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STABILITY ANALYSIS OF LINEAR DISTRIBUTED ORDER
SYSTEM WITH MULTIPLE TIME DELAYS

Hossein AMINIKHAH', A. Refahi SHEIKHANI?, Hadi REZAZADEH?

In this paper, we study the stability of »-dimensional linear distributed
order differential system with timedelays by respect to the nonnegative density
function, where the delay matrix is defined in (R*)™". We produce necessary and

sufficient conditions for asymptotic stability of equations of this type. As an
application, one example of distributed order Lotka-Volterra predator-prey system is
given to demonstrate our main result.
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1. Introduction

The history of fractional calculus is more than three centuries old, yet it
only receives much attention and interest in the past 20 years; the reader may refer
to [1, 2] for the theory and applications of fractional calculus. The generalization
of dynamical equations using fractional derivatives proved to be useful and more
accurate in mathematical modeling related to many interdisciplinary areas.
Applications of fractional calculus and fractional-order differential equations
include: dielectric relaxation phenomena in polymeric materials [3], transport of
passive tracers carried by fluid flow in a porous medium in groundwater
hydrology [4], transport dynamics in systems governed by anomalous diffusion
[5, 6], long-time memory in financial time series [7] and so on [8, 9]. Stability
analysis and control systems are one of the most important problems that in 1996,
Matignon [10] studied stability of n-dimensional linear fractional systems from a
point of view of control. However these issues for systems time-delay have been
studied in recent years. Delays are encountered in many phenomena, such as
pneumatic, hydraulic networks, chemical processes, long transmission lines [11].
Recently, time delays and multiple time delays are introduced to complex
dynamical networks, e.g., see [12, 13]. More novelty, Chen and Moore [14]
studied stability of 1-dimensional fractional systems with retard time and Deng et
al [15] introduce multiple time delays to the fractional differential equations. The
idea of fractional derivative of distributed order is stated by Caputo [16] and later
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developed by Caputo himself [17, 18], Bagley and Torvik [19, 20]. Other
researchers used this idea, and interesting reviews appeared to describe the related
mathematical models of partial fractional differential equation of distributed
order. For example, Diethelm and Ford [21] used a numerical technique along
with its error analysis to solve the distributed order differential equation and
analyze the physical phenomena and engineering problems, see [21] and
references therein. Recently H. Saberi Najafi et al [22, 23] studied stability
analysis of distributed order differential equations with respect to the nonnegative
density function. Furthermore, H. Aminikhah et al [24] investigated sufficient and
necessary conditions of stability of nonlinear distributed order fractional system.
Now we consider the stability of n-dimensional linear distributed order
differential system with time delays by respect to the nonnegative density
function.

This paper is organized as follows. In Section 2, we recall some basic
definitions of the Caputo fractional derivative operator, systems with fractional
derivatives of distributed order. Section 3 contains the main definitions and
theorems for checking the stability analysis of linear distributed order system with
multiple time delays. Finally, in section 4 we present an example of distributed
order Lotka-Volterra predator-prey system to illustrate our main result.

2. Elementary Definitions

In this Section, we consider the main definitions and properties of fractional
derivative operators of single and distribute order.

2.1. Fractional Derivative

There are several definitions of a fractional derivative of order & > 0 [1, 2],
such as Grunwald-Letnikov’s definition, Riemann-Liouville’s definition, Caputo’s
fractional derivative. The former two definitions are often used by pure
mathematicians, while the last one is adopted by applied scientists, since it is
more convenient in engineering applications. The Caputo fractional derivative of
f (t) is defined as:

(m)
Dt ()= ! j‘f @ 47 m-t<a<m, meN, t>0.(1)

r(m-a) t-7)*""
Fortunately, the Laplace transform of the Caputo fractional derivative satisfies:
m-1
LIEDA ) =s“0{f ©)} - 2 f ©(07)s“™, 2)
k=0

where m—-1<a<mand s is the Laplace variable. The Laplace transform of
Caputo fractional derivative requires the knowledge of the initial values of the

function and its integer derivatives of order k =1,2,...,m —1. When « € (0,1] is

given by:
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L{gDI )} =s“e{f )} - (07) s (3)

2.2. Systems with fractional derivatives of distributed order fractional
Fractional derivative operator of distributed order a generalization of the

single order (D =d“ / dt“ with respect to nonnegative density function of b («x)
is defined as:

Dt 0)=[" b@5Df hda,  m-l<asm, meN. (4

The idea of distributed order is stated by Caputo [16, 17]. Further the
Laplace transform of the Caputo distributed order satisfies:

‘E{CDtb(a)f (t)} = j:_lb(a){s“F(s)_Ef <k>(0+)sa+k }da

“BEF(E)-Y

k
=S

)
B (s)f (0",

+1

where F(s) is the Laplace transform of f (t)and B(s)= I:_lb (@)s“da.  (6)

3. Stability analysis of linear distributed order fractional differential
system with multiple time delays

In 2012, H. Saberi Najafi et al [22] studied stability analysis of distributed
order fractional differential equations, which is expressed as follows:

D x(t)=Ax(t), x(0)=x,, AeR"™, xeR", 0<a<l, (7)
that we easily generalize this result for linear fractional differential equations with
time delay [14]:

©DIX M) =Ax(t-1), ®)
where « is real and lies in (0,1], A e R™ and 7 >0 represents the time delay.
The initial condition associated to this equation is X(t)=¢(t), Vt €[-7,0]where

pt)eC’ [—z’,O].

Now, we generalize the main stability properties for the linear distributed
order fractional differential system with multiple time delay in the following
form:

CDtb(a]) X, @) =a,x,t—7)+a,X,{t —7,)+---+a, X, (t —7,),

In“*n

CDtb(aZ) Xz(t) :a21xl(t _721)+a22X2(t —122)+---+a2an(t o )>

)

DY x (t)=a Xt —7,)+a,X,{t—7,)++a X, (t-7,)
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where b, () denotes the nonnegative density function of order « € (0,1], the initial

values X, (t)=q (), are given for —max ; =—7,,, <t <0 and i, =1,...,n . In this
1]

system, time delay matrix T =(z;),,, €(R")"", coefficient matrix A=(g;),,,, state

variables X, (t),X, (t —z;) € R and initial values ¢, (t) e C"[-7,,,,0].

We study the stability of system (9) by applying the Laplace transforms on
both sides of this system, we have

BL ()X, (6)-1B,) (0= Yae "X, (5)

(10)
2 a7, 6 [ et et )
j=! i
for i =1,...,n. Where X, (s) is the Laplace transform of X, (t).
We can rewrite (10) as follows:
X)) (hi(s)
X h
A(S). 2:(3) = 253) , a1
X.(s)) (h,(s)
in which
h, (S)zzaﬁe_srﬂ UO e’St(Dj (t)dthrSlBi (S)e (0), i=12,....,n (12)
=1 K
All(S) AIZ(S) Aln(s)
A A . A
A(S) — 21:(5) 22:(3) : 2n:(s) , (13)
Anl(s) Anz(s) Ann(s)
B,(s)—ae"" ifi=j,
where A, (S)= . . (14)
-6 " otherwise.

For simplicity, we call A(S) a characteristic matrix of (9) with respect to the
distributed function B(s)=(B,(5).B,(5).....B,(5)) where B,(5)=[b,(@)s"da.
Moreover det(A(S)) =0 is the characteristic equation of system (9), with respect

to the distributed function B(S).

Remark 3.1. If a linear distributed order fractional differential system has
a non-zero equilibrium, we can move this equilibrium to the origin by the
translation transform. Throughout the paper, we always suppose that system of (9)
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has a zero solution and all complex computations are done in the branch of the
principle value of argument.

Now, we express the main theorem for checking the stability of system
(9), but, we first recall the following theorem.

Theorem 3.2. (Final Value Theorem [25]) Let F(S) be the Laplace
transform of the function f (). If all poles of SF(S) are in the open left-half plane,
then,

tli_rg.}f (t)=£i£IOISF(S). (15)

Theorem 3.3. The zero solution system of (9) is asymptotically stable if
and only if all roots of det (A(S )) =0 have negative real parts.
proof. Multiplying S on both sides of (11) gives, we have

sX,(8)) (shi(s)

SX,(8) | _|sh,(s)

A(S). (16)

sX () sh,(s)
if all roots of the det(A(S)) =0 lie in open left half complex plane (i.e, R(S)<0),
then, we consider (16) in R(S) > 0. In this restricted area, the relation (16) has a
unique solution sX (5)=(sX(s),5X ,(5),...,5X ,(s)). Since limB, (s)=0, for

i =1,...,n so we have
lim sX,(s)=0, i=12,...,n, (17)

s—0,9R(5)20
which from the final value Theorem 3.2, we get
tlimx t) :tlim(xl(t),xz(t),...,xn(t)) = lin(}(sx 1(8),8X,(8),...,5X n(s)) =0. (18)

The above result shows that the system (9) is asymptotically stable. |
Definition 3.4. The eigenvalues of A with respect to the distributed function
B(s) are the roots of the characteristic equation of system (9) where

B(s)=(B,(s),B,(s),...,B,(s ))T is the distributed function with respect to the
density function b(a) = (b,(a),b,(),...,b, (a))" .

The inertia of a matrix is the triplet of the numbers of eigenvalues of
A with positive, negative, and zero real parts. Now, we generalize the inertia
concept for analyzing the stability of linear distributed order fractional system
with multiple time delays.

Definition 3.5. The inertia of the system (9) is the triple

by A=T)=(z, (A=T)v, (A-T),5, (A-T)), 19)

Nb (a)
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where T (A-T), Vi (A-T) and 5nb(a) (A —T) are, respectively, the number

of roots of det(A(S)) =0 with positive, negative, and zero real parts.

Definition 3.6. The matrix A is called a stable matrix with respect to the
distributed function B(S), if all of the eigenvalue of A with respect to the
distributed function B (s) have negative real parts.

Theorem 3.7. The linear distributed order fractional differential system
with time delays by respect to the nonnegative density function (9) is
asymptotically stable if and only if any of the following equivalent conditions
holds.

(1) The matrix A is stable with respect to the distribute function B (S).

)z, (A-T)= é‘nbm (A-T)=0.
(3) All roots s of the characteristic equation of system (9) satisfy
larg(s)| > 7/2.

nb(aj

proof. According to Theorem 3.3 and the above definitions, proof can be easily
obtained. [ |
Based on the theorem above, we can obtain the following remarks:

Remark 3.8. If 7; =0 and b,(a)=b(a) for i,j=1,...,n, then the
characteristic matrix and characteristic equation of (9) are reduced to B(s)l —A
and det(B(s)l —A) =0, respectively. Moreover, Inw) (A-T)=I - (A), which

agrees with the results and definitions for distributed order differential equations
[22]. Also, the result obtained in Theorem 3.6 of [22] are special case of Theorem
3.7 of the present paper.
Remark 3.9. If b, (a)=06(e—q;) where 0<q; <lfor i=1,...,n and

o(a) is the Dirac delta function, then we have the following stability analysis of
linear fractional differential system with multiple time delays [13]:

So th1 Xl(t) :allxl(t _711)+a12X2(t _712)+"'+a1nxn (t _Tln)’

So th2 Xz(t) = aZIXI(t —‘[21)+8.22X2(t _722) et X, t- Ton ), (20)

So thn Xn(t) = a‘nlxl(t _Tn1)+an2X2(t _Tn2)+'“+annxn(t ~Tin
Also, the characteristic matrix and characteristic equation of (9) are reduced to

AL(S) AL(S) ... ALG)

A, (S) A,(S) ... A, (8)

A(S) = Q1)

Anl(s) Anz(s) Ann(s)
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where
st —ge ifi =j,
Ay (8)= . : (22)
-6 " otherwise.
and det(A(s))=0, respectively. Furthermore, if 7, =r>0 for i,j=1,...,n and
g, =0, =---=0, =1, then the characteristic matrix and characteristic equation of

(20) are reduced to sl —Ae™" and det(sl —Ae")=0, respectively. They

coincide with the usual definitions of the characteristic matrix and characteristic
equation of delayed equations [12]. Especially, if 7=0, then the characteristic
matrix and characteristic equation of (20) are respectively, reduced to SI —A and
det(sl —A)=0, which agree with the typical definitions for typical differential

equations.
4. Example

In this Section, we give example to confirm our results. The integer-order
Lotka-Volterra predator-prey system with time delay can be modeled as follows:

X, ) =x,@®)[r—a,x,t-7)-a,x,t-17)],
(23)
X,(t)=x,t)[-r, +a,X,(t —7)—a,X,({t —-7)],
where X, (t) and X,(t) can be interpreted as the population densities of prey and

predator at time t, respectively, 7 >0 is the feedback time delay of the prey to
the growth of the species itself, r, >0 denotes the intrinsic growth rate of the prey

and r, >0 denotes the death rate of the predator; the parameters a; (,j=L2) are

all positive constants. In 2008, Yan and Zhang [26] investigated the stability and
Hopf bifurcation of system (23). The corresponding fractional-order Lotka-
Volterra predator-prey system with time delay can be written in the form as
below:

SDIX, (®) =X, (O)[r, —a, X, t —7)—a,X,(t —7)],
(24)
DX, () =X, (O[T, +a,X, (t — 1) —a,X, (t —7)],
where ¢ are real and lies in (0,1].

Now, we consider distributed order fractional Lotka-Volterra predator-
prey system with time delays by respect to the nonnegative density function given
by:
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DX () =x, ([, —a,X,({t —7)—a X, —17)],
(25)
DG () =X, O, + X, (= 7) —a,x, (t-1)],
with initial values X, (t) =@, (t) and X,(t) =@, (t) are given for t €[-7,0]. If
ra, —ra, >0, (26)
then system (25) has a positive equilibrium points E * = (x,",x,"), where
o N, +ra, o N3y —hay

X, , X, , 27
al la'22 +a‘12a21 al la'22 +a12a21
Let X, =X, —X,, X, =X, —X,. We then obtain (25) as follows:
CDf’("’”x () =X 1(t)+x1*)[—a”X (t=7)—a,X,(t-1)],
(28)
DXL () = (X, () +x,)[a, X, (t —7)—a,X ,(t —7)].
The linearization of system (28) at (0,0) is linear system:
DX )=k Xt —7) =k X, (t —7),
(29)
DX, () =k, Xt —7) -k, X, (t —7),
where
kl__a'llxl*’ k2=—a12x1*, k3=a21X;5 k4:_a22X;- (30)

Clearly, the characteristic matrix this system is
B,(s)-ke™ ke™
A(S): 1( ) ) 1 2 ) , (31)
ke™ B,(s)-ke™
and the characteristic equation is
B,(5)B,(s)—k,B,(s)e ™ —k,B,(s)e ™ +kk,e”™ —k,ke ™ =0. (32)
Now, we consider the following special case of system (28)
DX, (1) =X, O)[1-X,(t —7) =X, (t —7)],
(33)
D%, () =x,(O)[-1+2%,(t —7) =X, ({t = 7)],
with initial values X, (t)=0.2 and X,(t)=0.3 which has a positive equilibrium
points E”=(2/3,1/3). For analyzing system (33), we compute ., (A=T) in the

case that various density function. The results are shown in Table 1.
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Table 1
Stability analysis of system (33) for various density function
b (@)=06(a-q;) i=12 b (@)=0(a-q,;)+5(a—0y,) i=12
T q=(9,,4,) lnpy (AT) T {(Q..,qlz) ., (A-T)
<q 21 ’q 22 >
1.98 | (4/5.4/5) (4,4,0) 05 /325, (10,0)
{ (1/3.1/3)
0.65 (1.1) 0,2,0) 0.75 (0.75.0.4) (1,0,0)
(0.65,0.4)
0.95,0.95
1.5 | (0.95,0.95) (1,0,0) 175 0.95.0.85) (0,2,0)
(0.95,0.85)

Since system (33) needs to be solved numerically for the reconciling our
results are given in Table 1, a suitable numerical method needs to be selected. H.
Rezazadeh et al has presented a Grunwald-Letnikovs method for solving delay
differential equations of fractional order [24]. Fig. 1 indicates that system (33)
with parameters: q, =g, =4/5, when 7=1.98 is unstable. Fig. 2 shows system
(33) has a unique positive equilibrium E"=(2/3,1/3) that this equilibrium is
asymptotically stable when ¢, =q,=1, 7=0.65. Figure 3 demonstrates that
system (33) with parameters: q, =0.95, q, =0.85, when 7 =1.51s unstable.
Figure 4, 5 indicate that system (33) with the assumptions mentioned Table 1 is
unstable when 7=0.5, 7=0.75. Figure 6 shows system (33) has a unique
positive equilibrium E”=(2/3,1/3) that this equilibrium is asymptotically stable
when g,, =0.95, q,, =0.85,9,, =0.95,0,, =0.85 and 7 =1.75.

a0 T T T T T T T

*(t)
¥

40 -

L L L L
2000 2500 3000 3500

t

L L L
500 1000 1500 4000

Fig. 1. The numerical approximations of system (33) when 7=1.98 and @,,9,) = (4/5,4/5).
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Fig. 2. The numerical approximations of system (33) when 7=0.65 and @,9,) =(1D).
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Fig. 3. The numerical approximations of system (33) when r=1.5 and (@;,9,) = (0.95,0.85).
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Fig. 4. The numerical approximations of system (33) when 7=0.5 and (@ 159155055095) =
(1/3,2/5,1/3,1/3).
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Fig. 5. The numerical approximations of system (33) when r=0.75 and (@ 1599:051:05y) =
(0.75,0.4,0.65,0.4).
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Fig. 6. The numerical approximations of system (33) when 7=1.75 and (@ 159155955095) =
(0.95,0.85,0.95,0.85).

5. Conclusions

In this paper, we introduced the distributed order fractional system with
multiple time delays. Then the asymptotical stability for such systems has been
investigated. We generalize the inertia and characteristics polynomial concepts of
such a system with respect to the nonnegative density function. Numerical
simulations were coincident with results of Table 1 described in the previous

Section. Although this paper just focuses on the systems with « €(0,1], the

higher order systems can be discussed based on the analysis of this paper. This
will be the investigation goal of future works. All numerical results are obtained
using Matlab 7.8.
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