimodular Lie group GI .

Proof. It is sufficient to examine the conditions under which each of the cases
in Table 1 satisfies the equation (15). It is obvious that in Case 1, G = R3

admits a left-invariant statistical structure.
As for Case 7, based on the information provided in Table 1, we have

⟨ [e1, e2], e3 ⟩ = υ, (25)

⟨µ(e2, e3), e1 ⟩ − ⟨ e2, µ(e1, e3) ⟩ = ⟨ 1
2
[e2, e3], e1 ⟩ − ⟨ e2,

1

2
[e1, e3] ⟩ =

1

2
γ +

1

2
κ.

(26)
Similarly, we have

⟨ [e3, e1], e2 ⟩ = κ, ⟨µ(e1, e2), e3 ⟩ − ⟨ e1, µ(e3, e2) ⟩ =
1

2
υ +

1

2
γ. (27)
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Table 1. Euclidean 3-dimensional Lie algebras.

Case Algebra structure Associated simply connected Lie group Left-invariant Riemannian metric

1
[e1, e2] = 0

[e1, e3] = 0
[e2, e3] = 0

R3

(
1 0 0

0 1 0
0 0 1

)
2

[e1, e2] = e3
[e1, e3] = 0
[e2, e3] = 0

The Heisenberg group Nil
(

γ 0 0

0 γ 0
0 0 γ

)
γ > 0

3
[e1, e2] = 0
[e1, e3] = −e1
[e2, e3] = e2

The solvable Lie group Sol

(
1 0 0
1 0 0

1 0 υ

)
υ > 0

4
[e1, e2] = 0

[e1, e3] = −e1
[e2, e3] = e2

The solvable Lie group Sol

(
1 1 0

1 κ 0
0 0 υ

)
κ > 1

υ > 0

5
[e1, e2] = 0

[e1, e3] = e2
[e2, e3] = −e1

The solvable Lie group Ẽ0(2)

(
1 0 0

0 κ 0
0 0 υ

)
0 < κ ≤ 1

υ > 0

6
[e1, e2] = 2e3
[e1, e3] = −2e2
[e2, e3] = −2e1

The simple Lie group ˜PSL(2,R)

(
γ 0 0

0 κ 0
0 0 υ

)
κ ≥ υ > 0

γ > 0

7
[e1, e2] = e3
[e1, e3] = −e2
[e2, e3] = e1

The simple Lie group SU(2)

(
γ 0 0

0 κ 0
0 0 υ

)
γ ≥ κ ≥ υ

υ > 0

8
[e1, e2] = 0

[e1, e3] = −e1
[e2, e3] = −e2

The non-unimodular Lie group GI

(
1 0 0

0 1 0
0 0 υ

)
υ > 0

9
[e1, e2] = 0
[e1, e3] = −e2
[e2, e3] = ce1 − 2e2

The non-unimodular Lie group Gc

(
1 0 0
0 κ 0

0 0 υ

)
0 < κ ≤ |c|
υ > 0

10
[e1, e2] = 0
[e1, e3] = −e2
[e2, e3] = ce1 − 2e2

The non-unimodular Lie group Gc

(
1 0 0
0 κ 0

0 0 υ

)
κ > 0
υ > 0

c = 0

11
[e1, e2] = 0

[e1, e3] = −e2
[e2, e3] = ce1 − 2e2

The non-unimodular Lie group Gc

(
1 1

2
0

1
2

1 0

0 0 υ

)
υ > 0
c = 0

12
[e1, e2] = 0

[e1, e3] = −e2
[e2, e3] = ce1 − 2e2

The non-unimodular Lie group Gc

(
1 0 0

0 κ 0
0 0 υ

)
0 < κ ≤ 1

c = 1
υ > 0

13
[e1, e2] = 0

[e1, e3] = −e2
[e2, e3] = ce1 − 2e2

The non-unimodular Lie group Gc

(
1 γ 0

γ 1 0
0 0 υ

) 0 < κ ≤ 1
c = 1

υ > 0

0 < γ < 1

14
[e1, e2] = 0

[e1, e3] = −e2
[e2, e3] = ce1 − 2e2

The non-unimodular Lie group Gc

(
1 1 0

1 κ 0

0 0 υ

)
0 < κ ≤ c

c > 0

υ > 0

15
[e1, e2] = 0

[e1, e3] = −e2
[e2, e3] = ce1 − 2e2

The non-unimodular Lie group Gc

(
1 κ 0

κ 1 0

0 0 υ

)
0 < κ ≤ 1

υ > 0

γπ =
√
1− c

Also, we have

⟨ [e2, e3], e1 ⟩ = γ, ⟨µ(e3, e1), e2 ⟩ − ⟨ e3, µ(e2, e1) ⟩ =
1

2
κ+

1

2
υ. (28)
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By equating these three relations, we conclude that G = SU(2) admits a left-
invariant statistical structure (g, ∇) provided that γ = κ = υ.
The Case 8, the non-unimodular Lie group GI , can be proven with a similar 
argument presented for Case 7. It is a direct computation, to show that other
cases given in Table 1 do not satisfy (15). Thus, we get the proof. □

The celebrated Wallach theorem states that the only 3-dimensional simply
connected Lie group admitting a left-invariant Riemannain metric whose sec-
tional curvature is positive, is SU(2) [11]. Among Cases 1, 7 and 8 in Table 1,
only Case 7 is a simply connected compact Lie group. This observation leads
us to a Wallach type theorem for left-invariant statistical Lie groups.
Theorem 4.2. (Statistical Wallach Theorem) The only 3-dimensional
simply connected Lie group with the Cartan connection that admits a left-
invariant statistical structure with positive sectional curvature is SU(2).
Proof. A straightforward calculation demonstrates that the left-invariant met-
ric on SU(2) given in Table 1 with γ = κ = υ satisfies the following relation:

⟨ [e1, e2], e3 ⟩ = ⟨ e1, [e2, e3] ⟩.
Therefore, this left-invariant metric on SU(2) is a bi-invariant metric on SU(2)
and its sectional curvature in the direction of the plane generated by the vectors
e1 and e2 is obtained from the following relation:

K(e1, e2) =
1

4

⟨ [e1, e2], [e1, e2] ⟩
⟨ e1, e1 ⟩ ⟨ e2, e2 ⟩ − ⟨ e1, e2 ⟩2

=
1

4

υ2

γκ
> 0. (29)

Similarly, we have K(e1, e3) = 1
4
κ2

γυ
and K(e2, e3) = 1

4
γ2

κυ
. Thus, the left-

invariant Riemannain metric on SU(2) defined in Table 1 with γ = κ = υ
has positive constant sectional curvature 1

4
. Moreover, (SU(2), g,∇) is a left

-invariant statistical Lie group. This completes the proof. □

5. Conclusions
We first characterized left-invariant statistical structures on Lie groups and
determined the dimension of the affine space of all left-invariant statistical
connections on an n-dimensional Lie group. Then, we classified all 2- and 3-
dimensional left-invariant statistical Lie groups with the Cartan connection.
As an application of this classification, we obtained a statistical Wallach the-
orem.
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