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SIMULATION OF FRESNEL LENSES AND BINARY PHASE 
GRATINGS WITH BEAM PROPAGATION METHOD 

Mihai KUSKO1, Dana CRISTEA2, Paul ŞCHIOPU3 

În această lucrare sunt prezentate rezultatele simulărilor obţinute cu BPM 
(Beam Propagation Method) asupra a două tipuri de elemente optice difractive: 
lentile Fresnel şi reţele binare cu contrast de fază. A fost realizată o comparaţie 
între rezultatele teoretice şi cele obţinute prin simulare în vederea identificării 
parametrilor optimi de simulare.  

 
In this paper are presented the simulation results obtained with BPM Beam 

Propagation Method regarding two types of diffractive optical elements: Fresnel 
lenses and binary phase gratings. A comparison has been done between theoretical 
results and the results obtained by simulation in order to obtain the optimal 
simulation parameters.  
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1. Introduction 

Beam propagation method BPM has been developed decades ago [1] and 
its primary use is simulation of radiation propagation in integrated optical circuits 
and optical fibers. Since this method has been proposed for the first time, the 
method has been evolved from the Fourier transform approach to the finite 
element and finite differences based methods [2]. At this moment, the most 
widespread solution for implementation of BPM is based on the finite difference 
method. Unlike Finite Differences Time Domain - FDTD method which solves 
exactly the Maxwell equations in space and time with the accuracy limited only 
by the mesh size, the BPM is based on the approximation of the Kirchoff equation 
which describes propagation of the radiation in space. BPM has the advantage 
over FDTD because it requests more reduced computational resources (BPM 
needs much less RAM than FDTD and it is much faster). Many BPM solvers or 
engines rely on the paraxial approximation. However, in many cases, it is required 
the use of BPM solvers that work beyond the paraxial approximation. These BPM 
solvers are based on methods known in literature as “wide-angle BPM” [3]. The 
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above mentioned methods use the so called “Pade approximants” of order 1, 2, 3, 
etc, the simulation accuracy increasing with the order number. 

The small dimensions of the microoptical components allow the use of 
BPM giving the possibility to perform wide-angle simulations which can offer 
accurate results. Another reason to use BPM in simulation of the microoptical 
components is the high costs of the photonic simulation softwares which limits in 
many cases the possibility to have available all needed softwares based on various 
simulation methods. In the past, some research groups have employed BPM 
simulations in order to study microoptical components even if BPM simulation of 
the microoptical components can be more time - consuming than the treatment 
with the other methods [4], [5]. It is important to notice that in many cases BPM 
cannot offer accurate results any longer and it is required the use of FDTD 
method. Those situations are met when the microoptical components sizes are 
very small. In this paper, we will limit only at BPM simulations. 

Recently, results of designing Fresnel lenses using BPM and fabrication of 
reflective Fresnel lenses obtained by RIE etching of silicon dioxide substrate have 
been reported [6]. The approach for designing Fresnel lenses with OptiBPM 
software provided by Optiwave is presented there. Here, in this paper we will 
presents the results of BPM simulations of Fresnel lenses with various simulations 
parameters (mesh size and order number of the Pade approximants) and lens 
parameters (number of levels and focal length). A finer mesh grid and the use of 
higher Pade order improve the simulation accuracy, but in the same time slow 
down the simulation. That is why we need to find a simulation scheme that offers 
a satisfactory accuracy and also a reasonable time of simulation. 

Another component studied here is the binary diffraction grating based on 
the phase contrast. They can be used as beam splitters or demultiplexers. Here, we 
will confront the theoretical results with the results obtained using BPM 
simulations.  

2. Simulation of Fresnel lenses 

The Fresnel lenses have been simulated using BPM solvers based on finite 
differences and finite element method available in OptiBPM software package 
[7].  

In this section we presents the results of simulation for  Fresnel lenses with 
2 and 4 levels with diameter value of 1000 microns and focal length values of 
1500 and 3000 microns, respectively. We considered various mesh size and 
various propagation schemes. In all simulation we have used PML (Perfect 
Matched Layers) boundary condition which allows all radiation incidents on to 
computational domain boundary to pass through without returning in the 
computational domain. Simulation using PML is much faster than the 
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corresponding simulation using Transparent Boundary Condition TBC. The input 
field is considered uniform on the transversal direction. We have considered only 
2D simulations because of the large computational resources required for the 3D 
simulation. 
 Design of the Fresnel lenses started with an approximate expression for 
the lens surface. This approximate expression is simpler than the exact expression 
for the lens surface and it can be more easily implemented [6]. The difference 
between the exact form and the approximate form becomes more pronounced if 
the focal length decreases and the lens diameter remain constant. The simulation 
results obtained with finite difference and finite element methods for the case of 
1500 microns focal length if it is used a very small transversal mesh and the 
highest available Pade order demonstrate there is a very close match with the 
theoretical results. This means that the option to use the approximate form for 
describing lens surface was correct. 
 We have studied intensively the case of the lens with 3000 microns focal 
length. Deviation of the focal length obtained from simulation from the expected 
value for various mesh sizes and Pade order numbers are represented in Fig. 1. 
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Fig. 1. Focal length deviation from theoretical value function of Pade orders numbers and 

dimension of the transversal mesh size 
 

 We have found that the optimum transversal mesh size is 200 nm which 
provides a high degree of accuracy at reasonable simulation speed. We understand 
the accuracy as the convergence between the expected values and the results 
obtained by simulation. We have simulated the radiation propagation through 
Fresnel lens using various Pade orders. As expected, the accuracy increased at 
higher Pade orders on the expense of simulation speed. We have found that the 
most suitable Pade order number is 2 for our simulations. The propagation step is 
100 nm and divides the minimum feature on the z axis with an integer number. 
This fact is very important in simulation for obtaining accurate results. In Fig. 2a 
and b is represented the field distribution for a Fresnel lens with 2 and 4 levels 
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respectively. Both simulations have been obtained with a wide-angle BPM solver 
based a Pade order equal to 2. The wavelength is 800 nm. One can notice that the 
simulation obtained with a four level Fresnel lens is more accurate. The efficiency 
is 41% for the two-level Fresnel lens and 75% for the four-level Fresnel lens, 
respectively. 

 
a)   

 
b) 

Fig. 2. Radiation propagation through a Fresnel lens with 
a) two levels; b) four levels 

 
We have considered the case when the radiation wavelength is 850 nm and 

750 nm respectively. The Fresnel lens is designed to focus the radiation after 3000 
microns if the wavelength is 800 nm. We notice that the focal length becomes 
shorter if the radiation wavelength is longer, and the focal length becomes longer 
if the wavelength is shorter. The simulations results for the two wavelengths are 
represented in Fig. 3. We have considered the previous simulations parameters for 
a four-levels Fresnel lens.  
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a) 

 
b) 

Fig. 3. Radiation propagation through a Fresnel lens (detailed view) if the radiation 
wavelength is a) 850 nm; b) 750 nm 

3. Simulations of binary phase gratings 

Binary phase gratings studied here have a 1D constant rectangular profile 
as one can see in Fig. 4. We consider the line width “w” to be half of the period 
“Λ”. The groove depth “d” may have various values in order to obtain the desired 
phase difference between “hills” and “valleys”. The radiation wavelength is 800 
nm. The binary phase gratings work in transmission, so the relation between the 
groove depth d and the phase difference Δφ is 

ϕ
λ
π

Δ=− dn )1(2        (1) 
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where n is the refractive index of the binary grating, and λ is the radiation 
wavelength. 

 
Fig. 4. The binary phase grating 

 
The incident radiation is divided by the grating in a multitude of beams 

corresponding to the diffraction orders 0, -1, +1, etc. The angles θm of the 
diffraction orders m depends on the radiation wavelength as is expressed in the 
next equation: 

λθ mm =Λ sin      (2) 
The theoretical radiation intensity corresponding to each order is written in 

[8]. There are two particular cases, when the phase difference is π (as in the case 
of two - levels Fresnel lenses) and the phase difference is  0.64π, respectively. 

 In the first case, the binary phase grating diffracts the radiation mainly in -
1 and +1 orders (40.5 % from incident power for each order). There is no 
radiation diffracted in the zeroth order. In Fig. 5 is presented the simulation results 
for a binary phase grating with phase difference equal to π. We have considered a 
binary phase grating with ten microns period. The Pade order is 2. The transversal 
mesh size is 200 nm. The propagation step is 100 nm. Since the refractive index 
of the grating is 1.5, the groove depth is 800 nm. 

 

 
Fig. 5. Radiation propagation through a binary phase grating if the phase difference is π 

 
One can notice that the central maxima corresponding to the zeroth order 

is eliminated and the radiation power is concentrated mainly in the +1 and -1 
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orders. The intensity measurements show very close results to the theoretical 
results.  

The other case of interest is when the phase difference is 0.64π. The binary 
phase grating diffracts the radiation mainly on 0, -1 and +1 orders (29 % from 
incident power for each order). The simulation results are represented in Fig. 6. 
The groove depth is 500 nm in order to contain an integer number of propagation 
steps. This groove depth value is very close to the theoretical value of 512 nm. 
The results of simulation shown in Fig. 6 confirm the theoretical results. 

 

 

Fig. 6. Radiation propagation through a binary phase grating if the phase difference is 
0.64π 

4. Conclusions 

 In this paper we have shown some results regarding simulation of two 
important microoptical components, i.e. Fresnel lenses and binary phase gratings 
with BPM. We have fond the optimal simulation parameters (mesh size, Pade 
order number) for the simulation of Fresnel lenses. We have noticed the 
dependence on wavelength of radiation propagation through a Fresnel lens. We 
have also studied binary phase gratings and we have confronted the simulation 
results with theoretical results. The convergence of the simulation results with 
theoretical results for both Fresnel lenses and binary phase gratings allow the 
simulation with BPM of complex devices which include these components. These 
devices may have applications in various domains, especially in optical 
communications as wavelength demultiplexers or beam splitters. 
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