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STABILITY ANALYSIS OF LINEAR DISTRIBUTED ORDER 
SYSTEM WITH MULTIPLE TIME DELAYS 

Hossein AMINIKHAH1, A. Refahi SHEIKHANI2, Hadi REZAZADEH3 

In this paper, we study the stability of n -dimensional linear distributed 
order differential system with timedelays by respect to the nonnegative density 
function, where the delay matrix is defined in ( )+ ×\ n n . We produce necessary and 
sufficient conditions for asymptotic stability of equations of this type. As an 
application, one example of distributed order Lotka-Volterra predator-prey system is 
given to demonstrate our main result. 
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1. Introduction 
The history of fractional calculus is more than three centuries old, yet it 

only receives much attention and interest in the past 20 years; the reader may refer 
to [1, 2] for the theory and applications of fractional calculus. The generalization 
of dynamical equations using fractional derivatives proved to be useful and more 
accurate in mathematical modeling related to many interdisciplinary areas. 
Applications of fractional calculus and fractional-order differential equations 
include: dielectric relaxation phenomena in polymeric materials [3], transport of 
passive tracers carried by fluid flow in a porous medium in groundwater 
hydrology [4], transport dynamics in systems governed by anomalous diffusion 
[5, 6], long-time memory in financial time series [7] and so on [8, 9]. Stability 
analysis and control systems are one of the most important problems that in 1996, 
Matignon [10] studied stability of n-dimensional linear fractional systems from a 
point of view of control. However these issues for systems time-delay have been 
studied in recent years. Delays are encountered in many phenomena, such as 
pneumatic, hydraulic networks, chemical processes, long transmission lines [11]. 
Recently, time delays and multiple time delays are introduced to complex 
dynamical networks, e.g., see [12, 13]. More novelty, Chen and Moore [14] 
studied stability of 1-dimensional fractional systems with retard time and Deng et 
al [15] introduce multiple time delays to the fractional differential equations. The 
idea of fractional derivative of distributed order is stated by Caputo [16] and later 
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developed by Caputo himself [17, 18], Bagley and Torvik [19, 20]. Other 
researchers used this idea, and interesting reviews appeared to describe the related 
mathematical models of partial fractional differential equation of distributed 
order. For example, Diethelm and Ford [21] used a numerical technique along 
with its error analysis to solve the distributed order differential equation and 
analyze the physical phenomena and engineering problems, see [21] and 
references therein. Recently H. Saberi Najafi et al [22, 23] studied stability 
analysis of distributed order differential equations with respect to the nonnegative 
density function. Furthermore, H. Aminikhah et al [24] investigated sufficient and 
necessary conditions of stability of nonlinear distributed order fractional system. 
Now we consider the stability of n-dimensional linear distributed order 
differential system with time delays by respect to the nonnegative density 
function. 

This paper is organized as follows. In Section 2, we recall some basic 
definitions of the Caputo fractional derivative operator, systems with fractional 
derivatives of distributed order. Section 3 contains the main definitions and 
theorems for checking the stability analysis of linear distributed order system with 
multiple time delays. Finally, in section 4 we present an example of distributed 
order Lotka-Volterra predator-prey system to illustrate our main result. 

2. Elementary Definitions 

In this Section, we consider the main definitions and properties of fractional 
derivative operators of single and distribute order. 

2.1. Fractional Derivative 
There are several definitions of a fractional derivative of order 0α >  [1, 2], 

such as Grunwald-Letnikov’s definition, Riemann-Liouville’s definition, Caputo’s 
fractional derivative. The former two definitions are often used by pure 
mathematicians, while the last one is adopted by applied scientists, since it is 
more convenient in engineering applications. The Caputo fractional derivative of 

( )f t  is defined as: 
( )

10

1 ( )( ) , 1 , , 0.
( ) ( )

α
α

τ τ α
α τ − += − ≤ ≤ ∈ >

Γ − −∫ `
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fD f t d m m m t
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Fortunately, the Laplace transform of the Caputo fractional derivative satisfies: 

{ } { }
1

( ) 1

0

( ) ( ) (0 ) ,
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C k k
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k

D f t s f t f sα α α
−

+ − −

=

= −∑AL                                       (2)  

where 1m mα− < ≤ and s  is the Laplace variable. The Laplace transform of 
Caputo fractional derivative requires the knowledge of the initial values of the 
function and its integer derivatives of order 1,2, , 1= −…k m . When ( ]0,1α ∈ is 
given by: 
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{ } { } 1( ) ( ) (0 ) .C
so tD f t s f t f sα α α+ −= −AL                                                  (3)  

 
2.2. Systems with fractional derivatives of distributed order fractional 
Fractional derivative operator of distributed order a generalization of the 

single order α α α=so D d dt with respect to nonnegative density function of ( )αb  
is defined as: 

( )

1
( ) ( ) ( ) , 1 , .α αα α α

−
= − < ≤ ∈∫ `

mC b C
t so tm

D f t b D f t d m m m         (4)  

The idea of distributed order is stated by Caputo [16, 17]. Further the 
Laplace transform of the Caputo distributed order satisfies: 
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where ( )F s  is the Laplace transform of ( )f t and  
1

( ) ( ) .αα α
−

= ∫
m

m
B s b s d       (6)  

3. Stability analysis of linear distributed order fractional differential 
system with multiple time delays 

In 2012, H. Saberi Najafi et al [22] studied stability analysis of distributed 
order fractional differential equations, which is expressed as follows: 

( )
0( ) ( ), (0) , , , 0 1,α α×= = ∈ ∈ < ≤\ \C b n n n

tD x t Ax t x x A x      (7)  
that we easily generalize this result for linear fractional differential equations with 
time delay [14]: 

( ) ( ),α τ= −C
so tD x t Ax t                                                                              (8)  

where α  is real and lies in (0,1], ×∈\n nA and 0τ >  represents the time delay. 
The initial condition associated to this equation is ( ) ( )ϕ=x t t , [ ], 0τ∀ ∈ −t where 

[ ]0( ) ,0 .ϕ τ∈ −^t  
Now, we generalize the main stability properties for the linear distributed 

order fractional differential system with multiple time delay in the following 
form: 

1

2
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where ( )ib α  denotes the nonnegative density function of order (0,1]α ∈ , the initial 
values ( ) ( )i ix t tϕ= , are given for max,

max 0iji j
tτ τ− =− ≤ ≤  and , 1, ,i j n= … . In this 

system, time delay matrix
 

( ) ( )n n
ij n nT τ + ×

×= ∈ \ , coefficient matrix
 

( )ij n nA a ×= , state 

variables ( ), ( )i i ijx t x t τ− ∈\  and initial values [ ]0
max( ) ,0ϕ τ∈ −^i t . 

We study the stability of system (9) by applying the Laplace transforms on 
both sides of this system, we have 
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                 (10)  

for 1, , .= …i n  Where ( )iX s  is the Laplace transform of ( )ix t . 
We can rewrite (10) as follows: 

1 1
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in which 
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where     
( ) ,

( )
.

τ

τ
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−
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ii
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i ii

ij s
ij

B s a e if i j
s
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                                           (14)  

For simplicity, we call ( )sΔ  a characteristic matrix of (9) with respect to the 

distributed function 1 2( ) ( ( ), ( ), , ( ))= … T
nB s B s B s B s  where 

1

0
( ) ( )i iB s b s dαα α= ∫ . 

Moreover det( ( )) 0Δ =s  is the characteristic equation of system (9), with respect 
to the distributed function  ( ).B s  

Remark 3.1. If a linear distributed order fractional differential system has 
a non-zero equilibrium, we can move this equilibrium to the origin by the 
translation transform. Throughout the paper, we always suppose that system of (9) 
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has a zero solution and all complex computations are done in the branch of the 
principle value of argument. 

Now, we express the main theorem for checking the stability of system 
(9), but, we first recall the following theorem. 

Theorem 3.2. (Final Value Theorem [25]) Let ( )F s  be the Laplace 
transform of the function ( )f t . If all poles of ( )sF s  are in the open left-half plane, 
then, 

0
lim ( ) lim ( ).
→∞ →

=
t s

f t sF s                                                                               (15)  

Theorem 3.3. The zero solution system of (9) is asymptotically stable if 
and only if all roots of ( )det ( ) 0sΔ =  have negative real parts. 
proof. Multiplying s on both sides of (11) gives, we have 
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                                                                   (16)  

if all roots of the ( )det ( ) 0sΔ =  lie in open left half complex plane (i.e, ( ) 0sℜ < ), 
then, we consider (16) in ( ) 0sℜ ≥ . In this restricted area, the relation (16) has a 
unique solution ( )1 2( ) ( ), ( ), , ( )= … nsX s sX s sX s sX s . Since 

0
lim ( ) 0
→

=is
B s , for 

1, ,i n= …  so we have 

0, ( ) 0
lim ( ) 0, 1, 2, , ,
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= = …is s

sX s i n                                                    (17)  

which from the final value Theorem 3.2, we get 
( )1 2 1 20

lim ( ) lim( ( ), ( ), , ( )) lim ( ), ( ), , ( ) 0.
→∞ →∞ →

= = =… …n nt t s
x t x t x t x t sX s sX s sX s

  

(18)  

The above result shows that the system (9) is asymptotically stable.                     ■ 
Definition 3.4. The eigenvalues of A with respect to the distributed function 

( )B s
 

are the roots of the characteristic equation of system (9) where 

1 2( ) ( ( ), ( ), , ( ))= … T
nB s B s B s B s  is the distributed function with respect to the 

density function 1 2( ) ( ( ), ( ), , ( )) .α α α α= … T
nb b b b   

The inertia of a matrix is the triplet of the numbers of eigenvalues of 
A with positive, negative, and zero real parts. Now, we generalize the inertia 
concept for analyzing the stability of linear distributed order fractional system 
with multiple time delays. 

Definition 3.5. The inertia of the system (9) is the triple 
 

( ) ( ) ( ) ( )
( ) ( ( ), ( ), ( )),

α α α α
π ν δ− = − − −

b b b bn n n nI A T A T A T A T                      (19)  
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where 
( )

( )
bn A T

α
π − , 

( )
( )

bn A T
α

ν −  and 
( )

( )
bn A T

α
δ −  are, respectively, the number 

of roots of ( )det ( ) 0Δ =s  with positive, negative, and zero real parts. 
Definition 3.6. The matrix A  is called a stable matrix with respect to the 

distributed function ( )B s , if all of the eigenvalue of A  with respect to the 
distributed function ( )B s  have negative real parts. 

Theorem 3.7. The linear distributed order fractional differential system 
with time delays by respect to the nonnegative density function (9) is 
asymptotically stable if and only if any of the following equivalent conditions 
holds. 

(1)  The matrix A  is stable with respect to the distribute function ( ).B s  
(2) ( ) ( )

( ) ( ) 0.
α α

π δ− = − =
b bn nA T A T  

(3)  All  roots  s   of  the  characteristic  equation  of  system  (9) satisfy 
     arg( ) 2.π>s  

proof. According to Theorem 3.3 and the above definitions, proof can be easily 
obtained.                                                                                                                  ■ 
Based on the theorem above, we can obtain the following remarks: 
 

Remark 3.8. If 0ijτ =  and ( ) ( )ib bα α=  for , 1, ,i j n= … , then the 
characteristic matrix and characteristic equation of (9) are reduced to ( )B s I A−  
and det( ( ) ) 0B s I A− = , respectively. Moreover, 

( ) ( )
( ) ( )

b bn nI A T I A
α α

− = , which 
agrees with the results and definitions for distributed order differential equations 
[22]. Also, the result obtained in Theorem 3.6 of [22] are special case of Theorem 
3.7 of the present paper. 

Remark 3.9. If ( ) ( )i ib qα δ α= −  where 0 1iq< ≤ for 1, ,i n= …   and 
( )δ α  is the Dirac delta function, then we have the following stability analysis of 

linear fractional differential system with multiple time delays [13]: 
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where 
,
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and ( )det ( ) 0sΔ = , respectively. Furthermore, if 0ijτ τ= >  for , 1, ,i j n= …   and 

1 2 1nq q q= = = =" , then the characteristic matrix and characteristic equation of 

(20) are reduced to ssI Ae τ−−   and det( ) 0ssI Ae τ−− = , respectively. They 
coincide with the usual definitions of the characteristic matrix and characteristic 
equation of delayed equations [12]. Especially, if 0τ = , then the characteristic 
matrix and characteristic equation of (20) are respectively, reduced to −sI A  and 
det( ) 0− =sI A , which agree with the typical definitions for typical differential 
equations. 

4. Example 

In this Section, we give example to confirm our results. The integer-order 
Lotka-Volterra predator-prey system with time delay can be modeled as follows: 

 

1 1 1 11 1 12 2

2 2 2 21 1 22 2

( ) ( )[ ( ) ( )],

( ) ( )[ ( ) ( )],

τ τ

τ τ

= − − − −⎧
⎪
⎨
⎪ = − + − − −⎩

�

�

x t x t r a x t a x t

x t x t r a x t a x t                                

(23)  

where 1( )x t  and 2 ( )x t  can be interpreted as the population densities of prey and 
predator at time t , respectively, 0τ >  is the feedback time delay of the prey to 
the growth of the species itself, 1 0r >  denotes the intrinsic growth rate of the prey 
and 2 0r >  denotes the death rate of the predator; the parameters ija  ( , 1,2)=i j  are 
all positive constants. In 2008, Yan and Zhang [26] investigated the stability and 
Hopf bifurcation of system (23). The corresponding fractional-order Lotka-
Volterra predator-prey system with time delay can be written in the form as 
below: 

1

2

1 1 1 11 1 12 2

2 2 2 21 1 22 2

( ) ( )[ ( ) ( )],

( ) ( )[ ( ) ( )],

α

α

τ τ

τ τ
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⎪
⎨
⎪ = − + − − −⎩

C
so t

C
so t

D x t x t r a x t a x t

D x t x t r a x t a x t                        

(24)  

where αi  are real and lies in ( ]0,1 . 
Now, we consider distributed order fractional Lotka-Volterra predator-

prey system with time delays by respect to the nonnegative density function given 
by: 
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with initial values 1 1( ) ( )x t tϕ=  and 2 2( ) ( )x t tϕ=  are given for [ ,0]τ∈ −t . If 

1 21 2 11 0,r a r a− >                                                                                                           (26)  
then system (25) has a positive equilibrium points * * *

1 2( , )E x x= , where 
* *1 22 2 12 1 21 2 11
1 2

11 22 12 21 11 22 12 21

, ,+ −
= =

+ +
r a r a r a r ax x

a a a a a a a a                                            
(27)  

Let *
1 1 1X x x= − , *

2 2 2X x x= − . We then obtain (25) as follows: 
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The linearization of system (28) at (0,0)  is linear system: 
1

2
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2 3 1 4 2
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α
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τ τ
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where 
* * * *

1 11 1 2 12 1 3 21 2 4 22 2, , , .k a x k a x k a x k a x= − = − = = −                 (30)  
 

Clearly, the characteristic matrix this system is 

1 1 2

3 2 4
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( ) ,
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s s

s s

B s k e k e
s

k e B s k e

τ τ

τ τ

− −

− −

⎛ ⎞−
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−⎝ ⎠                                                         (31)  

and the characteristic equation is 
2 2

1 2 4 1 1 2 1 4 2 3( ) ( ) ( ) ( ) 0.τ τ τ τ− − − −− − + − =s s s sB s B s k B s e k B s e k k e k k e        (32)  
Now, we consider the following special case of system (28) 

1

2
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1 1 1 2

( )
2 2 1 2

( ) ( )[1 ( ) ( )],

( ) ( )[ 1 2 ( ) ( )],

α

α

τ τ
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t
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t

D x t x t x t x t

D x t x t x t x t                            

(33)  

with initial values 1( ) 0.2x t =  and 2 ( ) 0.3x t =  which has a positive equilibrium 
points * (2 3,1 3)=E . For analyzing system (33), we compute 

( )
( )

bnI A T
α

−  in the 
case that various density function. The results are shown in Table 1. 
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Table 1 
Stability analysis of system (33) for various density function 

               

          ( ) ( ) 1,2α δ α= − =i ib q i                  1 2( ) ( ) ( ) 1,2α δ α δ α= − + − =i i ib q q i  
 

  τ  
 
1 2( , )q q q=  
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τ  
 

 
1 1 1 2

2 1 2 2

( , )
( , )
q q
q q

⎧
⎨
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( )

( )
bnI A T
α
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1 .9 8

 

 
(4 5 , 4 5)  

 
(4,4,0) 

 
0.5 

 
 

(1 3 , 2 5 )
(1 3 , 1 3 )

⎧
⎨
⎩

 
(1,0,0)

 

 
0 . 6 5

 

 
(1,1)  

 
(0,2,0)  

 
0.75 

 
 

( 0 .7 5 , 0 .4 )
( 0 .6 5 , 0 .4 )

⎧
⎨
⎩  

 
(1,0,0)

  

 
1 . 5  

 
(0 .95, 0 .95)

 

 
(1,0,0)  

 
1.75 

 
(0 .95, 0 .85)
(0 .95, 0 .85)

⎧
⎨
⎩

 
(0,2,0)

  

Since system (33) needs to be solved numerically for the reconciling our 
results are given in Table 1, a suitable numerical method needs to be selected. H. 
Rezazadeh et al has presented a Grunwald-Letnikovs method for solving delay 
differential equations of fractional order [24]. Fig. 1 indicates that system (33) 
with parameters: 1 2 4 5= =q q , when 1.98τ =  is unstable. Fig. 2 shows system 
(33) has a unique positive equilibrium * (2 3,1 3)=E  that this equilibrium is 
asymptotically stable when  1 2 1= =q q , 0.65τ = . Figure 3 demonstrates that 
system (33) with parameters: 1 20.95, 0.85= =q q , when 1.5τ = is unstable. 
Figure 4, 5 indicate that system (33) with the assumptions mentioned Table 1 is 
unstable when 0.5τ = , 0.75τ = . Figure 6 shows system (33) has a unique 
positive equilibrium * (2 3,1 3)=E  that this equilibrium is asymptotically stable 
when 11 12 21 220.95, 0.85, 0.95, 0.85= = = =q q q q  and 1.75.τ =  

 
Fig. 1. The numerical approximations of system (33) when 1.98τ =  and 4 5 4 51 2( , ) ( , ).=q q  
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Fig. 2. The numerical approximations of system (33) when 0.65τ =  and 1 2( , ) (1,1).=q q  

 
Fig. 3. The numerical approximations of system (33) when 1.5τ =  and 1 2( , ) (0.95,0.85).=q q  

 
Fig. 4. The numerical approximations of system (33) when 0.5τ =  and 11 12 21 22( , , , ) =q q q q  

                                                                 (1 3 , 2 5 ,1 3,1 3).  

 
Fig. 5. The numerical approximations of system (33) when 0.75τ =  and 11 12 21 22( , , , ) =q q q q  

                                                                  (0.75, 0.4, 0.65, 0.4).  
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Fig. 6. The numerical approximations of system (33) when 1.75τ =  and 11 12 21 22( , , , ) =q q q q  

                (0.95, 0.85, 0.95, 0.85).  

5. Conclusions 

In this paper, we introduced the distributed order fractional system with 
multiple time delays. Then the asymptotical stability for such systems has been 
investigated. We generalize the inertia and characteristics polynomial concepts of 
such a system with respect to the nonnegative density function. Numerical 
simulations were coincident with results of Table 1 described in the previous 
Section. Although this paper just focuses on the systems with ( ]0,1α ∈ , the 
higher order systems can be discussed based on the analysis of this paper. This 
will be the investigation goal of future works. All numerical results are obtained 
using Matlab 7.8. 
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