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CONSTRUCTION OF MULTITIME RAYLEIGH SOLITONS

Laura Gabriela MATET!, Constantin UDRISTE?

In the present paper, some multitime Rayleigh evolution PDFEs are
built, as extensions of the single-time corresponding PDEs, using elements of
differential geometry. Introducing some additional assumptions, multitime soli-
ton solutions for the new PDEs are generated. To obtain families of multitime
Rayleigh solitons, special partial differential equations are integrated. The original
results refer to the technique used to create multitime versions for Rayleigh type
classical PDFEs and to the construction of specific multitime solitons, as well as
directions to approach the stability of these solitons.
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1. Classical single-time Rayleigh PDEs and solitons

In the physical-mathematical literature [5], [6], [7], we find the Rayleigh wave
equation

Upp — Uy = €(up — u) (1)

related to Rayleigh wave equation of Van der Pol type
Ut — Ugy = €(1 — uQ)ut. (2)

Each of these has been used to model physical phenomena. Now, the PDE (1)
serves as a model for the large amplitude vibrations of wind-blown, ice-laden power
transmission lines, in time that, the PDE (2) describes plane electromagnetic waves
propagating between two parallel planes in a region where the conductivity varies
quadratically with the electric field.

Just as their counterparts from ordinary differential equations, the PDEs (1)
and (2) can be transformed one to another. Their solutions can be obtained by
simple operations performed on the solution of a certain first order, nonlinear wave
equation.

An initial-boundary value problem for Rayleigh nonlinear wave equation can
be considered to be a simple model to describe the galloping oscillations of overhead
power transmission lines in a wind field. One end of the transmission line is assumed
to be fixed, whereas the other end of the line is assumed to be attached to a dashpot
system.
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A single time Rayleigh soliton is a self-reinforcing wave solution wu(z,t) =
¢(x — At) of the PDE (1) or (2), that maintains its shape while it travels at constant
speed A.

Some papers (see [13], [7], [11], [12], [14]) describe as Rayleigh wave a type of
seismic surface wave that moves with a rolling motion that consists of a combination
of particle motion perpendicular and parallel to the main direction of wave propa-
gation. The amplitude of this motion decreases with depth. Like primary waves,
Rayleigh waves are alternatively compressional and extensional (they cause changes
in the volume of the rocks they pass through).

The Rayleigh waves are of particular importance in seismology, acoustic, geo-
physics and electronics applications ([5]-[7], [10]-[14]).

Section 2 analyzes the geometric objects (fundamental tensor, linear connec-
tion, vector fields, tensor fields) capable of transforming single-time Rayleigh PDEs
into multitime PDEs, showing the existence of an infinity of geometrical structures
such that the multitime Rayleigh PDEs are prolongations of single-time Rayleigh
PDEs. These ingredients permit to define an original ultra-parabolic-hyperbolic
differential operators defining the multitime Rayleigh wave equations. Sections 3
underlines the technique which produces multitime Rayleigh solitons. Sections 4
and 5 praise explicit formulas for the multitime Rayleigh solitons. Section 6 com-
ments the stability of multitime Rayleigh solitons.

Remark The Ricci solitons ([1]-[4], or the Riemann solitons ([22]-[23]) and
type wave solitons ([6]) have in common only that they are special solutions of
evolutionary PDEs in differential geometry, respectively in physics.

2. Multitime extensions of Rayleigh PDEs via geometrical elements

Generally, the passing from systems of PDEs with a single-time variable ¢ to
related PDE systems with m > 2 evolution variables ¢t = (t%), & = 1,...,m, is sub-
stantially complicated due to necessity of praising some reasons and some techniques
of such change. The most natural way of changing is to use geometrical ingredients
(derivation, trace etc) that extend the initial PDE system. The theory and a sys-
tematic procedure for the construction of such new PDE systems is presented here
in the context of Rayleigh nonlinear waves.

This paper provides new results regarding the multitime solitons in two and
more temporal dimensions that can be of interest in physics. We overpass the
complexity and, furthermore, the difficulty of performing hand computations for
Rayleigh PDE systems involving many temporal variables by using the symbolic
software package in MAPLE. Our sources of inspiration for introducing and studying
multitime soliton PDEs are the papers [8], [9], [20]. Also the papers [15]-[19] and
[21] contains a lot of ideas in this direction, including the multitime optimal control.

Let us introduce and study some multitime geometrical prolongations of the
Rayleigh PDEs, using related connection, fundamental tensor field, vector fields,
tensor fields which leave on the jet bundle as ingredients in the Differential Geometry
of the manifold IR™.

Suppose the multitime t = (t',...,t™) € IR™ is a parameter of evolution.
We endow the manifold (jet bundle of order one) J!(IR x R™,IR x IR™) with a
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ou
distinguished symmetric linear connection Flﬁ = FZ,@ <3:, t, u, >, and with a dis-

ot

0
tinguished fundamental symmetric contravariant tensor field h = (h“ﬂ(aﬁ, t,u, (;;))

of constant signature (r, z,s), r+z+s = m. Using a C? function u : R x R™ — IR,
we build the Hessian operator

0%u ou
= g Lasgye @0y e{lom)

and its trace, called ultra-parabolic-hyperbolic operator,
Or pu = ho‘ﬁ(Hessru)QB.
We define a multitime PDE as

(Hessru)ag

0%u
Dr,hu — W = O, (3)

where x € R and t = (t!,...,t™) € R™.
- Let

Cﬂ/(xv t) m, 5)7 Y= 1, e,
be a distinguished vector field and

Baﬁfy(l‘)tun)f)a a7ﬁ7’)/ S {1, ,m}
be a distinguished tensor field. If we adopt the hypothesis

WP (w,t,m, O (2,1, )& = O (x,t,1,€)&y — B (,4,1,€)aéply,  (4)
then we obtain the multitime Rayleigh PDE

0%u ou ou Ou Ou  O%*u
B — OV — 4B _Z _—. 5
ot ots o * ot 9B otr a2 5)
-If CV(x,t,n,6), vy =1,...,m and D(x,t,n,§), v = 1,...,m are distinguished

vector fields and the constraint relation is

halB(Ia t7 777 g)rgg(% t) 777 é‘)f’y - CV(.’E, ta 777 f)gfy - D'Y(x7 tv 777 6)772677 (6)
then we get a multitime Rayleigh wave equation of Van der Pol type
0%u ou ou  0%u
of _ov=2= 2pv 2 2
oo~ Con T gn T o =0 0

The PDE (5) has two important properties: (i) It is multitime-reversible if and
only if h*?(z,t) = h*B(z, —t), C%(x, —t) = —C(a,t), B*?V(x, —t) = —B*¥7(x,1).
In this case, the functions u(x,t) and u(z, —t) are solutions of this PDE; (ii) It has
a stationary solution u(z) if and only if u(z) is solution of the equation u”(z) = 0.
In other words, the stationary solution is u(x) = Az + B. Geometrically, its graph
(z,t,u(x)) is a hyperplane in RIFm+1,

The PDE (7) has similar properties: (i) It is multitime-reversible if and only
if h*8(x,t) = h*B(x, —t), C*(x,—t) = —C*(x,t), D*(x,—t) = —D(x,t). In this
case, the functions u(z,t) and u(x,—t) are solutions of the PDE (7); (ii) It has

a stationary solution u(x) = Az + B, whose graph (z,¢,u(z)) is a hyperplane in
R1+m+1
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Theorem 2.1. (i) There exists an infinity of geometrical structures Fgﬁ, heB, C,

B3 on R™ such that a solution of the Rayleigh PDE (1) is also a solution of the
multitime Rayleigh PDE (5).

(ii) There ezists an infinity of geometrical structures Flﬁ, heB, CY, DY on
IR™ such that a solution of the Rayleigh PDE (2) is also a solution of the multitime
Rayleigh PDE of Van der Pol type (7).

Proof Let t! =t and u = u(z,t!).

(i) Suppose u = u(z,t') is a solution of single-time Rayleigh PDE (1). The
function v(z, !, ...,t™) = u(x,t!) is a solution of the multitime Rayleigh PDE (5) if
the family of geometrical structures Fg 8 hB . C7, BB is fixed by

hePTh a6 = Cley — B4

It is obvious that we have an infinity of geometrical structures that satisfy this
algebraic equation.

(ii) Similar.

The foregoing Theorem justifies the term multitime geometrical prolongations
of the Rayleigh PDFEs.

Conversely, if we want to obtain a solution of a single-time Rayleigh PDE from
a solution of the multitime Rayleigh PDE, we can use: (1) a suitable curve 7 —
(1), t¢ = ¢*(7), @ = 1,...,m, which imposes some conditions on the coefficients;
particularly, we can look for a solution of type u(z, (7,...,7)); (2) solutions u(x,t)
depending only one variable t%, a = fixed; for example u = u(z, t!).

3. Construction of multitime Rayleigh solitons

The first aim of this Section is to find some multitime solitons solutions for
the multitime Rayleigh PDE. In spite of the mathematical beauty, the distance
between theoretical multitime models and real situations where they apply is still too
high. It is not so far from our understanding, but it is still hidden for unsuspecting
researchers.

Let ¢ : I ¢ IR — IR be a function of class C*. We seek for solutions of the
PDEs (5) and (7) in the form of multitime solitons

u(z,t) = dp(x — Aat®) = ¢(2),
where (\,), @« = 1,...,m, is a constant vector and z = x — A\4t®. Then, the partial
derivatives of the unknown function u(z,t) are

9%u ou d%u

@ = (;5”(2’), 8? = QS,(Z)(—)\Q), W = (ZS”(Z)AQ)\B.

Substituting these derivatives in the PDEs (5) and (7), we obtain the second order
ODEs,

197 Xas — 1] ¢"(2) = B Aadghy ¢'(2)° + CVA, ¢/(2) = 0 (8)
and respectively
(1% Aadg = 19" (2) = DA, 62 (2)¢ () + C7A, ¢/ (2) = 0. (9)

Summarizing, we have
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Theorem 3.1. If ¢(z) is a solution of second order ODE (8) or (9) , then u(x,t) =
oz — Aat®) is a multitime soliton solution of the multitime Rayleigh PDEs (5) or
(7) respectively.

In order to find some multitime Rayleigh solitons, we make some particular
choices of the elements that appear in the construction of the two multitime PDEs.

First choise: For the ODE (8), we relate the metric tensor h®3(z, t,n, £), the
tensor field B*%7(x,t,n,€), the vector field C7(z,t,n, &) and the constant vector A,
by the conditions

heB(z,t,1m,)Aadg — 1 = a(z — M\ot®) = a(z) # 0,

B (w,t,m, &) XargAy = b(x — Aat®) = b(2), C7(2,t,m,§)\y = c(x — Aat®) = c(2).
With these conditions, the ODE (8) becomes

a(2)¢"(2) = b(2)(¢')°(2) + ¢(2)(2) = 0. (10)
Second choise: For the ODE (9), we relate the metric tensor h®5(z,t,n, &),
the vector fields C7(z,t,n,&) and D7 (z,t,n,£) and the constant vector A, by the
conditions
hoB(z,t,1m,)Aadg — 1 = a(z — M\ot®) = a(z) # 0,
D7 (z,t,m,6) Ay = b(x — Aot®) = d(2), C7(x,t,n, 5Ny = c(x — Aat®) = c(2).
With this choice, the ODE (9) transforms in
a0/ (=) — d(2)8 ()0 (2) + e(2)0/ () = 0 (1)
We are looking for some solutions of the ODE (10) and (11), with a view to
finding multitime Rayleigh solitons.

4. Multitime Rayleigh soliton families
We start with the multitime Rayleigh solitons based on the ODE (10).

4.1. Case of coefficients depending on 2z
Denoting ¢’ ot 1, the second order ODE (10) becomes a first order ODE,

a(2) Y/ (2) = b(2) ¥*(2) + ¢(2) ¥ (2) = 0,
called Bernoulli ODE. The general form of this ODE is called Abel ODE of the first
kind, and it arose in the context of the studies of Niels Henrik Abel on the theory
of elliptic functions, and represents a natural generalization of the Riccati equation.
Since a(z) # 0, we write the differential equation in the form

c(z b(z
a(z) ~ al(2)
By a change of the unknown function, ¢ = ¥ ~2, the Bernoulli ODE becomes a linear
ODE,
§’ ) @5 = _9 7/

a(z)
with the solutions

£(2) = exp <2/Z(é))dz> {K—Q/Z((z)) exp (—2/28@) dz] ,KeR.
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exp | — o2) z
¢'(z) = bI()zg / a(z)d >C(Z)
\/K—2/a<z)exp —2/a<z)dz>dz

Therefore, we have found solutions of the multitime PDE Rayleigh (5).

Since 9 = 57%, we obtain

, K € IR.

Theorem 4.1. If we fix the above coefficients by the conditions
WP (2,0, E)Aads — 1= a(a = Aat®) # 0,

Baﬂﬂy(x7 ta 777 5))‘a)\ﬁ)\’y = b(.T - )\Oéta)v C’Y(l‘, t? 777 5))\'7 = C(.T - )\Oéta>7
then the function
u(x7t) = ¢(~T - )\ata)

represents a multitime soliton-solution for the multitime PDE Rayleigh (3) for every

¢ given by
exp | — «(2) z
o) = [ b‘()zg ek )C(z)
\/K_2/a(z) exp (—2/az)dz> dz

4.2. Case of constant coeflficients

dz, K € IR.

Let A = (A\a), @ € {1,...,m} be a parameter. If we fix the elements h, B,C
by the constants, and using the notations ho‘ﬁ)\a)\g —1=a#0, Baﬁ'yz\a)\/g)w =
b, C7\, = ¢, then the ODE (10) takes the form

ag”(2) = b(¢')*(2) + c¢/(z) = 0.

Denoting ¢’ ot 1, this second order ODE with constant coefficients becomes a first
order Bernoulli ODE,

a —bp> +cp =0.

Having separable variables, this ODE can be written
dip a dip Ydip /
S - -/ — =/d
R T /¢+/¢2_C ‘
b

v =4 ey PER

and we get

that is

0=+ [ e 7S
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with ¢ > 0. To calculate the primitive from the right hand

b (1 — p exp (%z))

2
side, we amplify the fraction by exp <Cz) and then make the change of variables
a

exp (Ez) = t. We obtain the integral
a

a [1 c
I=+—- | -, /—— dt
c / t\ (1 — pt?)
: 1 . .
and a new change of variables, =5 gives a new integral,

J:iZ/‘/b(SQC_p)ds.

There are two separate possibilities:
c
a) If we take 5> 0, then

a /c 1
J=+—4/- | —— ds.
C\/;/\/sg—p ’

- For p > 0, the integral is

J:i“\fchl
c\b
a C

—+—,/-ch!
?z) ﬁ

and we can write

gb(z):ia\/gch_l (K exp (—§z>>+r, reR, KeR.

Cc

+r, relR,

s
A
that is
1

— |47, r€LR, cR*
VB oxp (£2) PeT

- For p < 0, we have

a |c 1
J=x—4/- — ds, ’z—, !> 0.
c\[b/\/s%rp’ 5P b P

It follows
a [c 1| s
J:ic\/;sh \/17‘4-7’, r € R,
that is
a |c 1
::l:f - h—l / *
o(2) C\/;s Vi o (52) +r, relR, p e R}
and then
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b) If we suppose — < 0, then, via ¢ > 0, it follows p > 0 and

b b(lfp exp (%z))
the integral J becomes

J:j;% %C arcsin <\;ﬁ> +r, reR, peRY.
It follows
— 1
#(2) ::tg\/—c arcsin [ ———— | +r, r€R, pec IR},
c b /D exp (EZ)
that is

o(z) = i% \/? arcsin (Kexp (—22)) +r, relR, KelRl.

Therefore, we have found three families of solutions of the multitime Rayleigh
PDE (5).

Theorem 4.2. a) If we fix the foregoing coefficients by the condition g > 0, then

we get two families of soliton solutions

urst) =+ 4[5 ot (Ko (=S = ) 1
) =+ 4 [ o (Ko (<= 2at)

where r € IR, KE]R

b) if we take S < 0, then we have another family of soliton solutions,

b
u(z, t) = + a4 1/—% arcsin (Kexp (—g(x - )\ato‘)» +r, relR, KelRl.

C

4.3. Maclaurin series soliton of multitime Rayleigh PDE
In a previous section, we have obtained a second order ODE in ¢, namely,
a(2)"(2) = b(2)(¢)°(2) + ()¢ (2) = 0.

One assume that it has a solution which is analytic on an interval around z = 0 and
we search a Maclaurin series solution. Then we express ¢ as a power series in the

form
= Z ap, 2" (12)
=0

and we try to determine what the «,,’s need to be. The resulting power series need
to converge on an interval around origin. We compute ¢/(z), ¢'3(z) and ¢”(z):

00 0o
:Znanzn*1:Z(n+lan+1Z Zﬁn )
n=1

n=0

(6')( Z (Zﬂkﬁn k> "

n=0
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_Z (Zak+1an kr1(k+1)(n—k+1) ) Z'Vn )
n=0 \k=0
(@)= (Z% 571—1‘) 2"

n=0 =0

= Z ( Qht1 Qi1 n—ip1 (B + 1) (i — k + 1)(n—i+1)> 2",

n=0 \i=0 k=0
oo o
" (2) = Z n(n+ Doy 2V = Z (n+1)(n+ 2)anyo 2".
n=1 n=0

Consider the particular case
a(z) =mz+a, b(z) =pz+b, c(2) =qz+¢, m,p,q,a,bceR,

that is the coefficients a(z),b(z),c(z) of the ODE (10) are affine functions in z.
Consequently, the foregoing ODE gives the identity

(mz + a) Z (n+2)(n+ Dapt2 2" + (g2 + ¢) Z ant1(n+1)2" — (pz +b)
n=0 n=0
X Z <Z Zak+1 Qi1 Op—ip1(k+ )i —k+1)(n —i+ 1)> 2" =0.
n=0 \i=0 k=0

This identity can be written

mz (n+ Dapg1 2" +2aa2+az (n+2)(n+ Dap42 2"

n=1
[e'e) n—1 1
—p Z (Z Z Q1 Vg1 On—i(k +1)(i =k +1)(n — i)) 2" —bad
n=1 =0 k=0
—b Z <Z Z Qt1 Qi1 On—it1(E+ 1) (i —k+1)(n —i+ 1)) 2"
n=1 =0 k=0

o
—l—qz nay, 2" + caq + CZ ant1(n+1)2" =0,
n=1 n=1

or, equivalent,

[e.e]
(2acs + cay — bad) + Z[mn(n + Dapt1 +an+2)(n+ 1)apnta

n=1
n—1 1
P ) 1 g1 oni(k+ 1)(i — k4 1)(n — i)
=0 k=0
—bz Z Q1 Qift1 Op—iv1(k+ )i —k+1)(n—i+1)
1=0 k=0

+qnay, + c(n + 1)ap41)2" = 0.
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By identifying the coeflicients of the powers of z with 0, we find the condition
2a0i3 + cap — ba:f =0
and the recurrence

mn(n + Dapr1 +a(n+2)(n+ 1ayi2

n—1 1
—pz Z Qp1 O—foy1 On—i(k+ 1) (i — k+1)(n — 1)
i=0 k=0
—bz Z Q1 Qi—ft1 Op—iv1 (kK + )i —k+1)(n—i+1)
=0 k=0
+qna, +c(n+1)apy1 =0, n>1. (13)

By the initial conditions ¢(0) = ag, ¢'(0) = a3 and 2aas + caj; — ba3 = 0, this
recurrence gives us all the coefficients of the power series (12), but the difficult part
is just solving the recurrence for the unknown a,.

Theorem 4.3. The multitime series soliton solution of the multitime Rayleigh PDE
18

u(a:,t) = Zan(x - )\ata)n’
n=0

with ap, a1 fired, 2aa +cay —ba3 = 0 and o, n > 2 given by the recurrence (13).

5. Families of multitime Rayleigh solitons of Van der Pol type

Now we continue with the multitime Rayleigh solitons of Van der Pol type
based on the ODE (11).

5.1. Case of coefficients depending on z

As we have seen in Section 3, if we can choose the constant vector A\, by some
conditions which relate the elements h, C, D, A\, then we get the equation

a(2)¢"(2) — d(2)8”(2)¢' (2) + ¢(2)(2) = 0.
We can write this equation in the form
2 / _ M (s @ /(5
F(() = G50 + G0 )

In order to find some solutions of this equation, we make a particular choice for
not

Aa; by a new condition: the coefficients a(z) e R (z,t,m,E)Aadg — 1, d(2) =
DY(x,t,n,§)\y and c(2) ot C(x,t,n,&)\y will be related by the equality

(53) =55

or equivalent
a'(2)d(z) — a(2)d'(z) = d(2)c(2).
With such a selection of A, the equation becomes

06 = (5000) |
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that is 5
¢°(2) _a(2) ,
=—= k, k .
3 d(2)¢(2)+ , keR
This Bernoulli ODE has separable variables. By integration, we get
3do d(z)
= dz, k : 14
=] ay @ HER )

For simplicity, we can take kK = 0 and we find a particular family of solutions, defined

by the relation
2 [d(z)
2
=—— [ —=dz.
If we keep k variable and non-zero, then making the substitution 3k by k‘I’, the

equality (14) becomes
3d¢ d(z)
= | —=dz, k1 € R".
o =K /M@Z :
The general solution of the equation (14) is expressed implicitly by the equality

1 — 2
—In (¢~ kil —\/garctg< ¢+k1> :/d(z)dz, k1 € IR™.
kl VvV ¢2 + ¢k + k‘% kl\/g

k2 a(z)
Summarizing, we can formulate the next result:

Theorem 5.1. If we can take the constant vector Ao s0 as h*P(x,t,n,€), BY(x,t,n,§),
C(x,t,n, &) and Ny, o, B,y =1,...;m, to be related by the conditions

hoB (2,0, ) Aadg — 1 = a(z — Mat®) # 0, B (x,t,7,E)\, = b(z — \at®),
C(x,t,m,6) Ay = c(x — Aat®), d'(2)d(2) — a(2)V'(2) = d(2)c(2).

then the function u(x,t) = ¢(x — Ao t®) represents a multitime soliton-solution for
the multitime PDE Van der Pol (7), for every ¢ defined implicitly by one of the

equalities
2, 2 [d(z)
¢°(2) = 3/a(z)dz
or
1 |9(2) — k1 V3 <2¢(2) +k1> _ [d(z) *
k% In \/¢2(z) ok T k% k% arctg V3 = / a() dz, k1 € IR".

5.2. Case of constant coefficients

Let A = (Aa), @ € {1,...,m} be a parameter. If we fix the elements h, C, D by
constants, and we denote

PN Ag —1=a#0, D'\, =d, CT\, =c, (15)
then the ODE (11) takes the form
a¢"(z) = d¢*(2)¢/(2) + c¢'(2) = 0.
Integrating, we find a first order ODE, with separable variables

a¢’—g¢3+cq§:k, ke TR.
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In order to find some solutions of this equation, we take k = 0. By this choice, the

equation becomes a Bernoulli ODE. We make a change of the unknown function,

2 2d
1 = ¢—2, and the Bernoulli ODE becomes a linear ODE ¢/ — —Cw =3, with the
a a

solutions
Y(z) = exp </ 2Cdz> [K—/M exp <—/26dz> dz] , K eR,
a 3a a

2 d
Y(z) = Kexp (cz) +—, KeRR.
a 3c

that is

Since ¢ = w_%, we obtain

Thus we obtain a family of multitime soliton-solutions of the multitime Van der Pol
PDE (7) and we can formulate the next theorem:

Theorem 5.2. If we take A\, so as to fix h, D,C by the notations (15), then we get
a family of multitime soliton-solutions

1
u(z,t) = , K elR.

2 d
\/K exp <ac(x - )\ato‘)) + 30

of the multitime Rayleigh wave equation of Van der Pol type (7).

6. Stability of multitime Rayleigh solitons
The multitime Rayleigh PDEs are evolution equations. To show what happen

in future multitime t, we endow the set IR with the product order. Also, sup-
pose Ao > 0, for each index . The constant vector A = (\,) controls the speed,
amplitude, and width of a multitime soliton.

The multitime Rayleigh PDEs have important properties of stability, among
which there is the following: (i) if we specify the initial position u(z,0) = wuo(x),
ut(x,0) = uy(z) of a multitime soliton u(z,t) at multitime ¢ = 0, the equation has a
unique solution with that initial data for ¢ > 0; (ii) if we impose suitable conditions

for the coefficients in a multitime soliton w(z,t), then ! IHHn u(x,t) = M; this
t||—o0

underline the idea that a soliton rests in bounded region of the space; (iii) let u(x,t)
be a multitime soliton with the initial condition w(z,0) = wug(x),ut(x,0) = ui(x)
and u(z) = Az 4+ B be a stationary solution of the Rayleigh PDE of Van der Pol
type; Vo > 0, Je > 0 such that
2 2 2
luo(e) = @ < s (o) < & = sup lust) —wlo)l sy < 6

under reasonable conditions; the restrictions on the initial conditions require a small
speed A (hint: from the first relation we determine the parameters A, B by the least
squares method).
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