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SQUEEZE EFFECTS OF AN INFINITELY LONG, RIGID 
CYLINDER ON A HIGHLY COMPRESSIBLE POROUS 

LAYER IMBIBED WITH LIQUID 

Mihaela RADU1, Traian CICONE2 

Ex-poro-hydrodynamic (XPHD) lubrication describes the lifting effect 
produced by the flow of fluid through an extremely compressible porous material 
subjected to compression. Studies published recently on the behaviour of such 
materials, for various configurations, reveal good potential in shock absorption. The 
present study addresses the case of an infinitely long cylinder that impacts a highly 
compressible porous layer interposed between the cylinder and a rigid plane. Based 
on a 1D flow model, the lift effects for squeeze at constant speed, constant force and 
impact loading, respectively are analyzed. 
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1. Introduction 

Intuitively, we can visualize a porous medium as a complex system of 
cavities or capillaries, arbitrary distributed in a form that resembles a labyrinth. 
The fundamental problem of porous media is the complexity of the flow through 
this maze of capillaries which is practically impossible to solve analytically, and 
which will not describe globally the phenomena. This is why a macroscopic 
approach of the behaviour of the fluid inside the material is preferred.  

A new mechanism of lubrication, based on highly compressible porous 
layers imbibed with liquids, was observed and studied by M. D. Pascovici [1] 
under the name of ex-poro-hidrodynamic (XPHD) lubrication. Similar results 
have been obtained in parallel by S. Weinbaum and R. Crawford, for porous 
materials with extremely high porosities imbibed with gases [2], [3]. Recently, the 
research team led by B. Bou-Saïd has published a series of papers on similar 
effects for planar configuration (disk-on-plane) where the effects of complex 
rheological fluid properties and fluid inertia have been investigated analytically 
and numerically [4], [5]. 

The lift effect is explained by the resistance to flow of the fluid forced to 
be expelled through the pores of the material subjected to compression. This 
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mechanism can occur when the porous media imbibed with fluid is compressed 
between conformal/non-conformal contacts, for sliding or normal motion. For 
sliding motion, configurations like step or inclined surfaces [6] showed an 
increased lift effect in comparison with hydrodynamic conditions. Squeeze 
studies, for plane-on-plane contact ([7], [8]) sphere-on-plane ([8], [9]), inner 
contact of cylinder-on-cylinder ([10]) have a great potential.  

The work reported in the present paper intends to validate the damping 
efects observed in previous articles, for a new configuration, of a cylinder-on-
plane.The configuration studied in this article has originated from the interest in 
estimating the damping capabilities in mechanical application of impact or bio-
articulations (as the knee joint) [11]. 

2. The model 

A slice of the geometry of the contact between a rigid, infinitely long, 
impermeable cylinder and a porous layer imbibed with fluid, fixed on a rigid and 
impermeable support, parallel with the cylinder’s axis, is represented in Fig. 1. 
The assumption that the cylinder axis is parallel to the plane, converts the model 
to an axisymmetric 1D model. The groundwork of XPHD lubrication model is 
presented extensively in [12]. 

 
Fig. 1. The cylinder-on-plane geometry  

For the mathematical modelling of the XPHD process is customary by all 
authors ([1]-[10], [12]) of this field that porous media of this type are Brinkman 
media, which, for low permeability can be approximated with Darcy media. The 
foundation of XPHD lubrication is based on a few simplifying hypothesis [13]: 
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• The porous layer is relatively thin, homogeneous and isotropic.  
• The top surface of the porous layer is impermeable. 
• The pressure is constant across the thickness of the porous layer. 
• The liquid is Newtonian, the flow is laminar and isoviscous. 
• The elastic forces of the compressed solid structure (also called porous 
matrix) are negligible compared to viscous forces. 
Extremely compressible porous layers are characterized by porosity 

variation with deformation, and correspondingly, by a permeability variation. The 
notion of solid fraction is defined as the product between the thickness of the 
material, h, and the inverse of porosity, 1-ε. Under compression, the geometry of 
the pores changes, squeezing out the fluid from the material, but the solid fraction 
remains constant if we suppose that the cross-section area normal to the direction 
of compression doesn't increase significantly: 
 ( ) ( ) 0011 hh εε −=−  (1) 

During compresion, the thickness in mid-plane, hm(t), varies from h0 to 
hmin (see Fig. 1): 
 ( ) 00min 1 hh ε−=  (2) 

The strain, δ, is defined similar as in solid mechanics: 
 0/),(1),( htxhtx −=δ  (3) 

Thus, the mid-plane strain becomes 0/)(1)( htht mm −=δ  and the minimum 
mid-plane thickness is 00min /)(1 ε=− hth , which implies an interesting outcome: 
the maximum strain, when compressing to hmin, is equal to the initial porosity.  

At any given moment, the thickness of the porous layer is obtained from a 
simple geometry using the radius of the cylinder ρ and the thickness in the mid-
plane ),0()( txhthm == : 

 22)(),( xthtxh m −−+= ρρ  (4) 
The permeability of the porous layer is associated to the porosity, ε, 

according with Kozeny-Carman law [12] - regularly used in previous studies ([1], 
[6]-[10], [12]): 
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where D is a complex constant of the porous material, approximated as 
kdD f 16/2= , df being the diameter of the material fibre and k, a constant 

arbitrary chosen between 5 and 10. 
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3. Numerical approach  

The cylinder’s length, B, is assumed to be large relative to its radius, so 
that side leakage can be neglected. One-dimensional finite volume simulations are 
carried out for the simplified model of an infinitely long cylinder. The mesh of the 
model using one element on the porous layer thickness (according to the 
assumption of constant pressure on porous layer) was split on x into m cells.  

The pressure distribution and, consequently the generated lift force, yields 
from the flow rate conservation inside the porous material, which states that the 
volume of fluid dislocated by the cylinder is equal to the volume of fluid expelled 
on both sides of the cylinder, normal to the direction of compression (in-plane 
flow). 

The conservation equation is discretized on each mesh element. The flow 
rate squeezed out of each cell mi ,2= , is equal with the in-plane flow rate 
flowing through the boundaries with neighbouring cells, i+1 and i-1 (Fig. 2): 
 11 −+ += iii qqq  (6) 
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Fig. 2. Meshing of the porous domain 

The volume displaced in unit time by compressing with velocity V an 
element i, of dimension xΔ  and porosity εi, is calculated as: 
 VBxq ii ⋅⋅Δ⋅= )(ε  (7) 
 The in-plane flow rate through a neighbouring cell, considering mean 
thickness and permeability, is calculated using Darcy model: 
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Combining eq. (6), (7) and (8), and using dimensionless parameters, the 
dimensionless pressure in cell i can be calculated using the pressures in the 
neighbouring cells: 
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The boundary condition of null pressure at x=xmax (i=1), and symmetry 
condition for x=0 (i=m+1) give, in dimensionless form:  
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 The dimensionless lift force is obtained as: 
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The solution is obtained by Gauss-Seidel method with an over-relaxation 
coefficient of 1.99, until the relative pressure difference obtained between two 
consecutive steps is smaller than 10-6.  

The numerical code is written in FORTRAN language under Microsoft 
Visual Studio based on the above equations, for three loading cases: constant 
speed (V=ct), constant force (F=ct) and imposed impulse (M·V0=ct).  

4. Results and discussions 

4.1. Mesh size and time step 

The results presented in this chapter are obtained with an original numerical 
code based on the model presented above with a mesh of 300 cells and 300 time 
steps. The mesh size influence was analyzed graphically by comparison with 
several mesh sizes with up to three times more cells and four times more time 
steps. The time of processing increases dramatically, while the relative errors in 
terms of force were acceptable - under 3%, except for large strains - due to the 
asymptotic variation of the force around zero porosity. 
 
4.2. Constant speed squeeze (V = ct) 

Despite its reduced practical interest, the numerical analysis for the case of 
constant speed squeeze represents the core of the next two cases. 

The numerical algorithm for constant speed squeeze is developed with a 
constant step strain in the mid-plane. Because the contact width, xmax, is 
continuously increasing during compression, the mesh step Δx is modified at each 
time step. Using the thickness in the mid-plane and the width of the cylinder that 
is in contact with the porous layer, the pressure in each cell is calculated, and 
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consequently the force. The dimensionless form of the model allows the reduction 
of process variables to only two: the size ratio ρ/h0 and the initial porosity ε0.  
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Fig. 3  Dimensionless force, F  vs. mid-plane strain, δm, for different porosities ε0 

and size ratios ρ/h0 

In Fig. 3, the dimensionless force F is plotted with mid-plane strain for 
different initial porosities. The graph shows that the lower the porosity, the higher 
the force – a result similar with the sphere/plane [6] and disk/plane [6] 
configuration. It is obvious that the bigger the size ratio, the greater the force. 

4.3. Constant force loading (F = ct)  

The numerical algorithm for the constant force loading is based on the 
previous one (constant velocity), apart from the solution which is obtained 
iteratively until the force predicted is equal with the imposed one. The main 
squeeze parameters, the velocity and time, are calculated for constant 
compressions steps. The most important parameter is considered the duration of 
compressionτ , which is the time to reach zero-porosity in the mid-plane. It is 
calculated as the sum of time steps, and gives an overview of the extension of the 
damping process.  

The duration of squeeze process for different initial porosities is plotted in 
Fig. 4. The longest duration for the impacting cylinder to reach zero porosity, 
meaning the highest resistance to flow, is associated with an optimum porosity, 
found iteratively as 26.0=optε . In sphere on plane configuration [6], similar 

results were found, with an optimum porosity of 4.0=optε . 
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Fig. 4 Dimensionless duration, τ , vs. mid-plane strain, δm, for different porosities ε0 

 
4.4. Impact loading (M·V0=ct) 

The squeeze under impact can be modelled based on the impulse 
conservation theory – neglecting inertial forces: 
 tFVM dd ⋅−=⋅  (12) 

The input parameter is the product between mass and velocity at contact, 
in dimensionless form, M . Using a constant time step and an explicit time 
integration scheme, the current velocity is calculated using the acceleration 
obtained in dimensionless form from equation (12): 

 t
M

tFtVttV Δ−=Δ+
)()()(  (13) 

The mid-plane thickness is calculated using the average of the current and 
previous velocity: 

 
2

)()()()( ttVtVtthtth mm
Δ++

⋅Δ−=Δ+  (14) 

The algorithm of compression is stopped either when the process is 
damped ( 0)( =tV ) or it reaches 0=ε  in the mid-plane. 

High energy impact is not damped entirely while compressing the porous 
material until full compaction, which is why the rigid body continues to move 
even after that, but this process in not relevant when obtaining the maximum load. 

In Fig. 5, the impact force is represented with respect to different 
geometric ratios. In all of the cases plotted in Fig. 5 and Fig. 6 the impact is 
completely damped before full compression of the porous material (when δm=ε0). 
What is interesting is that increasing 10 times the size ratio, the maximum force is 
just 25% greater.  
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Fig. 5. Dimensionless impact force F vs. mid-plane strain, δm, for different  

size ratios ρ/h0 

In Fig. 6, the impact force is represented for different values of porosity, 
for a given impulse and geometry. The cases plotted here do not compress until 
the porosity reaches zero which means that the impact is fully damped.  
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Fig. 6 Dimensionless impact force F vs. mid-plane strain, δm, for different 

porosities ε0 

In Fig. 7, is shown the method used to determine the maximum mass of 
impact. For a given case, where the porosity and the geometry is known, by 
testing different values of impact mass and analyzing the velocity variation, one 
can observe that the higher the impact mass, the higher the compression of the 
material. The maximum impact mass that can be damped, which is decelerated 
until zero velocity, is associated with the full compression of the porous zone, so 
when the strain 0εδ =m  . This was determined iteratively with one digit accuracy. 
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Fig. 7 Dimensionless impact velocity v vs. mid-plane strain, mδ , for different 

dimensionless mass values, M   

The maximum damped mass for different values of initial porosity shown 
in dimensionless form in Fig. 8, has an optimum porosity between 0.3÷0.4.  
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Fig. 8 Maximum dimensionless damped mass M vs. mid-plane strain, δm, for 

different porosities ε0 

5. Conclusions 

The present paper analyzes a simplified model, 1D, of the squeeze effect 
of a fluid imbibed in an extremely compressible porous layer, produced by a rigid 
cylinder of large width with respect to its diameter. The model is based on the 
principles of ex-poro-hydrodynamic lubrication, with application in impact 
loadings, and the solution is obtained numerically. 

The results presented demonstrate that one can achieve excellent 
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performances of damping for a cylinder-on-plane contact, just as for other 
configurations. Also, the influence of the most important parameters that define 
the process are studied. The parametric analysis in dimensionless form permits the 
fast and easy evaluation of the damping capacity depending on the material 
properties and contact dimensions. 

This paper presents three scenarios of normal loading for ex-poro-
hydrodynamic lubrication. The numerical study proves the existence of an 
optimum porosity that maximizes the damping  effect in normal motion with 
constant force/impact loading and provides a practical guideline in terms of 
optimum porosity. Under constant force compression, an optimum initial porosity 
of the material, εopt, can be determined for a given geometrical configuration, from 
the longest time of squeeze. If the material is subjected to impact loading, the 
highest impact force is obtained for: low porosities, high imposed momentum and 
large radius of the cylinder with comparison to porous layer thickness. Depending 
on the geometrical configuration, one can obtain an optimum initial porosity of 
the material, εopt, that can damp the highest impact mass. 

The model serves as reference for the evaluation of an analytical model, 
published in [13], to establish the accuracy of simplifying assumptions such as the 
parabolic approximation of the cylinder's boundary and Taylor series 
approximation of a arctg function. This model represents a first step to a more 
complex, 2D analysis of the contact. 

 
 
Notations 
 
B  – length of the cylinder [m]; 
df  – diameter of the material fiber [m];
D  – complex constant of the porous material [m2];
F  – lift force [N]; 

0hVB
FDF

ρη
=   – dimensionless lift  force[-]; 

h  – thickness of the porous material[m]; 

0h
hh =   – dimensionless thickness of the porous material[-]; 

i  – mesh element [-];
k – constant in Kozeny-Carman law [-]; 
q – flow rate [m3/s]; 

02 hBV
qq

ρ
=  – dimensionless flow rate[-]; 

m – number of cells [-]; 
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M – mass of the cylinder [kg]; 

2
0

0

hB

MDV
M

ρη
=  – dimensionless mass of the cylinder [-]; 

p – pressure [Pa]; 

V
Dpp

ηρ
⋅

=  – dimensionless pressure [-]; 

t – time [s]; 

0

0
h
v

tt ⋅=  – dimensionless time [-]; 

V – normal velocity [m/s]; 

0V
VV =  – dimensionless velocity [-]; 

x – in-plane coordinate [m]; 

02 h
xx

⋅⋅
=

ρ
 – dimensionless in-plane coordinate [-]; 

xΔ  – mesh step [m]; 
 

  
ε – porosity [-]; 
η – fluid viscosity [Pa·s]; 
ρ – radius of the cylinder [m]; 
δ – strain [-]; 

2
0hB

FDt
ρη

τ =  – dimensionless duration (for constant force squeeze) [-]; 

φ  – permeability of the porous layer [m2]; 

D
φφ =  – dimensionless permeability [-]. 

 
 
Subscripts 

0 – initial; 
m – mid-plane; 

min – minimum; 
opt – optimum. 
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