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A NEW BERNOULLI SUB-ODE METHOD FOR
CONSTRUCTING TRAVELING WAVE SOLUTIONS FOR
TWO NONLINEAR EQUATIONS WITH ANY ORDER

Bin Zheng3

In this paper, a new generalized Bernoulli sub-ODE method is
proposed to construct exact solutions of nonlinear equations. The validity
of the method is testified by finding new exact traveling wave solutions of
the BBM equation with any order and general Gardner equation.
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1. Introduction

The nonlinear phenomena exist in all the fields including either the scien-
tific work or engineering fields, such as fluid mechanics, plasma physics, optical
fibers, biology, solid state physics, chemical kinematics, chemical physics, and
so on. It is well known that many nonlinear evolution equations (NLEEs)
are widely used to describe these complex phenomena. So, the powerful and
efficient methods to find analytic solutions of nonlinear equations have drawn
a lot of interest by a diverse group of scientists. Among the possible solu-
tions to NLEEs, certain solutions for special form may depend only on a single
combination of variables such as traveling wave variables. In the literature,
there is a wide variety of approaches to nonlinear problems for constructing
traveling wave solutions. Some of these approaches are the homogeneous bal-
ance method [1,2], the hyperbolic tangent expansion method [3,4], the trial
function method [5], the tanh-method [6-8], the non-linear transform method
[9], the inverse scattering transform [10], the Backlund transform [11,12], the
Hirotas bilinear method [13,14], the generalized Riccati equation [15,16], the
Weierstrass elliptic function method [17], the theta function method [18-20],
the sineCcosine method [21], the Jacobi elliptic function expansion [22,23],
the complex hyperbolic function method [24-26], the truncated Painleve ex-
pansion [27], the F-expansion method [28], the rank analysis method [29], the
exp-function expansion method [30] and so on.
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In this paper, we propose a Bernoulli sub-ODE method to construct
exact traveling wave solutions for NLEEs. Firstly, we reduce the NLEEs to
ODEs by a traveling wave variable transformation. Secondly, we suppose the
solution can be expressed in a polynomial in a variable G, where G satisfies the
Bernoulli equation. Thirdly, the degree of the polynomial can be determined
by the homogeneous balance method, and the coefficients can be obtained by
solving a set of algebraic equations.

The rest of the paper is organized as follows. In Section 2, we describe the
Bernoulli sub-ODE method for finding traveling wave solutions of nonlinear
evolution equations, and give the main steps of the method. In the subsequent
sections, we will apply the method to find exact traveling wave solutions of
the BBM equation with any order and general Gardner equation. In the last
Section, some conclusions are presented.

2. Description Of The Bernoulli Sub-ODE Method

In this section we present the solutions of the following ODE:

G′ + λG = µG2 (1)

where λ ̸= 0.
When µ ̸= 0, the Eq. (1) is the type of Bernoulli equation, and we can

obtain the solution as

G =
1

µ

λ
+ deλξ

, (2)

where d is an arbitrary constant.
When µ = 0, the solution of Eq. (1) is denoted by

G = de−λξ, (3)

where d is an arbitrary constant.
Suppose that a nonlinear equation, say in two independent variables x, t,

is given by
P (u, ut, ux, utt, uxt, uxx, ...) = 0, (4)

where u = u(x, t) is an unknown function, P is a polynomial in u = u(x, t) and
its various partial derivatives, in which the highest order derivatives and non-
linear terms are involved. By using the solutions of Eq. (1), we can construct
a serials of exact solutions of nonlinear equations.

Step 1. We suppose that

u(x, t) = u(ξ), ξ = k(x− ct). (5)

The traveling wave variable (5) permits us reducing (4) to an ODE for u = u(ξ)

P (u, u′, u′′, ...) = 0. (6)

Step 2. Suppose that the solution of (6) can be expressed by a polynomial
in G as follows:

u(ξ) = amG
m + am−1G

m−1 + ..., (7)
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where G = G(ξ) satisfies Eq. (1), and am, am−1..., and µ are constants to
be determined later, am ̸= 0. The positive integer m can be determined by
considering the homogeneous balance between the highest order derivatives
and nonlinear terms appearing in (6).

Step 3. Substituting (7) into (6) and using (1), collecting all terms with
the same order of G together, the left-hand side of (6) is converted into another
polynomial in G. Equating each coefficient of this polynomial to zero, yields
a set of algebraic equations for am, am−1..., k, c, λ and µ.

Step 4. Solving the algebraic equations system in Step 3, and by using
the solutions of Eq. (1), we can construct the traveling wave solutions of the
nonlinear evolution equation (6).

In the following sections, we will apply the method described above to
some examples.

3. Application Of The Bernoulli Sub-ODE Method For BBM
Equation With Any Order

In this section we will consider the BBM equation with any order [31]:

ut + aux + bunux − ruxxt = 0, n > 0, (8)

where a, b and r are known constants.
In order to obtain the traveling wave solutions of Eq. (8), we suppose

that

u(x, t) = u(ξ), ξ = x− ct, (9)

where c is a constant that to be determined later.
By using the wave variable (9), (8) is converted into an ODE

−cu′ + au′ + bunu′ + cru′′′ = 0. (10)

Suppose that the solution of (10) can be expressed by a polynomial in G as
follows:

u(ξ) =
m∑
i=0

aiG
i, (11)

where ai are constants. Balancing the order of unu′ and u′′′ in Eq. (10), we

have mn +m + 1 = m + 3 ⇒ m = 2
n . So we make a variable u = v

2
n , then

(10) is converted into

2(a−c+bv)n2v2v′+2cr(2−n)(2−2n)(v′)3+bcrnvv′v′′+2n2crv2v′′′ = 0. (12)

Suppose that the solution of (12) can be expressed by a polynomial in G as
follows:

v(ξ) =
l∑

i=0

biG
i, (13)

where bi are constants, G = G(ξ) satisfies Eq. (1). Balancing the order of v3v′

and (v′)3 in Eq. (12), we have 4l + 1 = 3l + 3 ⇒ l = 2. So Eq. (13) can be
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rewritten as

v(ξ) = b2G
2 + b1G+ b0, b2 ̸= 0, (14)

where b2, b1, b0 are constants to be determined later. Then with (1) we can
obtain

v′(ξ) = 2b2µG
3 + (b1µ− 2b2λ)G

2 − b1λµ

v′′(ξ) = 6b2µ
2G4 + (2b1µ

2 − 10b2µλ)G
3 + (−3b1µλ+ 4b2λ

2)G2 + b1λ
2G

v′′′(ξ) = 24b2µ
3G5 + (6b1µ

3 − 54b2µ
2λ)G4 + (−12b1µ

2λ+ 38b2µλ
2)G3

+(7b1µλ
2 − 8b2λ

3)G2 − b1λ
3G.

Substituting (14) into (12) and collecting all the terms with the same power of
G together and equating each coefficient to zero, yields a set of simultaneous
algebraic equations as follows:

G9 : 12bcrnb32µ
3 + 4n2bb42µ+ 80n2crb32µ

3 − 96crnb32µ
3 + 64crb32µ

3 = 0

G8 : −192crb32µ
2λ− 32bcrnb32µ

2λ+ 22bcrnb1b
2
2µ

3 + 96crb1b
2
2µ

3 − 4n2bb42λ
−204n2crb32µ

2λ− 144crnb1b
2
2µ

3 + 14n2bb32b1µ+ 288crnb32µ
2lambda

+156n2crb1b
2
2µ

3 = 0

G7 : 12n2bb0b
3
2µ+ 172n2crb32µλ

2 − 4n2cb32µ− 72crnb21b2µ
3 + 28bcrnb32µλ

2

−288crb1b
2
2µ

2λ−14n2bb32b1λ+12bcrnb21b2µ
3+96n2crb21b2µ

3−58bcrnb1b
2
2µ

2λ
+432crnb1b

2
2µ

2λ+12bcrnb0b
2
2µ

3+96n2crb0b
2
2µ

3+4n2ab32µ− 288crnb32µλ
2

−384n2crb1b
2
2µ

2λ+ 48crb21b2µ
3 + 192crb32µλ

2 + 18n2bb21b
2
2µ = 0

G6 : 4n2cb32λ− 4n2ab32λ− 64crb32λ
3 + 8crb31µ

3 + 30n2bb0b1b
2
2µ+ 10n2bb31b2µ

−12n2bb0b
3
2λ+ 10n2ab22b1µ− 10n2cb22b1µ− 18n2bb21b

2
2λ+ 288crb1b

2
2µλ

2

−144crb21b2µ
2λ−31bcrnb21b2µ

2λ−8bcrnb32λ
3+2bcrnb31µ

3+50bcrnb1b
2
2µλ

2

+10bcrnb0b1µ
3b2 − 216n2crb0b

2
2µ

2λ− 32bcrnb0b
2
2µ

2λ− 228n2crb21b2µ
2λ

−48n2crb32λ
3 + 16n2crb31µ

3 + 310n2crb1b
2
2µλ

2 + 120n2crb0b1µ
3b2

+216crnb21b2µ
2λ− 432crnb1b

2
2µλ

2 − 12crnb31µ
3 + 96crnb32λ

3 = 0

G5 : 2n2bb41µ+ 24n2bb0b
2
1b2µ− 30n2bb0b1b

2
2λ+ 12n2bb20b

2
2µ− 10n2bb31b2λ

+8n2ab21b2µ−8n2cb21b2µ−10n2ab22b1λ+10n2cb22b1λ+8n2ab0b
2
2µ−8n2cb0b

2
2µ

−24crb31µ
2λ−96crb1b

2
2λ

3+144crb21b2µλ
2+26bcrnb21b2µλ

2−26bcrnb0b1µ
2b2λ

+48n2crb20b2µ
3+152n2crb0b

2
2µλ

2−36n2crb31µ
2λ+28bcrnb0b

2
2µλ

2−5bcrnb31µ
2λ

−14bcrnb1b
2
2λ

3+2bcrnb0b
2
1µ

3−264n2crb0b1µ
2b2λ−82n2crb1b

2
2λ

3+24n2crb0b
2
1µ

3

+176n2crb21b2µλ
2 + 144crnb1b

2
2λ

3 − 216crnb21b2µλ
2 + 36crnb31µ

2λ = 0

G4 : −2n2bb41λ+2n2ab31µ−2n2cb31µ−24n2bb0b
2
1b2λ+12n2ab0b1b2µ−12n2cb0b1b2µ

+18n2bb20b2b1µ−12n2bb20b
2
2λ+6n2bb0b

3
1µ+8n2cb21b2λ−8n2ab21b2λ+8n2cb0b

2
2λ

−8n2ab0b
2
2λ+ 24crb31µλ

2 − 48crb21b2λ
3 − 8bcrnb0b

2
2λ

3 − 5bcrnb0b
2
1µ

2λ
+22bcrnb0b1µλ

2b2 − 48n2crb0b
2
1µ

2λ+ 180n2crb0b1µλ
2b2 − 32n2crb0b

2
2λ

3

+12n2crb20µ
3b1 − 108n2crb[0]2b2µ

2λ+ 26n2crb31µλ
2 + 4bcrnb31µλ

2
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−7bcrnb21b2λ
3 − 44n2crb21b2λ

3 − 36crnb31µλ
2 + 72crnb21b2λ

3 = 0

G3 : 12n2cb0b1b2λ− bcrnb31λ
3 + 76n2crb20b2λ

2µ− 4n2cb0b
2
1µ− 12n2ab0b1b2λ

−6n2bb0b
3
1λ−6bcrnb0b1λ

3b2−36n2crb0b1λ
3b2−24n2crb20µ

2b1λ+12crnb31λ
3

−2n2ab31λ−6n2crb31λ
3+2n2cb31λ−18n2bb20b2b1λ+4bcrnb0b

2
1µλ

2+4n2ab20b2µ
+4n2bb30b2µ+ 6n2bb20b

2
1µ+ 4n2ab0b

2
1µ+ 28n2crb0b

2
1µλ

2 − 8crb31lambda3

−4n2cb20b2µ = 0

G2 : −2n2cb20b1µ+ 2n2bb30b1µ− 4n2ab21b0λ− 4n2ab20b2λ− 16n2crb20b2λ
3 = 0

G1 : −2n2ab20b1λ− 2n2bb30b1λ+ 2n2cb20b1λ− 2n2crb20b1λ = 0.
Solving the algebraic equations above, yields:

c =
−2n2a

brnλ2 − 12rnλ2 + 6n2rλ2 − 2n2 + 8rλ2
, b0 = 0,

b1 =
−2(3bn+ 20n2 − 24n+ 16)arµλ

b(brnλ2 − 12rnλ2 + 6n2rλ2 − 2n2 + 8rλ2)
,

b2 =
2arµ2(3bn+ 20n2 − 24n+ 16)

b(brnλ2 − 12rnλ2 + 6n2rλ2 − 2n2 + 8rλ2)
. (15)

Provided that µ ̸= 0, combining with (2) and (3) we can obtain the traveling
wave solutions of the BBM equation (8) as follows:

v(ξ) =
−2(3bn+ 20n2 − 24n+ 16)arµλ

b(brnλ2 − 12rnλ2 + 6n2rλ2 − 2n2 + 8rλ2)
(

1
µ

λ
+ deλξ

)

+
2arµ2(3bn+ 20n2 − 24n+ 16)

b(brnλ2 − 12rnλ2 + 6n2rλ2 − 2n2 + 8rλ2)
(

1
µ

λ
+ deλξ

)2. (16)

Then

u(ξ) = [
−2(3bn+ 20n2 − 24n+ 16)arµλ

b(brnλ2 − 12rnλ2 + 6n2rλ2 − 2n2 + 8rλ2)
(

1
µ

λ
+ deλξ

)

+
2arµ2(3bn+ 20n2 − 24n+ 16)

b(brnλ2 − 12rnλ2 + 6n2rλ2 − 2n2 + 8rλ2)
(

1
µ

λ
+ deλξ

)2]
2
n , (17)

where ξ = x− [ −2n2a
brnλ2 − 12rnλ2 + 6n2rλ2 − 2n2 + 8rλ2 ]t, and d is an arbitrary

constant.

Remark 3.1. If we take µ = 0, then we obtain trivial solution u ≡ 0.
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Remark 3.2. In [31], the author has reported the following exact solutions of
BBM equation (8).

u(x, t) = {
aA2(1+n)(2+n)r

2b(n2−A2r)
sech2[1

2
A(x+ An2

−n2+A2r
t+ C0)]

1
n
, if a ̸= 0, A2r − n2 ̸= 0

±B(1+n)(2+n)
√
r

2bn
sech2[1

2
(±

√
n2

r
x+Bt+ C0)]

1
n

, otherwise

Also some other exact solutions have been reported in [32-33]. Our result
(17) is different from the results in [31-33], and have not been reported in the
literature to our best knowledge.

4. Application Of The Bernoulli Sub-ODE Method For General
Gardner Equation

We consider the general Gardner equation [32]:

ut + (p+ qun + ru2n)ux + uxxx = 0, n ≥ 0, r < 0. (18)

When n = 1, q ̸= 0, r ̸= 0, Eq. (18) becomes the KdV-mKdV equation

ut + (p+ qu+ ru2)ux + uxxx = 0.

When n = 1, q ̸= 0, r = 0, Eq. (18) becomes the KdV equation

ut + (p+ qu)ux + uxxx = 0.

When n = 1, q = 0, r ̸= 0, Eq. (18) becomes the mKdV equation

ut + (p+ ru2)ux + uxxx = 0.

In the following, we shall construct exact traveling wave solutions of Eq.
(18). In order to obtain the traveling wave solutions of Eq. (18), we suppose
that

u(x, t) = u(ξ), ξ = k(x− ωt), (19)

where k, ω are constants that to be determined later.
By using (19), (18) is converted into an ODE

−kωu′ + k(p+ qun + ru2n)u′ + k3u′′′ = 0 (20)

Suppose that the solution of (20) can be expressed by a polynomial in G as
follows:

u(ξ) =
m∑
i=0

aiG
i (21)

where ai are constants, G = G(ξ) satisfies Eq. (1). Balancing the order of

u2nu′ and u′′′ in Eq. (20), we have 2mn +m+ 1 = m + 3 ⇒ m = 1
n . So we

make a variable u = v
1
n , then (20) is converted into

−k(ω−p−qv−rv2)n2v2v′+k3(1−n)(1−2n)(v′)3+3k3n(1−n)vv′v′′+k3n2v2v′′′ = 0.
(22)
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Suppose that the solution of (22) can be expressed by a polynomial in G as
follows:

v(ξ) =
l∑

i=0

biG
i, (23)

where bi are constants. Balancing the order of v4v′ and (v′)3 in Eq. (22), we
have 4l + l + 1 = 3l + 3 ⇒ l = 1. So Eq. (23) can be rewritten as

v(ξ) = b1G+ b0, b1 ̸= 0, (24)

where b1, b0 are constants to be determined later.
Substituting (24) into (22) and collecting all the terms with the same

power of G together and equating each coefficient to zero, yields a set of si-
multaneous algebraic equations as follows:

G1 : kn2b1ωb
2
0λ− kn2b1pb

2
0λ− kn2b1rb

4
0λ− kn2b1qb

3
0λ− k3n2b20b1λ

3 = 0

G2 : −4kn2b21rb
3
0λ+ kn2b1pb

2
0µ+ kn2b1rb

4
0µ− 3k3nb21b0λ

3 − 2kn2b21pb0λ
+2kn2b21ωb0λ− kn2b1ωb

2
0µ+ kn2b1qb

3
0µ+ k3n2b21b0λ

3 − 3kn2b21qb
2
0λ

+7k3n2b20b1µλ
2 = 0

G3 : −k3b31λ
3−3kn2b31qb0λ+3kn2b21qb

2
0µ+kn2b31ωλ+4kn2b21rb

3
0µ−6kn2b31rb

2
0λ

−kn2b31pλ− 2kn2b21ωb0µ+ 2kn2b21pb0µ+ 2k3n2b21b0µλ
2 + 12k3nb21b0µλ

2

−12k3n2b20b1µ
2λ = 0

G4 : −kn2b31ωµ+6k3n2b20b1µ
3+ kn2b31pµ− kn2b41qλ+6kn2b31rb

2
0µ+3kn2b31qb0µ

−4kn2b41rb0λ− 9k3n2b21b0µ
2λ+ 3k3b31nµλ

2 + k3b31n
2µλ2 − 15k3nb21b0µ

2λ
+3k3b31µλ

2 = 0

G5 : −kn2b51rλ+kn2b41qµ+6k3n2b21b0µ
3−3k3b31n

2µ2λ−6k3b31nµ
2λ+6k3nb21b0µ

3

+4kn2b41rb0µ− 3k3b31µ
2λ = 0

G6 : kn2b51rµ+ k3b31µ
3 + 2k3b31n

2µ3 + 3k3b31nµ
3 = 0.

Solving the algebraic equations above, yields:

Case 1:

ω =
n3pr + 5n2pr + 8npr + 4pr − 2nq2 − q2

r(n3 + 5n2 + 8n+ 4)
, b0 = 0,

b1 =
−µq(2n+ 1)

λ(n+ 2)r
, k = ±

√
−(2n+1)
nr+r

qn

λ(n+ 2)
. (25)

Substituting (25) into (24), we have

v(ξ) =
−µq(2n+ 1)

λ(n+ 2)r
G.
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By (18) and u = v
1
n , we can obtain the traveling wave solution of general

Gardner equation as follows:
When µ ̸= 0

u1(ξ) = [
−µq(2n+ 1)

λ(n+ 2)r
(

1
µ

λ
+ deλξ

)]
1
n , (26)

where d is an arbitrary constant,

ξ = ±

√
−(2n+1)
nr+r

qn

λ(n+ 2)
(x− n3pr + 5n2pr + 8npr + 4pr − 2nq2 − q2

r(n3 + 5n2 + 8n+ 4)
t).

When µ = 0, we obtain trivial solution u ≡ 0.

Case 2:

ω =
n3pr + 5n2pr + 8npr + 4pr − 2nq2 − q2

r(n3 + 5n2 + 8n+ 4)
, b0 =

−(2n+ 1)q

(n+ 2)r
,

b1 =
µq(2n+ 1)

λ(n+ 2)r
, k = ±

√
−(2n+1)
nr+r

qn

λ(n+ 2)
. (27)

Substituting (27) into (24), we have

v(ξ) =
µq(2n+ 1)

λ(n+ 2)r
G+

−(2n+ 1)q

(n+ 2)r

Similarly, we can obtain another traveling wave solution of general Gardner
equation as follows:

When µ ̸= 0

u3(ξ) = [
µq(2n+ 1)

λ(n+ 2)r
(

1
µ

λ
+ deλξ

) +
−(2n+ 1)q

(n+ 2)r
]
1
n , (28)

where d and ξ are the same as Case 1.
When µ = 0, we have u ≡ 0.

Remark 4.1. Compared with the exact solutions of general Gardner equa-
tion reported by the authors in [32,34,35], the results (26) and (28) are new
solutions.

5. Conclusions

In this paper, we have seen that some new traveling wave solutions of
BBM equation with any order and general Gardner equation are successfully
found by using the Bernoulli sub-ODE method. Now we briefly summarize the
method in the following.

The main points of the method are that assuming the solution of the
ODE reduced by using the traveling wave variable as well as integrating can be
expressed by an m-th degree polynomial in G, where G = G(ξ) is the general
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solutions of a Bernoulli sub-ODE equation. The positive integer m can be
determined by the general homogeneous balance method, and the coefficients
of the polynomial can be obtained by solving a set of simultaneous algebraic
equations .

Compared to the methods used before, one can see that this method is
concise and effective. Also this method can be used to many other nonlinear
problems.
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