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CLASSIFICATION OF 3-DIMENSIONAL LEFT-INVARIANT
STATISTICAL LIE GROUPS
AND STATISTICAL WALLACH THEOREM

S. Mehrshad!, B. Najafi?, H. Faraji®

We first characterize left-invariant statistical structures on Lie groups
and determine the dimension of the affine space of all left-invariant statisti-
cal connections on an n-dimensional Lie group. Then, we classify all 2- and
3-dimensional left-invariant statistical Lie groups with the Cartan connec-
tion. As an application of this classification, we obtain a statistical Wallach
theorem.
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1. Introduction

The study of natural geometric structures arising from families of probability
distributions is known as information geometry. Indian scientist C. R. Rao
introduced this geometry for defining the distance between statistical distri-
butions that remains invariant under nonsingular parametrization transforma-
tions [14]. This potent branch of mathematics applies differential geometry
methods to the realm of probability theory. The primary focus in this field is
on statistical connections and statistical manifolds.

A manifold wherein each point corresponds to a probability distribution is re-
ferred to as a statistical manifold. More precisely, a statistical manifold is a
triple (M, g, V) where (M, g) is a Riemannian manifold, (g, V) is a Codazzi pair
and V is a without torsion connection on M [13]. These geometric structures
have been studied in differential geometry. However, statistical manifolds and
dual affine connections were rediscovered in statistics to construct geometric
theory for statistical inferences. Information geometry has numerous applica-
tions in various research fields such as physics, computer science and machine
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learning, as exemplified in [3, 12, 15].

In the second part of this article, we introduce the necessary definitions and
preliminaries. In Section 3, we present the class of left-invariant statistical
structures which forms a novel class of statistical structures with potential ap-
plications in the field. We provide an equivalent condition for the statistical
nature of the pair (g, V) on a Lie group G by utilizing the one-to-one corre-
spondence between left-invariant connections V and bilinear maps p on its Lie
algebra g. In case u(X,Y) = %[X Y], we refer to the associated left-invariant
connection to p as Cartan connection. We have the following characterization.

Theorem 1.1. Let G be a Lie group, g be a left-invariant Riemannian metric,
and V be the left-invariant torsion-free connection associated with a bilinear
map p on Lie algebra of G, denoted by g. Then, (G,q,V) is a statistical
manifold if and only if

((X.Y], 2) = (u(Y, 2), X) = (Y, (X, Z)), VX,Y,Z €g, (1)
where (, ) is the inner product induced by g on g.

Theorem 1.2. Let G be an Abelian Lie group. For each left-invariant metric
g on G, the triple (G, g, V) is a left-invariant statistical manifold with p = 0.

Subsequently, using the condition (1), we classify all left-invariant statistical
structures on 2- and 3-dimensional Lie groups. We demonstrate that a 2-
dimensional left-invariant Lie group admits a statistical structure with Cartan
connection only if it is Abelian; consequently, 2-dimensional non-Abelian Lie
groups do not admit a statistical structure with the Cartan connection.

Theorem 1.3. Let G be a 2-dimensional non-Abelian Lie group. There is no
left-invariant metric g on G such that (G, g, V) is left-invariant statistical Lie
group, where V is the Cartan connection of G.

Then, we shift our attention to 3-dimensional Lie groups. Referring to the
notations in Table 1, we derive the following classification theorem, which
succinctly states that the only 3-dimensional left-invariant Lie groups that
possess a statistical structure with Cartan connection are R3, SU(2) and Gj.

Theorem 1.4. Let G be a simply connected 3-dimensional Lie group. Then
G admits a left-invariant statistical structure with the Cartan connection if it
falls into one of the following cases:
i. R3.
ii. The simple Lie group SU(2) for v =v = k.
iii. The non-unimodular Lie group Gj.

Finally, we establish statistical Wallach’s Theorem in the context of statistical
structures on Lie groups. Specifically, we prove that the only 3-dimensional
simply connected Lie group that admits a statistical structure with the Cartan
connection and positive sectional curvature is SU(2).
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Theorem 1.5. (Statistical Wallach Theorem) The only 3-dimensional
simply connected Lie group that admits a left-invariant positively curved sta-
tistical structure with Cartan connection is SU(2).

2. Preliminaries

Let M be a smooth n-dimensional manifold. A Riemannian metric g on M
is expressed as a family of maps (g,),enm, such that for each p € M, the map
gp : T,M x T,M — R is an inner product. If g is a Riemannian metric on M,
then the pair (M, g) is called Riemannian manifold. A connection on a smooth
manifold M is an R-bilinear map V : x(M) x x(M) — x(M) satisfying the
following properties:

ViV=FfVoV, VufV=U-f)V+[fViV, (2)

for any smooth scalar function f € C*°(M) and any vector fields U,V € x(M).
For any Riemannian manifold (M, g) there exists a unique connection V on
M satisfying the subsequent properties:

U-g(V,W)=g(VgV,W) +g(V,VgW), [UV]=VyV-VyU  (3)

This unique connection is called the Levi-Civita connection of (M, g) and will
be denoted by V9.

For a group G with an identity element denoted, by e if G is a smooth manifold
and the group operation is smooth, then G is called a Lie group. Consider a
Lie group G endowed with a Riemannian metric g. If ¢ is such that each left
translation of G acts as isometry, then g is called left-invariant Riemannian
metric. Similarly, g is called right-invariant if each right translation behaves
as an isometry. When ¢ is both left and right-invariant, it is termed the
designation of being bi-invariant. A vector field X on a Lie group G is called
left-invariant if it remains invariant under every left translation of G. The
Lie algebra g of a Lie group G is the tangent space T.G, equipped with a Lie
bracket operation defined by

[(X,Y] = [XE YH](e), VX,Y €g.

Here, X* and Y* represent left-invariant vector fields corresponding to X and
Y, respectively. For each X € g, the mapping ad(X) : g — g is defined by
ad(X)(Y) =[X,Y].

A one-to-one correspondence between left-invariant metrics on a Lie group G
and inner products on Lie algebra g of G can be established as follows [6, 8].
Consider an inner product (,) on g and define the inner product (X,,Y,), on
T,G for all X,,Y, € T,G and a € G as follow:

<Xa> Ya>a = <(La*1)*a (Xa)7 (Lafl)*a (Ya)>

Let (,) be the inner product induced on g by left-invariant Riemannian metric
g. Then
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(1) g is bi-invariant if and only if the following equation is satisfied:
(X, Y], Z) = (X, [, Z]). (4)

(73) If g is a bi-invariant metric, then the sectional curvature is obtained from
the following relation:
1 (XY X Y)])

KAV =T xv) - e ©)
If, for each two left-invariant vector field U and V' on G, the vector field ViV is
left-invariant, then V is called a left-invariant connection on GG. A bi-invariant
connection is defined similarly, using both left and right vector fields. It is
worth mentioning that Laquer classified bi-invariant affine connections on Lie
groups in [10]. Let g be a left-invariant Riemannian metric on a Lie group G.
In this case, the Riemannian connection of g is also a left-invariant connection.
There exists a one-to-one correspondence between left-invariant connections on
a Lie group GG, and bilinear maps p : g X g — g. This correspondence is defined
as follows [6, 8]. Given a left-invariant connection V on G, we obtain the map
(g xg— g defined by

WXY) = (VeeYh),, VXY eq. (6)

Every bilinear map 1 : g X g — g can be decomposed as p = p4+ s, where pi4
is the anti-symmetric part of p and pg is its symmetric part. The left-invariant
connection associated with a bilinear map p on g is torsion-free if and only if

WX, Y) = (Y. X) = [X,Y], ¥X,Y €. (7)
Hence
pa(X.Y) = JIX.Y], VXY €,
therefore,

w(X,Y) = o[X, Y]+ us(X,Y), VX,V €g. (8)

1
2
Let V9 be the Levi-Civita connection of a left-invariant Riemannian metric
g on a Lie group G and pf be the associated bilinear map to V9. For all

left-invariant vector fields X, Y and Z, the famous Koszul formula reads
2(2,VxY) = (Z,[X,Y]) + ([2, X].Y) + ([Z, Y], X). (9)
Thus, the symmetric part of uf satisfies
2Z,p5(X,Y) = (2, X],Y) + (2, Y], X). (10)

Remark 2.1. A symmetric bilinear map i on a Lie algebra g is torsion-free
if and only if g is Abelian. Thus, considering symmetric bilinear maps j is
very restrictive condition.



Classification of 3-dimensional left-invariant statistical Lie groups and statistical Wallach theorem 117

Thus, we merely consider the anti-symmetric torsion-free bilinear map p with
its = 0. In this case, u is called the Cartan connection of G which is the Levi-
Civita connection of any bi-invariant metric on G [4]. The Riemann curvature
of the Cartan connection is given by

1

A pair (g, V) is called a Codazzi pair on a manifold M, if V is a connection
and g is a Riemannian metric such that the covariant derivative Vg is a totally
symmetric tensor field on M. If V is torsion-free, then the pair (g, V) is called a
statistical structure, and the triple (M, g, V) is called a statistical manifold [2].

Example 2.1. Consider Riemannian space (R?,g) where g = dx* + dy?*. Let
{e1,ea} be an orthonormal basis and the connection V be defined as follows:

Velel = €9, V62€2 = 0, Veleg = v3261 = €.
Then the triple (R?, g, V) is a non-trivial statistical manifold.

Let G be a Lie group. Then a statistical structure (g,V) on G is said to
be left-invariant if both g and V are left invariant. In this case, the triple
(G,g,V) is called a left-invariant statistical Lie group. Clearly, for any left-
invariant Riemannian metric g on a Lie group G, the triple (G, g, V) is a left-
invariant statistical Lie group. Our research shows that very little information
is available on statistical Lie groups and very limited research has been done
in this area. A connection V* on a manifold M is referred to as the dual of V
with respect to a Riemannian metric g on M if the following equation holds
for all vector fields U, V,W € x(M):

U-g(V,W)=g(VyV,IW) + g(V,VW). (11)

If (g, V) is a Codazzi pair on a manifold M, then the pair (g, V*) constitutes
a Codazzi pair on M too and we have the following relationship

OV =V + V. (12)

If a Riemannian metric g and a connection V on a Lie group G are left-
invariant, then it can be easily verified that V* is also a left-invariant connec-
tion on G.

Example 2.2. Let M = {f(z,0) : 0 = (u,0) € R? o > 0}, where

1 |z — p?
flz,p,0) = Tong 65519(—?‘2)-

|\

The Fisher information matriz is given by

920 = |5

le
lew o
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where 0 = (01,0;) = (u,0) and

oo ol ) ol 0
9:5(0) = flz,0) ngéx) ngéz)

Let g = % d03 + 2 db3. Then (M, g) is isometric with (H, h), where
H = {(z,y) € R?| y > 0},

dzx.

and
_da? + dy?

v
Hence, (M,g) is a left-invariant statistical manifold. Since H has the group
structure, (M, g) can be regarded as a left-invariant statistical Lie group. Ac-
tually, this example served as our inspiration to define and study left-invariant
statistical Lie groups.

h

3. Left-Invariant Statistical Lie Groups

This section delves into the studying and characterizing left-invariant statis-
tical structures on Lie groups. Let (M,g) be a Riemannian manifold. We
explore that Ay, the set of all connections V on M such that (M, g, V)
is a statistical manifold, is an affine space whose associated vector space is
DI(M)** which is the set of all (1,2)-tensor fields D : x(M) x x(M) — x(M)
satisfying:

D(X,Y)=D(Y,X), ¢(D(X,Z),Y)=g(X,D(Y,Z)). (13)

It is obvious that V¥ is a special and noteworthy element of Ays4). By con-
sidering V¢ as the origin of A(ys4), one can see that every V € A4 can be
expressed as V = V9 + D, for some D € DI(M)*.
Now, let G be a Lie group and g be a left-invariant Riemannian metric on G.
In general, suppose that (G, g, V) is a left-invariant statistical Lie group. For
each o € R, let us set

V= (1-a)VI+aV.
V¢ is called the a-connection [5]. Since A (g 4 is an affine space, it follows that
the triple (G, g, V?) is also a left-invariant statistical Lie group.
A natural question is: How large is Ag4)? To provide an answer to this
question, we suppose that V is an arbitrary left-invariant connection which
belongs to A(g,4) and let x4 be the bilinear map associated with V. Then

W(X,Y) = p9(X,Y) + D(X,Y) = %[X, Y]+ u(X,Y) + D(X,Y), (14)

where 19 is the bilinear mapping associated with the Levi-Civita connection of
gand D : g x g — g belongs to D1(g)**. The description of elements of Aa.g)
given by (14) tells us that A ) is the same size as the vector space D}(g)**.
Let {eq, ey, ..., €, } be an orthonormal base for g with respect to the inner prod-
uct (,) on g. For an arbitrary D € Di(g)*, let us define Dy, = (D(ei, €;), ex).
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Then, conditions proposed in (13) are equivalent to D;jr = Dj;, and D, =
Djy; for all indices 7, j and k. It is a straightforward combinatorial problem to
compute the number of all D;j;s satisfying the two conditions. Indeed, finding

the dimension of the vector space D1(g)*, we obtain the following.
Proposition 3.1. Ay is a w-dimensional affine space, where n
denotes the dimension of the Lie group G.

Remark 3.1. Note that Hirica and et al. presented the same result as Propo-
sition 3.1 in Proposition 4 in [9] with a different approach.

Theorem 3.1. Let G be a Lie group, g a left-invariant Riemannian metric,
and V a torsion-free left-invariant connection associated with a bilinear map
w on G. Then, the triple (G,g,V) is a left-invariant statistical Lie group if
and only if

where (, ) is the inner product induced by g on g.

Proof. Let (G,g,V) be a left-invariant statistical Lie group and X, Y and
Z € g. Since the pair (g, V) is a Codazzi pair, we have

(Vxeg) (Y5, Z5) = (Vyrg) (X", Z5), (16)
where X%, Y" and Z represent left-invariant vector fields corresponding to
X,Y and Z, respectively. By definition, (16) can be expressed as follows

X" Q(YL> ZL) - Q(VXLYLa ZL)—Q(YLa VXLZL)
= YL g(XE 28 —g(Vy X5, ZE8) —g(XE, Yy Z5).(17)
Since g and vector fields X©, Y% and Z% are left-invariant, it follows from (17)
g(Vxe Y5, Z5) 4+ g(YE, V2 Z2) = g(Vyr X5, Z5) 4+ g(XF, Yy Z5), (18)
and
gV YE =V XE Z8) = g(XE, Vyr Z8) — g(YE, Vi Z5). (19)
Since V is torsion-free, (19) gives us
g([XE, Y], 25) = g(XE, Wy Z8) — (Y2, V0 25). (20)

Evaluating (20) at the point e € G, we have (15).
Conversely, suppose that (15) holds and assume that g is the left-invariant
Riemannian metric associated with (, ) and V is the left-invariant torsion-free
connection associated with . Substituting = p9 + D into (15) and taking
into account (G, g, V9) is a left-invariant statistical Lie group, we infer that D
satisfies

(D(X,2),Y)y=(X,D(Y,2)), VXY, Z € g. (21)
Since V and VY are torsion-free, it follows that D is symmetric. Thus, D sat-
isfies conditions (13), and consequently, (G, g, V) is a left-invariant statistical
Lie group. This completes the proof. 0
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For computational purposes, we are going to express (14) in a local coordinates.
Let us consider an orthonormal base {ej,es, ..., e,} for g with respect to the
inner product (,) on g. Since [e;, e;] € g, there exists a set of real numbers
cijk (4, J,k =1,2,...,n) such that [e;,e;] = >, cijrex. In [11], J. Milnor proved
that if g is a left-invariant Riemannian metric on G and VY is the Levi-Civita
connection of g, then

1
1 (e e;) = Vie; = 9 Z(Cz‘jk — Cjki + Chij)€x-
k

Since p? is a map from g x g to g, we have p9(e;,e;) = >, ,ufjkek. With this
assumption, we have the following result.

Theorem 3.2. Let (G, g,V) be a left-invariant statistical Lie group and let p
be the bilinear mapping corresponding to V. If V9 is the Levi-Civita connection
of g and p? is the bilinear mapping corresponding to V9, then

1
p(ei e5) = 2 Z{<N?ki - M?kj) - (Miij - N?z‘k) + (N?jk - :“Zji) + 2Dy }er, (22)
k

where D;jr, = (D(e;, €;), ex)-
Proof. By equation (14), we have
Zuijkek = p(ei, e5) = p(ei, e5) + Dlei, e5) = Z(ijk + Dijk) ek
2 k

Since ¢ is the Levi-Civita connection of g and {ey, es, ..., €, } is an orthonormal
basis for g, we have

1
wleies) =5 > " (Cijk — Ciri + Crij)ex (23)
k

Since the pair (g, V7) is a statistical structure on the Lie group G, we have
cigr = (lei €] ex)

(1?(ej, er), i) — {ej, 1 (eis ex))

_ 9 _ g
= Higi — Hikj-

Similarly, we have
=9 9
Chij = Mk = Hjio
and
=9 — 9
Ciki = i — Hjik-
Hence

1
pleiej) = 3 Z(Cijk — Cjki T Crij + 2Djji)ex

k
1
= 5 Z{(Mgm - /“ngk:j) - (:uiij - :u?ik) + (ijk - /“Liji) + 2Dy }ex.
k

O
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Example 3.1. [5] Consider the left-invariant statistical Lie group (G,g,V),
where G = {(z,y) € R*| y > 0} and g = dizizﬂz. Let {eq,e2} be an orthonor-

Y
mal basis for g such that the Levi-Civita connection of g in this basis is given
as follows: )

1
Vglel = ——=€9, VgleQ = ——=¢€1, Vngl == Vngg =0.

V2 V2
If D :gxg— g is defined by

V2 V2
D(@l,el) - _7627 D(617€2) - D(62761) - _7617 D(627€2) — _\/562)

then we have

1
312 = [ilay = [i1y = M1y = Mgy = Mg = 0, gy = _7 11 = E?

1
27
and

V2
D19 = Dy11 = Dagy = Digg = 0, Dy1g = Dig1 = Doyy = T Doy = —V2.
Hence

Veer = pler,er)

1
- 35 Z{(Mgkl — W) = (Wiay — #ine) + (h — #300) + 2Dk fer
k
= Diner + {(#f12 — #311) + Duiz}es = 0.
v6162 - M(elu 62)
1 g g g g g g
= 35 Z{(sz — Whe) — (Wiao — Hing) + (Wiag — Hay) + 2D 12k fex
k

= {(udy, — 11a) + Diar}er + Disges = —V2e;.

I

Similarly, we have V,e1 = —\%61 and V,es = €2

Corollary 3.1. With the above assumptions, if K is the sectional curvature
of u, then

1
K(ei e;) = B) Z{(M?jk - Mij) + Djji} Z{(:uitt — Hgyg.) + Dt}
k t
1
T Z{(Mi’m - lj’?kj) - (:uiij - M?ik) + (:w;‘]jk - MZji) +2Diji }
k

X Z{(Mitj - M?tk) - (ijk - Mijt) + (:u?kt - Mfkj) + 2D}
t

1
-3 Z(N?m‘ - kaj) Z{(N?tk - p’itj) - (kaj - lu?kt) + (Mth - ijk) + 2Dy}
2 t
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Proof. We know that
K(ei,e;) = (Rleiej)ej, ei)
= <ve¢vej€j7 ei> - <Vejvei6j7 €i> - <v[ei,ej]eja €i>
= <”(€i’ :u(ej’ ej))v ei> - <,u(eja ,u(eia ej))v 6i> - <:u([€i7 ej]7 6j)7 ei)'

Now, by using equation (22) and performing a straightforward calculation, the
result is obtained. U

Example 3.2. With the notations of Example 3.1, we have

1
K(er,e2) = 92 Z{(Ngzk = Hya2) + Doy} Z{(Mitt — M) + Dot}
k t

1
-1 Z{(Mgm — W) = (Haa — Honp) + (W — HRr) + 2D12r}
k

X

Z{(Miﬂ - Ngtk) - (Mfzk - :uiQt) + (:ugkt - Msz) + 2Dqi }

1
-3 Z(Ngm — [ije) Z{<ru’gtk — o) — (Wiho — Hoge) + (URay — Hiay) + 2Dgae}
k t

1

)
Ha211 — Mi]u)}{(ﬂgn - Nilu) + D1 + D122}
- { Ngzl - /v‘%z)}{(ﬂgzl - N?m) + Doy + Do}

= —2+V2.

Proposition 3.2. Let G be an Abelian Lie group. If u = 0, then for each
left-invariant metric g on G, the triple (G, qg,V) is a left-invariant statistical
Lie group.

Proof. Let G be an Abelian Lie group. Then g is Abelian, and hence [X,Y] =
0, for all X, Y € g. Now, if u = 0, then the equation (15) holds trivially. O

Up to isomorphism, there exists a unique 2-dimensional non-Abelian Lie alge-
bra. Indeed, any 2-dimensional non-Abelian Lie algebra g has a basis {X, Y}
with the bracket given by [X,Y] = X.

Theorem 3.3. Let G be a 2-dimensional non-Abelian Lie group and V be the
Cartan connection on G. Then, there is no left-invariant metric g on G such
that (G, g,V) is a left-invariant statistical Lie group.

Proof. Let G be a 2-dimensional non-Abelian Lie group and suppose that (,)
is an inner product on g such that (G, g, V) is a left-invariant Lie group, where
g is the left-invariant Riemannian metric on G induced by (,) and V is the
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Cartan connection on G. Suppose that {X,Y} is an orthonormal basis with
respect to (,) for g such that [X,Y] = X. For every vector Z = AX +nY € g
with non-zero A € R, we have

(X.YL.2) =\ {u(Y.2), X) = (X, Z) = —2A (24)

By (15), we must have A\ = 0 which is a contradiction. This completes the
proof. 0

Corollary 3.2. Let G be a 2-dimensional Lie group and ¥V be the Cartan
connection on G. Then, G admits a left-invariant statistical structure (g, V)
if and only if G is an Abelian group.

4. Classification of Left-Invariant 3-Dimensional Lie Groups

Now, we deal with 3-dimensional Lie groups. In the context of 3-dimensional
Lie groups, the work of Ha-Bumlee in [7], focused on 3-dimensional Lie al-
gebras and the classification of Left-invariant Riemannian metrics on simply
connected 3-dimensional Lie groups. Considering a basis {z,y,z} for a 3-
dimensional Lie algebra, it can be shown to be isometric isomorphic to one of
the presented Lie algebras endowed with the given inner product in Table 1
(for more details see Table 1). In this section, building upon Ha-Bumlee’s find-
ings and utilizing (15), we classify all left-invariant 3-dimensional Lie groups
endowed with the Cartan connection. This classification is essential in delin-
eating the scope of the class of left-invariant statistical Lie groups.

Theorem 4.1. Let G be a simply connected 3-dimensional Lie group and V
be the Cartan connection on G. Then, G admits a left-invariant statistical
structure (g, V) if and only if it falls into one of the following cases:
i. R3.
ii. The simple Lie group SU(2) for v=v = k.
iii. The non-unimodular Lie group Gf.

Proof. 1t is sufficient to examine the conditions under which each of the cases
in Table 1 satisfies the equation (15). It is obvious that in Case 1, G = R3
admits a left-invariant statistical structure.

As for Case 7, based on the information provided in Table 1, we have

< [61762]7€3> =, (25)
(les,en),er) = e pler,es)) = (5lenesher) = (e 3 leresl) = 37+ 3
(26)
Similarly, we have
1 1
(les,er],ea) =k, (pler,e2),e3) — (er,ples,e2)) = v+ 7. (27)

2 2
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TABLE 1. Euclidean 3-dimensional Lie algebras.
Case Algebra structure Associated simply connected Lie group  Left-invariant Riemannian metric
le1,e2] =0 1 00
1 ler,e3] =0 R? 010
[e2,e3] =0 0 0 1
le1,e2] = e3 v 0 0
2 le1,e3] =0 The Heisenberg group Nil 0 v O ¥>0
[e2,e3] =0 0 0 ~
le1,e2] =0 100
3 [e1.e3] = —e1 The solvable Lie group Sol 100 v>0
le2,e3] = e2 1 0 v
[e1,e2] =0 110 o1
4 le1,e3] = —ex The solvable Lie group Sol 1 k 0 5 >0
[e2, e3] = e2 00 v
le1,e2] =0 1 00 <
. - 1
5) le1,e3] = ez The solvable Lie group Fy(2) 0 & 0 gig =
[e2;e3] = —ex 00 v
le1, e2] = 2e3 _ ~ 0 0 N
6 le1, e3] = —2e2 The simple Lie group PSL(2,R) 0 k 0 ® N g >0
le2, e3] = —2e1 0 0 v v
le1,e2] =e3 ¥y 0 0 .
7 [e1,e3] = —e2 The simple Lie group SU(2) 0k 0 Z >*0'€ =Y
le2,e3] = e1 00 v
le1,e2] =0 1 0 0
8 le1,e3] = —ex The non-unimodular Lie group Gy 010 v>0
[e2, 63] =—e2 0 0 v
le1, e2] = 1 00 <
9 le1,e3] = The non-unimodular Lie group G, 0k 0 gig < el
lea, e3] = ce1 — 2ex 0 0 v
€1, ez] = 1 00 k>0
le1, e2]
10 le1, es] = The non-unimodular Lie group G. 0 k O v>0
[e2, e3] = ce1 — 2e9 0 0 v c=
le1, e2] = L5 0 v>0
11 le1, e3] = The non-unimodular Lie group G, 110 o
[62, 3} =ce1 — 262 0 0 v -
le1, e2] = 100 0<k<1
12 le1,e3] = The non-unimodular Lie group G. 0 £ O c=1
lea, e3] = ce1 — 2ea 0 0 v v>0
[e1,€2] =0 Loy 0 (c]ffgl
13 e es] = —e2 The non-unimodular Lie group G, 7y 10 00
[e2; e3] = ce1 — 2e2 00 v 0<ry<1
[e1,e2] =0 110 0<r<c
14 le1,e3] = The non-unimodular Lie group G. 1 x 0 c>0
[e2, 3]—061*262 00 v v >0
le1, e2] = 1 & 0 0<rk<1
15 [eres] = The non-unimodular Lie group G, k10 v>0
[e2, e3] = ce1 —262 0 0 v yr=+1-c
Also, we have
1 1
(lea,esen) =7, (nules,er),ea) = (es, pler,e1)) = 56+ 5 0. (28)

2 2



Classification of 3-dimensional left-invariant statistical Lie groups and statistical Wallach theorem 125

By equating these three relations, we conclude that G = SU(2) admits a left-
invariant statistical structure (g, V) provided that v = k = v.

The Case 8, the non-unimodular Lie group Gy, can be proven with a similar
argument presented for Case 7. It is a direct computation, to show that other
cases given in Table 1 do not satisfy (15). Thus, we get the proof. O

The celebrated Wallach theorem states that the only 3-dimensional simply
connected Lie group admitting a left-invariant Riemannain metric whose sec-
tional curvature is positive, is SU(2) [11]. Among Cases 1, 7 and 8 in Table 1,
only Case 7 is a simply connected compact Lie group. This observation leads
us to a Wallach type theorem for left-invariant statistical Lie groups.

Theorem 4.2. (Statistical Wallach Theorem) The only 3-dimensional
simply connected Lie group with the Cartan connection that admits a left-
invariant statistical structure with positive sectional curvature is SU(2).

Proof. A straightforward calculation demonstrates that the left-invariant met-
ric on SU(2) given in Table 1 with v = k = v satisfies the following relation:

([er,ea],e3) = (e1, [ea, €3] ).
Therefore, this left-invariant metric on SU(2) is a bi-invariant metric on SU(2)

and its sectional curvature in the direction of the plane generated by the vectors

e1; and es is obtained from the following relation:
1 102

K(er, en) = = ([e1, 2], [e1, ea] ) _ = v

4 (er,e1) (e, e2) — (e, e9) 49K
Similarly, we have K(ey,e3) = %:—i and K(eg, e3) = }LZ—Z Thus, the left-
invariant Riemannain metric on SU(2) defined in Table 1 with v = k = v

has positive constant sectional curvature 3. Moreover, (SU(2),g,V) is a left
-invariant statistical Lie group. This completes the proof. O

> 0. (29)

5. Conclusions

We first characterized left-invariant statistical structures on Lie groups and
determined the dimension of the affine space of all left-invariant statistical
connections on an n-dimensional Lie group. Then, we classified all 2- and 3-
dimensional left-invariant statistical Lie groups with the Cartan connection.
As an application of this classification, we obtained a statistical Wallach the-
orem.
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