U.P.B. Sci. Bull., Series A, Vol. 70, No. 3, 2008 ISSN 1223-7027

BAYESIAN INFERENCE FOR COPULA MODELS

Mariana CRAIU*, Radu VV CRAIU?

Prezentam o metoda generald de aplicare a inferentei Bayesiene pentru
repartitii bidimensionale definite de copule. In aceasta lucrare consideram cazul in
care ambele repartitii marginale sunt Weibull sau exponentiale dar metoda poate fi
extinsd si la alte repartitii. Pentru determinarea repartitiei posterioare se folosesc
tehnici de simulare Markov chain Monte Carlo.

We present a general methodology for performing Bayesian inference on
copula models. Here we discuss the case in which each marginal distribution is
Weibull or Exponential but the approach can be generalized to other distributions.
We solve the computational problem associated with sampling from the posterior
distribution using Markov chain Monte Carlo. We illustrate the method with
simulated data in order to assess its efficiency.
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distributions, Bayesian statistics.

1. Introduction

The term copula was first introduced by Sklar (1959) following some
initial ideas by Hoffding (1940). Copulas can flexibly "couple” fixed marginal
continuous distributions into a multivariate distribution. There exists a vast
literature on connections between dependence concepts and various families of
copulas but for reference we recommend Joe (1997) and Nelsen (2006).

The multivariate function C:[0,1]” —[0,1] is called a copula if it is a
continuous distribution function and each marginal is a uniform distribution
function on [0,1] so that C(u,...,u,) = P(U, <uw,,...,U, <u,). Ifp=2and if X, Y

are continuous random variables with distribution functions (df) F and G,
respectively, we specify the joint df using the copula C:[0,1] x [0,1] — [0,1] such
that
H(F'(w),G'(v))= P(X < F'(w),Y <G'(v)) = C(u,v). (1)
Equation (1) illustrates the way in which the copula function "bridges" the
marginal and the joint df's. The existence of such a map C is guaranteed by Sklar's
Theorem (Sklar, 1959). The uniqueness of C once we fix, F, G and H is
guaranteed as long as the random variables are continuous.
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In this paper we consider the case in which F and G are Weibull with unknown
parameters («,,f,), and («,,f,) respectively, or Exponential with parameters a 4,
and A, The marginals are coupled using Clayton's copula (Clayton, 1978) with

parameter & so that
1

C,(uv)= Wl +v?l-1)°, (2)

The copula density corresponding to (2) is
1+26

cy(uv)oc(1+ Q) " (u? +v? — n ? . 3)
In the next section we discuss Bayesian inference methodology for estimating the
parameters o, a,,3, and 6.

2. Prior and posterior distributions

We start our discussion in the case of Weibull marginals. The two-
parameter Weibull density is

fx|af) =1, (0D)af “x“"exp[-(x/p)“], (4)
for «,>0
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Fig. 1: Density of the prior Gamma (1,0.1).

We assume for each parameter of the Weibull distribution a diffuse
Gamma distribution prior with parameters 1 and 0.1 as shown in Figure 1. The
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parameter of the Clayton family is restricted to the positive real axis so we
consider for it the same prior.

Assuming we have available n pairs of observations from X and Y and if
we denote &= (a,,f,.a,,0,,0) then the posterior distribution is

7(8) oc () w(B) (e, w(B,) () x
XHf(‘xi | B)f(y; | oy Brdey (F(x; | e, ), F(y, |y, 8,)

i=1

Q)

where c is the copula density (3), f has the form given in (4), and F, G are the
corresponding cumulative distribution functions (cdf). The cdf of the Weibull
distribution is known as

F(x|a.p)=1-exp(~(x/p)")

In the case of Exponential marginals we use, for 4, and A,, the same prior
as the one described above.
In both the Weibull and the exponential cases we encounter computational
difficulties when we try to determine the normalizing constant for the posterior
distribution. Therefore we have to compute the characteristics of the posterior
using Markov chain Monte Carlo (MCMC) algorithms.

3. Metropolis algorithms within MCMC

Many problems arising in Bayesian statistics involve calculation of
integrals of the form

1=/ ()a(x)dr, (6)
where 7 is a (posterior) density known up to the normalizing constant. The

Monte Carlo method produces an approximation of I in (5) using an i.i.d. sample
X,s.....X, from 7z for the Monte Carlo estimator

(/)=Zh(xi)/n
i=1

Unfortunately, in most cases, sampling independently from 7z is
impossible. Markov chain Monte Carlo (MCMC) methods makes it possible to
obtain numerical approximations of expectations such as (6) in cases when direct
independent sampling from 7 is not available. Note that once a sample from 7 is
available we can compute (6) for any integrable function h.

The underlying principle of an MCMC algorithm is the construction of an
ergodic Markov chain whose stationary distribution has density z. More
precisely, suppose that we generate a sequence of random variables X, X,....

such that at each time >0 X, is sampled from a distribution P( | X,) which
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depends only on the current state of the chain, X,. As t increases, the chain
gradually ““forgets" its initial state and the distribution of X, is closer and closer

to the stationary distribution of the chain. With the samples obtained we can
approximate | using the ergodic average

m+n

<o=% > h(X,) @)

i=m+1

Note that we allow in (7) for first m samples to be simply discarded. The
set of samples not used in the estimation is known as burn-in. The length of what
constitutes an appropriate burn-in for a given problem remains an active area of
research.

The most widely used MCMC algorithm is the one proposed by Hastings
(1970), as a generalization of the sampler designed by Metropolis et al. (1953).
For the Metropolis-Hastings algorithm, at each step t the next state X, ., is chosen
by first sampling a candidate draw y from a proposal distribution q( |x,). Note
that the proposal distribution is allowed to depend on the current state of the
chain; if it does not, the algorithm is also known as independent Metropolis.
Assuming that the target density is 7, the candidate
sample y is retained with probability r(x,,y), where

r(x,,y)—mm[l, 2 )ar 1) . (8)

If y is accepted then X, =y, otherwise X, =x,. Note that the calculation
of normalizing constant for 7 is bypassed in (8) since it cancels out between the
numerator and the denominator.

For further theoretical and methodological developments related to

MCMC sampling we refer to Robert and Casella (2004) and Liu (2001).
4. Sampling from the posterior distribution

We use an independent Metropolis algorithm to construct a five-
dimensional Markov chain that has the posterior density (5) as its stationary
distribution (in an slight abuse of notation we use interchangeably 7 to denote
both the stationary density and distribution) . All the parameters are restricted to
be positive so we use disperse gamma distributions for proposing new moves.
Instead of updating all components of the parameter vector simultaneously, we
perform a Metropolis algorithm for one-at-a-time update of each coordinate.
This implies that for each iteration we perform five Metropolis updates. The
advantage is that we can get a better hold of the proposal's parameters which are
crucial to obtaining reasonable acceptance rates. In particular, one could use the
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adaptive method of Gasemyr (2003) to find appropriate values for the proposals'
parameters. In the simulations performed for this paper we used proposals
generated from Gamma (2,0.75) distribution.

We present in fig. 2, the scatter plot of the data consisting of 500 pairs. The two
marginals are Weibull (1,1), for X, and Weibull(2,2) for Y. The copula parameter
has value 4. The Uniform (0,1) random variates corresponding to a Clayton
copula are generated using the algorithm of Devroye (1986) and using the inverse
cdf are transformed into Weibull variates.

Clayton’s theta=4

Fig. 2: Scatter plot of 500 realizations from Weibull(1,1) and Weibull(2,2) correlated using a
Clayton copula with parameter 4.
In fig. 3 we show the traces of four out of five paths produced by the

MCMC algorithm. One can see that after a while the path stabilizes around the
true value marked with a horizontal solid line.
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Fig. 3: Traces of the paths produced by the Metropolis algorithm for &,c,, 5., . True values of
the parameters are shown with horizontal lines.

Finally, in Table 1 we summarize the samples obtained with MCMC.
Since the data’s sample size is » = 500 one can fairly assume that the influence of
the prior is minimal.

Table 1
Mean and SD (between brackets) for the MCMC estimates in the Weibull example

a, 4 4, o0 0

-0.011 (0.031) | 0.017 (0.052) | 0.003 (0.053) | 0.033 (0.091) | -0.003 (0.056)

Similar graphics are produced for the situation with Exponential
marginals. We consider a sample of 300 pairs where X is distributed Exp(2.5)
and Y has distribution Exp(1.75). In fig. 5 we show the data scatterplot. Clayton's
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copula parameter is 2. The proposal distribution used in the independent
Metropolis algorithm is Gamma(2,0.85).

Clayton’s theta=2
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Fig. 4: Scatter plot of 300 realizations from Exp(2.5) and Exp(1.75) correlated using a Clayton
copula with parameter 2.

In Table 2 we summarize the samples obtained after 10,000 iterations. One can
see that the the performance of the Monte Carlo estimator remains good.

Table 2

Means and SD for the MCMC estimates in the Exponential example

p) 7, o

-0.044 (0.101) 0.033 (0.105) 0.102 (0.097)
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6. Conclusions

We perform two Bayesian analyses of copula models. The distributions
and class of copulas used in this paper are commonly used in reliability and
medical studies. We studied the performance of the estimators with simulated
data. However, advanced computational tools such as MCMC algorithms are
needed in order to finalize the analysis.
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