
U.P.B. Sci. Bull., Series C, Vol. 68, No. 2, 2006 

SCALING FACTOR EFFECT ON NEURAL NETWORKS 
RETRAINING PROCEDURE 

I. NASTAC, R. MATEI∗ 

Scopul principal al acestui articol este de a stabili modalitatea în care o 
structură funcţională a unei reţele neuronale artificiale poate fi reantrenată într-o 
manieră eficientă atunci când apar modificări ale funcţiei generale de intrare-
ieşire. Pentru îndeplinirea acestui deziderat s-a utilizat o aşa numită memorie 
anterioară, scalată cu o valoare convenabilă. Evaluarea efortului de calcul implicat 
în reantrenarea reţelelor arată că o bună alegere a factorului de scalare poate 
reduce în mod substanţial numărul efectiv de cicli de antrenare, independent de 
metoda de învăţare utilizată.  

 
The main purpose of this paper is to establish how a viable Artificial Neural 

Networks (ANN) structure at a previous moment of time could be retrained in an 
efficient manner in order to support modifications of the input-output function. To 
be able to fulfill our goal, we use an anterior memory, scaled with a certain 
convenient value. The evaluation of the computing effort involved in the retraining 
of an ANN shows us that a good choice for the scaling factor can substantially 
reduce the number of training cycles independent of the learning methods. 

Keywords: retraining procedure, weights, scaling factor, number of training 
cycles, dissimilarity error. 

Introduction 

The artificial neural networks (ANNs) ability to extract significant 
information from an initial set of data allows both an interpolation in the a priori 
defined points, as well as an extrapolation outside the range bordered by the 
extreme points of the training set.  

It is well known that the training process of an ANN requires a large 
number of processing cycles [3], which can occasionally reach and even 
outnumber hundreds of thousands. The necessary time for the learning process is 
directly proportional to the complexity of the application implemented by ANN 
[2] [5] [8]. At a first glance, this would imply that a small change in the initial 
project (e.g. some re-evaluation of the ANN performance at time point when a 
certain amount of experience has been accumulated) might require the repetition 
of the entire training phase, including all the shortcomings deriving from that, i.e. 
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a long processing time, the possible occurrence of an undesired local minimum of 
the performance function, etc. Therefore, in this paper we propose a new approach 
to overcome this disadvantage. The main purpose is to establish an efficient 
method to re-train a viable ANN structure at a certain moment of time such that it 
will support variations of the initial input-output function. 

To solve this problem we use an anterior memory “scaled” with a certain 
convenient value. A remembering process of the old knowledge achieved in the 
first learning phase is used as reference. This way, we are able to evaluate the 
computing effort involved in the retraining of an ANN. 

The structure of this paper is as follows. Section 1 presents the problem 
concerning the extraction of the useful information from an ANN in order to 
reduce the re-designing effort. In next section we introduce the retraining 
procedure and explain the working strategy. The main features of our 
experimental results are given in Section 3, where we discuss specific aspects. 
Our conclusions are formulated in the final section of the paper. 

1. Basic considerations 

Usually, feedforward ANNs are well suited to implement different kinds 
of input-output functions. The number of hidden layers and the number of the 
neurons for each layer are dependent on the complexity of these functions. After 
we have established a primary architecture during the first training phase of an 
ANN, the weights are initialized to small uniformly distributed values (e.g. in the 
interval (0,0.1)). The values have to be chosen small because during the training 
process the weights strive statistically to grow and if the learning process is a long 
one, the excessive growth of the weights may paralyze the learning process [7]. It 
then follows that the learning algorithm will influence the network insignificantly. 
The explanation resides in the fact that larger weights values will force large 
outputs balanced sum concluding towards asymptotic values of the transfer 
function (e.g. sigmoid function). Experiments proved that, besides the small 
values of the initial weights, choosing a small learning rate would increase the 
chance to avoid the paralysis state [4]. The value of the learning rate is relative 
and one cannot assume that a certain small value of the learning rate for one 
particular experiment is small enough for another. 

Therefore, after having established the architecture and an initialization 
process, the ANN will be in some arbitrary state of the continuous or discrete 
weights space. As the information theory states [1], we can assign a value of 
uncertainty to the network. The information extracted is growingly important as 
the uncertainty of the state of a system is higher. The uncertainty rate of a physical 
system results not only from the number of the possible states that the system 
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could reach during its evolution, but also from the probability value associated 
with these states. 

Let us consider an arbitrary weight wj in the network structure as a random 
discrete variable that could take any of the values wj

i (i=1..n) with the probability 
p(wj

i). We can define the entropy of this particular weight as follows: 
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If wj is a continuous random variable with the f(wj) probability density, the 
weight entropy can be rewritten as : 
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Here,  f(wj)Δx represents the probability to fall into one of the Δx segments 
of the abscissa of the probability density function f(wj).  

The amount of information necessary to find out the final state of the 
weight is equal to its entropy: 
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For practical reasons, we deal with the entropies of some mutually 
conditioned random variables (weights). The general entropy of the neural 
networks could then be written as: 

),...,,|(...)|()(),...,,( 12112121 −+++== NNNNN wwwwHwwHwHwwwHH  (4) 
Computing the ANN entropy formula efficiently is a hard task, if not 

impossible, when some highly dimensionally structures are involved. 
The theory [1] tells us that the weights initialization with random 

distributed values leads to the idea that the weights space entropy has a maximum 
value before the effective learning process begins. By choosing some uniform 
probability distribution we could increase the chances to find the optimum 
solution through some learning technique. On the other hand, in this case, 
searching is not efficient as far as the number of required training cycles is 
concerned. This is an unavoidable phenomenon when one first tries to design an 
ANN. 

Let us suppose that after a while the input-output function of the ANN has 
to be reconsidered. If we restart from scratch, we will train the network exactly in 
the same way as in the first phase. Therefore, the computing effort remains the 
same. As an alternative, we can try to use some of the previous knowledge 
acquired in the first phase, while designing the network, in order to reduce the re-
designing effort. The question is how to extract the useful information from the 
first project and use it in an efficient way in the retraining phase of the network.  
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If we define the initial system as X and the re-designed system as Y, then 
the quantity of the information over the system Y obtained through the system X 
is: 

)|()( XYHYHI YX −=→ ,                                                         (5) 
This result can be seen as diminishing the entropy of the system Y. 

Although theoretically clear, obtaining H(Y|X) in practice represents a great 
challenge. Since any ANN is a highly parallel system, the computing engine of 
the system cannot be found by using a sequential algorithm. To our knowledge, so 
far, the network itself is the only one that can administer its own information from 
its weights. Interpreting the network weights in another way was considered 
irrelevant until now. 

2. Retraining procedure 

In this section, we will describe our practical information extracting 
mechanism directly from the weights of a reference ANN which was already 
trained and it is perfectly functional at the present time. We use this information 
to train a structurally identical ANN, or even the same network that has some 
variations of the global transformation input-output function. 

Our proposed procedure reduces the reference network weights by a 
scaling factor γ  (0<γ <1). These reduced weights are used as initial weights for 
the training sequence of the second network. At the end we compare the network 
convergence speed (i.e., the number of cycles required until an imposed error is 
reached) obtained in both cases. Note that, before the training phase, the reference 
network had its weights initialized to random uniformly distributed values. In case 
we systematically achieve some smaller convergence speed for the second 
network, the global training time will then decrease as a consequence, hence our 
mechanism proves beneficial. 

The retraining mechanism will be analyzed in the following cases: same 
function with same training set (identical with the one used in the first training 
phase, which preceded the scale reduction process), same function with different 
training set, and different function with a new training set. 

In order to properly evaluate the proposed procedure, we will test its 
effects on four training models: BP (back-propagation), momentum, ALR 
(Adaptive Learning Rate) and the ALR-momentum combination [2]. This way, 
we try to emphasize that our procedure has similar results regardless of the 
learning algorithm used. 

To ease the testing work, we establish some preliminary conditions 
without restraining the generality of the results. Thus, the tested feedforward 
neural networks start running with one input - one output and continue with 
increased number of inputs. If the ANN has more outputs, then each of them leads 
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to a hyper-surface in a s+1 dimensional space, where s represents the number of 
the inputs. As the training techniques are fairly similar for the ANNs with an 
arbitrary number of inputs and outputs, it implies that the achieved results will be 
true even in the general case of a highly dimensional ANN. 

We limited the training set to a relative uniform distribution of data. 
However according to [2] and [6] we tried to pick more data from the case of 
continuous functions where the derivative had higher values. 

All the above conditions do not restrain the generality of the method, 
instead they try to comply with the limited computing resources available and also 
help the understanding by providing intuitive results. 

In order to find the necessary training cycles and the learning error, we 
have considered the following pre-defined two-dimensional functions: 

],[],[: edcbf →                                                           (6) 
or multi-dimensional functions: 

],[],[...],[: 11 edcbcbf ss →××                               (7) 
After training, the function ϑ generated by the ANN will be closer to the 

desired function f. 
Next, we propose the, so called, dissimilarity error Ed as a means to 

evaluate the resemblance between the graphical representations of f and ϑ (or f 
and another function g). This error is defined as: 
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In the previous equation, Σ represents the sum of the modules of the 
differences between these two functions measured in ν equidistant points. 

For network training purposes, we chose a finite number n of pairs (xi, 
f(xi)), i=1..n, from the  function’s graph. Although we could have taken 
equidistant points on the abscissa, we can also accept some slight variations, to be 
closer to the real situations where we do not know the exact interval of the values 
for the function f. In case we know the function f entirely, we really do not need 
an ANN to simulate the function but only a memory instead, with the whole set of 
values that provide us with f(x), for any x. If, on the contrary we only know 
partially the function f, then the ANN is the right choice because of its 
interpolation and extrapolation capabilities. 

The approximation error Ea used in the training sequence is given by the 
following formula: 
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where n is the number of input-output learning pairs. 
After selecting the pairs (x, f(x)), we can effectively train the network with 

its weights previously initialized to small random values. The learning phase stops 
when the approximation error Ea falls below a fixed error limit El. After that, we 
note the number of training cycles such that the condition Ea ≤ El is satisfied.  

Our main intent is to reduce the number of the learning cycles. The 
retraining procedure needs the completion of two major steps. Firstly, we have to 
get the set of weights by inheriting them from the reference ANN, and secondly 
we have to reduce these weights by a scale factor γ (e.g. in range (0.1,0.9)). The 
newly obtained weights represent the base for the new learning process. In order 
to decide the optimum scale factor and the consequences of the scale reduction 
procedure itself, the retraining phase should be performed for more than one value 
of γ. Then, for different training models, we will observe how the number of 
training cycles varies with γ. This factor will finally reach an optimum value γopt , 
the one that causes a minimum number of training cycles. 

Once we have established the retraining principle, the only thing that 
remains is to test its practical utility. Therefore we build an efficient benchmark 
algorithm of the retraining procedure as follows: 

 
1) Decide the initial function f  and the training set. 
2) Choose the network architecture. 
3) Select the training procedure. 
4) Initialize the network weights with small uniformly distributed values. 
5) Train and then hold the initial training cycles number Vinitial. 
6) Assign L values to scale factor γ . 
7) Reduce by each γi the weights obtained at step 5.  
8) Repeat learning procedure for each set of weights and memorize the 
corresponding training cycles number V(γi).  
9) Repeat step 8 for another training set of function f or for the case of function g 
with a similar graph. 

 
As an observation, we mention that the set of values for the functions f, g 

and ϑ could be easily extended to other larger interval of values. The neural 
function ϑ  is reshaping itself after each training cycle. We initially chose 
networks which implement two-dimensional functions just to simplify the 
simulation and to lower the burden of interpreting the results. The generalization 
is straightforward, due to the fact that any effective algorithm remains the same 
for an arbitrary number of inputs and/or outputs. 
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3. Results and discussion 

In this section we will illustrate our results, the working mode and the 
influence of the retraining sequence over an ANN, by considering different 
families of functions and network architectures. 

First, for one input - one output case, choosing the arbitrary initial function 
f (where f:[-1,1]→[-1,1]), we used the graph showed in Fig. 1. 

 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

 Training points for function f
 Graph of function  f
 Training points for function g
 Graph of function  g

f(x
)

x
 

Fig. 1. The graphs of functions f and g 
 

This function was copied by a neural network with one input – one output 
following the training set from 54 points that could be seen on the graph. In 
addition, we used another function g that had a shape near to function f (see Fig. 
1). To verify the robustness of the algorithm we chose a number of 50 pairs for 
function g by comparison with 54 in the case of function f. 

The dissimilarity error between f and g, measured for 100 points was 
Ed(f,g,100)=0.045. This means that the approximate area between these two 
curves has the value of Ed·(c-b)=0.045·2=0.09. We can easily observe that the 
functions are very similar. On the same graph f, we selected a different training set 
built of 54 points ((x’i,f(x’i)), i=1..54). 

The used network architecture has two hidden layers, each of them with 5 
neural cells. Selecting the BP model, we trained the network starting from 
randomly and uniformly distributed weights. We observed that 2228 learning 
cycles were necessary. Then, the training process was resumed for a number of 
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L=9 values of the scaling factor γ (γ1=0.1, γ2=0.2, …  γ9=0.9), in order to learn the 
function f using the training set (xi, f(xi)), i=1..54. The results can be seen in Fig. 
2a, which graphically represents the number of training cycles for each retraining 
with γi . We marked with a horizontal line the number of cycles necessary in the 
first training process, before scaling. 

 

 
 

Fig. 2. Retraining procedure through BP method for the same function f with the same points (a) 
and the retraining procedure through momentum method for the different function g (b) 

 
By using the training set (x’i, f(x’i)), i=1..54 in order to learn the function f, 

we obtain a similar graph with that of Fig. 2a. The number of retraining cycles 
decreases progressively with the increase of γ.  We observed that the variations 
are very small when using different points for the retraining process. 

In order to see whether the obtainable data is useful to learn a new 
function like g, we repeated the retraining procedure starting from the initial 
weights, scaled using the training set (50 points pairs) of the function g. The 
resulted graph looks also similar as the one presented in Fig.2a, but from value 
greater than 0.7 we notice a constant increase on the graph. In all these graphs, for 
γ ≥ 0.2, we stay below the threshold of the initial training cycles’ number. 
Obviously we are interested in those values of γ, for which the number of 
retraining cycles is below the horizontal line because in those cases the training 
procedure behaves much better. For higher values of the γ (over 0.7), we could be 
suspicious because an over-learning phenomenon is likely to appear and, in this 
case, the network has difficulties in making generalizations. 

Under the same conditions choosing any one, from among the momentum, 
ALR or ALR-momentum training methods, we noticed a general decreasing 
behavior of the training cycles number in accordance with the increase of the 
scaling factor γ, with the significance that in some situations (see Fig. 2b) we 
could notice an important increasing behavior once  γ ≥ 0.7. 
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As a remark, regardless of the training procedure, using a neural network 
with a single hidden layer of 10 neural cells the observed values during the 
simulations were pretty much alike (maybe slightly increased) in comparison with 
previous presented situations for two hidden layers neural networks. 

Maintaining the same initial conditions, we tested the effect of the hidden 
layers number. Hence, we changed the architecture by using another one with 
three hidden layers (each layer with 5 neural cells). Starting again the scaling 
procedure for each of the used training methods, we noticed that the over-learning 
phenomenon vanished in the BP case for different function, but appears in the 
ALR case. For the momentum and ALR-momentum models there are no major 
changes, concluding that, in general, the results of the retraining procedure are 
independent from the number of hidden layers. 

 

 
 

Fig. 3. Significant differences between the graphs of the functions f and g (a)  
and the retraining procedure for the function g in this case (b) 

 
However, our method may not always provide spectacular results 

concerning the decrease of the training cycle number. Thus, it is possible that the 
retraining procedure is not efficient at limit situations. For example, in Fig. 3a 
when the graph of f is quite different from the graph of g, the retraining procedure 
does not lead to smaller values of the cycles number (see Fig. 3b, ALR case, 
where Ed(f,g,100) = 0.1). The graph of training cycles number descends below the 
initial threshold just for γ = 0.4 and 0.5. If the dissimilarity error between these 
two functions grew more, then we would have no reason to apply retraining 
method because we cannot achieve a reduction of the training cycle number. This 
leads to the conclusion that the scale reduction procedure must be carefully 
applied when the goal function g is too much different from f, previously known 
from an earlier training.  
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In the second part, we tested our procedure over a number of three-
dimensional functions (see for example Fig. 4). These kinds of functions were 
simulated by two inputs – one output network architectures following training 
sets of 400 points. 

 
Fig. 4. An example of 3D input-output function 

 
As a result of analyzing the simulating data, regardless of the training 

procedures, we get again that by varying the scale value, the number of retraining 
cycles starts from a higher value than the reference cycles number (marked with a 
horizontal line), and then it progressively decreases in accordance with the 
increases of γ, much below the reference value, especially for γ ≥ 0.3 (Fig. 5.a).  
Sometimes, for the values of γ higher than 0.6, we have significant jumps of the 
learning cycles’ number that are associated with the network paralysis or over-
learning phenomenon (Fig. 5.b). 

 

 
Fig. 5. The number of training cycles as function of γ, with decreasing aspect (a) and over-learning 

aspect for γ > 0.6 (b) 
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This remark remains valid even if some graphs might surprise us (see Fig. 
6.a). At first sight, the observation that we have already made seems not to be 
true. This was due to the fact that we used a relative small number of scales, L=9, 
for γj (j=1…L). When we resumed the retraining sequence with L=45 values of γ, 
from 0.02 to 0.9 (having 0.02 as the increment), we obtained the graph in Fig. 6.b 
that finally confirmed the previous observation. We noticed that a small number L 
leads in some cases to irrelevant conclusions. 
 

 
Fig. 6. Irrelevant situation for L=9 values of γ  (a) and an improvement for L=45 (b) 
 
We performed similar experiments for other neural networks with 3 and 4 

inputs. We could not notice different behaviors as far as the evolution of the 
training cycles number varying with the parameter γ  is concerned. 

 

Conclusions 

In this paper, we have proposed a procedure for retraining those ANNs, 
which require modifications of their input-output functions. We described the 
information extracting mechanism directly from the weights of a reference ANN 
that was already functional. These weights were reduced by a scale factor γ, and 
handled as initial weights for the new training sequence. Using our procedure, we 
obtained a significant decrease in the number of the training cycles compared to 
the classical way.  

Based on the simulations performed for multiple combinations of the input 
parameters, we conclude that the optimal γ has its value around 0.5. Increasing 
this coefficient is not justified by the over-learning possibility and the implicit 
paralysis of the neural networks. In addition, values below 0.5 lead to a behavior 
very similar to a lack of the memory that remains by scaling. 
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We noticed that the phenomena in the ANN behaviour are almost the same 
when the retraining procedure is applied, regardless of the learning method used. 
Even if some of the techniques used are more efficient than others, applying the 
scaling method leads to a somehow similar ratio with respect to the decrease of 
the training cycles. This ratio depends on the analyzed case, more precisely on the 
neural architecture, functions dissimilarity, imposed error limit, etc. 

The results and the graphs were selected in a non-preferential manner from 
more than 200 retraining simulation sessions. In 32% of the analyzed cases, for γ 
≥ 0.7, we noticed that the number of the training cycles has an ascending trend, 
and this was associated with the over-learning phenomenon. The aforementioned 
percentage kept itself relatively independent in almost all the situations given by 
the parameter modifications, i.e. inputs number, layers number, cells number of 
each hidden layer, etc. 

The performed simulations lead to similar behavior, independently of the 
inputs number of the tested models. The similarity between the training methods 
for networks with an arbitrary number of inputs and/or outputs implies the fact 
that the results are also valid for the case of a highly dimensional space. This 
reason allows us to generalize the conclusions regarding the values of γ  to 
networks with any dimension. 

The main advantage of ANNs is their fastest computing speed. 
Unfortunately they need too much time for training process therefore we showed a 
way to decrease this time. Research is being conducted to implement the 
retraining procedure for ANNs that perform prediction tasks. 
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