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WHEEL/RAIL INTERACTION DUE TO THE POLYGONAL
WHEEL

Traian MAZILU', Madalina DUMITRIU?, Cristina TUDORACHE?, Mircea
SEBESAN’

Articolul de fata este consacrat studierii interactiunii dintre o osie elastica si
o cale balastatd cauzatd de rotile poligonale. Osia este consideratd o grindd
Timoshenko avand corpuri rigide fixate de ea reprezentand cutiile de osie, rotile si
discurile de frand. Modelul caii include un nou model al reazemului periodic al
sinei constand din doud sisteme Kelvin-Voigt tri-directionale pentru suportul de sina
si balast, si un sistem mixt Kelvin-Voigt/Maxwell pentru terasament. Principalele
caracteristici ale vibratiei roatd-sind datorita rotii poligonale sunt analizate
utilizdand o noud tratare a metodei matricei Green a cdii.

The paper aims at studying the interaction between an elastic wheelset and
ballasted track due to the polygonal wheels. The wheelset is considered a
Timoshenko beam with attached rigid-bodies as axle boxes, wheels and brake discs.
The track model includes a new model of the rail periodic support consisting in two
three-directional Kelvin-Voigt systems for the rail pad and the ballast, and a mixed
Kelvin-Voigt/Maxwell system for the subgrade. The main features of the wheel/rail
vibration due to the polygonal wheel are analyzed via a new approach of the
Green’s matrix of the track method.
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1. Introduction

Upon studying the dynamic behaviour between the railway vehicle and the
track, we may find the responses to many issues such as the passengers’ comfort,
the rolling noise, the structures’ mechanical resistance (the vehicle and the track)
and the propagation of the vibrations induced by the trains to the buildings located
in the track environment [1-3].

One of the common defects in the railway wheel is the so-called out-of-
roundness [4] that may take the shape of the corrugation wheel due to tread
braking [5], the wheel flat [6-8] or even the polygonal wheel [9-11]. The former
wheel defect consists in the periodic diameter variation around the mean value, so

! Assoc. Prof., Depart. of Railway Vehicle, University POLITEHNICA of Bucharest, Romania, e-
mail: trmazilu@yahoo.com

* Assist. Prof., Depart. of Railway Vehicle, University POLITEHNICA of Bucharest, Romania

? Assist. Prof., Depart. of Railway Vehicle, University POLITEHNICA of Bucharest, Romania

* Eng., METROREX, Bucharest, Romania.



96 Traian Mazilu, Madalina Dumitriu, Cristina Tudorache, Mircea Sebesan

that the wheel circumference is multiple integer of the wavelength of this defect.
The spectrum of the polygonal wheel is dominated by a few waves that
correspond to 1-5 wavelengths around the wheel circumference, and the
amplitudes are in the order of 1 mm. The frequency range of the vibration induced
by the polygonal wheels is situated between 5 and 125 Hz when train velocities
are in the interval of 50-250 km/h [12].

All railway wheel types are dominated by the common wheel eccentricity
(one harmonic). As a general rule, besides this harmonic, the standard solid steel
wheels are dominated by the third harmonic, while the rubber spring wheels
prevalently exhibit the second harmonic [13]. Many papers suggest that the
polygonal wheel of the third order occurs because of the wheel clamping in a
three-jaw chuck [5, 14-15].

This paper herein describes the dynamic behaviour between a wheelset
moving along a ballasted track due to the polygonal wheels in order to point out
the basic feature of this particular excitation mechanism of the wheel/rail system.
To this purpose, the wheelset is modelled as a Timshenko beam with attached
rigid-bodies as axle boxes, wheels and brake discs [16]. The rail is considered as
an infinite Timoshenko beam resting on a periodic support, including rail pad,
semi-sleeper, ballast block and the sub-grade effect. The support model is
improved compared to the already known models [17-18] and allows simulating
the track response for an extended frequency range [19]. The Green matrix of the
track method, previously used to simulate the rigid wheel/rail interaction [20] and
the simple vehicle/track interaction [21], is developed here for the elastic
wheelset/track interaction.

2. The mechanical model and the governing equations

One considers a wheelset with polygonal wheels uniformly running on a
smooth, tangent ballasted track. Considering the two sub-systems, the wheelset
and the track as symmetric structures, including the wheels defects and the
wheel/rail contact forces, the model of the wheel/rail interaction may be reduced
to a wheel running on a discretely supported rail (Fig. 1).

The rail is described using an infinite uniform Timoshenko beam on
equidistant supports with a span d between them. The parameters for the rail are
as follows: the mass per length unit m, the cross-section area S, the area moment
of inertia /, the density p, theYoung’s modulus E, the shear modulus p and the
shear coefficient k. The distance from the cross-section neutral fibre to the rail
foot is h. The loss factor of the rail is neglected. The motion of the rail is
described by the column vector q = [w(x, 7) 0(x, #)]', where w(x, #) and 6(x, #)
stand for the vertical displacement, respectively the rotation of the cross-section; x
is the coordinate along the rail and ¢ stands for time.
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In terms of the relative displacements between the rail cross-section and
the rail pad, the model of the rail pad has three Kelvin-Voigt systems with the
elastic constants k., k. and k4, and the viscous damping constants c,, ¢, and
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Fig. 1. Mechanical model of the wheel/rail interaction due to the polygonal wheel: (1) polygonal
wheel; (2) wheel/rail contact; (3) rail; (4) rail pad; (5) semi-sleeper; (6) ballast; (7) subgrade.

The semi-sleepers are taken as rigid bodies with three degrees of freedom,
i.e. the xi(¢) longitudinal translation, the z,(#) vertical displacement and the o(?)
rotation across the rail, where i is the sleeper number, situated at the distance s;
from the reference. The parameters for the semi-sleepers are: the mass M, the
mass moment of inertia J; and the distance /4; between the semi-sleeper and the
rail pad.

The ballast model consists in a rigid body in the u,(¢) vertical translation
under the i semi-sleeper via the Kelvin-Voigt system. The longitudinal and
rotational resistance of the ballast are taken into account by using two Kelvin-
Voigt systems connected to the semi-sleeper. The ballast model has the mass M,
the elastic constants k, k; and kg and the viscous damping constants ¢, ¢; and cp.

Finaly, the subgrade influence is simulated using a mixed Kelvin-
Voigt/Maxwell system [19]. This solution is valid as long as the axle velocity is
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much lower than the velocity of the waves excited in the subgrade by the axle
travel.

The equations of motion for the rail and its periodical supports may be
written as

T,.A(x,0)— _Z(Atq,-(r) —B,q} (1))8(x—s;) = Q(x,1) (1)
C,qf (1)=B/q;(t) )

where
Q=[-0)s(x-V1) o] 3)

is the column vector of the vertical forces acting on the rail, 5(.) is the Dirac delta
function, q(¢) = q(s;?) is the column vector of the rail displacement above the
support i, q'(1)=[x,(t) z,(1) o,(t) u, () v,(t)] represents the displacements
belonging to the support 7, including the v«(¢) hidden displacement of the Maxwell
system, T, is the matrix differential opperator of the Timoshenko beam
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with
d? d
D, =M;——+(cy+c;)—+k, +ky;
dl‘2 dt

d? d 0 )
D. :MSFJF(C} +Cb)5+k" +k,, D, =Cs15+ks1a
d? ) .\ d 2
D, =J, dt—2+(cOL +cp +hi cx)5+ka +kg +hiky;
d? d
D, =Mp—+(cp +cg)—+kp +ky +kg;
dl‘2 dt
co =cq +h2c,, kg =ky +h?k,, Acy =cq —hhyc,, Aky = kg —hhyk, .
All the initial conditions and the boundary conditions are null

a0 =[0 o, q;@=[0 0 0 o of, (8)
‘};}‘gwq(x,z)z[o o], lim gi@®=[0 0 0 0 o]". )

The wheelset model is presented in Fig. 2, where a wheelset of a passenger
coach with four brake discs is being looked at.
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Fig. 2. Mechanical model of the wheelset: (1) and (8) axle box; (2) and (7) wheel; (3-6)
brake disc.
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The axle is modelled as a uniform Timoshenko beam with attached rigid bodies as
wheels, axle boxes and brake discs. The displacements of the axle are described
by the column vector q“(y, £) = [u(y, ) ¢(y, £)]*, where u(y, 7) and @(y, ?) are the
vertical displacement and the rotation of the cross-section, y stands for the
coordinate along the axle. The parameters of the axle are: the Young’s modulus E,
the shear modulus p, the density p, the length /, the mass per length unit m,, the
cross-section area S,, the area moment of inertia /, and the shear coefficient «,.
The body ‘i’ (i = 1+8) is attached to the axle at the distance e; from the left end of
the axle and has the mass M; and the mass-moment inertia J;.

Assuming the wheelset motion around the equilibrium position and
neglecting the gyroscopic effects and the static and dynamic imbalances of the
wheel set, the governing equations of motion may be written as follows

8
Ty 9= F.af8(y—e;)=Q% (10)
i=1

where T, si F;, are the matrix differential operators, g°; = q“(e;, ) is the column
vector of the axle displacements at the e; section and

Q" =[N -0, II8(y—e,) +8(y—e;) O] (11
is the column vector of the forces acting on the wheels; Q(¢) is the wheel/rail
contact force, while Qo is the static load. The matrix differential operators
appearing in the equation of motion of the axle are as follows
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The boundary conditions (free-free) are the same for both ends of the axle
(y=0andy=1))
——0=0; —=0, 14
o ® o (14)
which means that the shear force and the moment are null. Also, the initial
conditions for the axle are null.
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The wheel/rail interaction model has to contain a restriction, due to the
hertzian contact between the wheel and the rail. According to Hertz’s theory, one
reads

o)/ €, " =z (0alz, ). (15)
where zs is the wheel/rail deflection, Cy is the Hertzian constant and of.] is the
unitary step function of Heaviside. The wheel/rail deflection may be written as

zs(t) = z(t) —w(V't,t) - Ar(2) , (16)

where z(f) = u(es,t) ) = u(es,t) is the wheel displacement and Ar(¢) stands for the
wheel/rail relative displacement due to the polygonal wheel. Neglecting the
influence of the deviation (offset) between the contact point and the wheel centre,
the wheel/rail relative displacement may be written as

Ar(t) = Ar,cosn(V /Rt , (17)

where Ary is the amplitude Ry is the wheel radius and »n is an integer
corresponding to the order of the polygonal wheel.

3. Solution of equations of motion

The solution of the equations of motion can be obtained by using the
Green’s matrix of the track method [20-21]. To this end, the Green’s function of
the wheelset at the wheel has to be calculated following the method suggested by
the authors [16]. This function describes the wheel response when two impulse
forces are symmetrically applied on the wheels and it has the form below

_L ul LCXP(—C,-COJ) . _r2
h(f)_MJr,Z:l:M,- o,1-C; Sm((”f\/l C,-f), (18)

where M is the half-mass of the wheelset, A; is the modal mass of the i vibration
mode, ; is the resonance angular frequency and ; is the modal damping factor;
the first N modes are taken into account.

Also, one needs the Green’s matrix of the track including the response of
the rail along a sleeper bay due to a unit moving impulse force. This matrix is
assembled by the Green’s functions of the rail.

In virtue of the convolution theorem, the wheel displacement and the rail
displacement at the moving contact point are given as

2() = [ h(t =)0, - 0()Jdx (19)

i

w(lVt,t) = j TgW(Vt, E,t—1)0(1)0(§ — Vt)dédt = jgw Vt,Vt,t —1)Q(t)dt, (20)

where g"(V2,€,t-1) is the Green’s function of the rail at the moving point.
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Next, these displacements are introduced in the contact equation (15) and
one obtains an integral nonlinear equation with the contact force as unknown

o)/ €, F" = [ ht -v]0, -0t - [ g" (78,71, = )Q(r)de — Ar(e) (21)

The equation is valid as long as the wheel and the rail are in contact and it
may be solved following a numerical approach.

4. Numerical application

In this section, results are derived from the previous wheel/rail model for a
particular wheelset that uniformly moves along a ballasted track, considering the
symmetric polygonal wheels of the third order. The model parameters are listed in
Table 1 for the wheelset and in Table 2 for the track.

Table 1
Parameters for the wheelset
Parameter Value
Density of the axle (steel) p = 7850 kg/m’
Young’s modulus of the axle E=210GPa
Shear modulus of the axle p =281 GPa
Length of the axle [=22m
Mass per length unit of the axle m,= 157 kg/m
Cross-section area of the axle S,=0.02 m*
Area moment of inertia of the axle cross-section | J, =322 -10”° m*
Shear coefficient of the axle cross-section ,=0.9
Mass of the axle box M= Mg =180kg
Mass of the wheel M, = M;=334kg
Mass of the brake disc Ms =M, =Ms=M;=70kg
Mass moment inertia of the axle box J=k=1 kgmz
Mass moment inertia of the wheel S=J;=23 kgm2
Mass moment inertia of the brake disc Jy=J,y=Js=Jg=2 kg m*
Positions of the axle boxes e;=0.08m;es=2.12m
Positions of the wheels e, =035m;e; =1.85m
Position of the first two brake discs e;=0.65m; e,=0.95m
Static load 0o =70 kN

For the numerical simulation, the track model length is of 50 sleeper bays;
this length satisfies the mandatory criterion to keep the periodic feature of the
track in the central zone of the model (14 sleeper bays). Only the rail receptance
from this zone is used, with the purpose to calculate Green’s matrix of the track.
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Table 2
Parameters for the track

Parameter Value
Mass per length unit of the rail m =60 kg/m
Cross-section area of the rail §=17.69-10" m?
Area moment of inertia of the rail cross-section 1=30.55-10° m*
Shear coefficient of the rail cross-section k=04
Distance between the cross-section’s neutral fibre and the rail foot | z=0.08 m
Longitudinal rail pad stiffness k. =50 MN/m
Vertical rail pad stiffness k.= 280 MN/m
Rotational rail pad stiffness k=597 kNm/rad
Longitudinal rail pad viscous damping constant ¢, =10 kNs/m
Vertical rail pad viscous damping constant ¢, =50 kNs/m
Rotational rail pad viscous damping constant ¢, =107 Nms/rad
Mass of semi-sleeper M, =145 kg
Mass-moment of inertia of semi-sleeper J; =128 kgm?
Sleeper bay d=0.6m
Distance between the semi-sleeper centroid and the rail pad h=0.116 m
Longitudinal ballast stiffness k=40 MN/m
Vertical ballast stiffness k=120 MN/m
Rotational ballast stiffness ky = 676 kKNm/rad
Longitudinal ballast viscous damping constant ¢;=52 kNs/m
Vertical ballast viscous damping constant ¢y =70 kNs/m
Rotational ballast viscous damping constant cp = 394 kNs/m
Mass of ballast block M, = 2500 kg
Vertical subgrade stiffness (Kelvin-Voigt system) k, = 60 MN/m
Vertical subgrade stiffness (Maxwell system) k., = 100 MN/m
Vertical subgrade viscous damping constant (Kelvin-Voigt system) c;. — 150 kKNs/m
Vertical subgrade viscous damping constant (Maxwell system) 6;1 = 600 kNs/m

One considers that the wheel defect has the wavelength of 960 mm,
corresponding to a wheel circumference of 2880 mm (wheel diameter about 920
mm). The defect amplitude is 100 pum and this value is currently obtained from
the experimental data [5].

Figure 3 shows the wheel displacement and the rail displacement at the
contact point during the running at the speed of 62 m/s. The system vibration has
two components, one is given by the parametric excitation due to the sleepers with
the wavelength of 600 mm, and the other one is initialised by the wheel defect
(wavelength of 960 mm). Consequently, the wheel/rail vibration is modulated
with the wavelength of 4800 mm, corresponding to the frequency of 12.92 Hz.
Notice the parametric frequency of 103.33 Hz and the frequency of 64.58 Hz due
to the polygonal wheel. One may observe that the vibration is dominated by the
component in the polygonal wheel.




104 Traian Mazilu, Madalina Dumitriu, Cristina Tudorache, Mircea Sebesan

1.2

Displacement ()

46 465 47 475 45 485 45 435 50 A0S A1

Distance (1)

Fig. 3. Wheel/rail displacements at 62 m/s in the presence of the third order polygonal wheel

(amplitude of 0.1 mm): —, rail displacement at contact point; ———, wheel displacement.
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Fig. 4. Wheel/rail contact force at 62 m/s in the presence of the third order polygonal
wheel (amplitude of 0.1 mm): (a) the time history; (b) the spectrum.

The time history and the spectrum of the contact force are presented in
Fig. 4. The contact force has high oscillations around the static load value; the
maximum value is 102 kN and the minimum 39.7 kN. Also, the effective contact
force is 20.16 kN, resulting from the numerical simulation. The highest
component of the contact force spectrum has the amplitude of 28.4 kN and it
comes from the polygonal defect of the wheel (a frequency of 64.58 Hz). The
component deriving from the parametric excitation of the sleepers is significant,
its amplitude reaching 2.53 kN (frequency of 103.33 Hz). Apart from this, all
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components are very low, excepting the second component of the parametric
excitation with the amplitude of 0.96 kN (a frequency of 206.7 Hz).
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Fig. 5. Wheel/rail effective contact force versus the velocity in the presence of the third order
polygonal wheel (the amplitude of 0.1 mm).

Fig. 5 displays the effective contact force versus the wheelset velocity,
taking into account the same polygonal wheel. The contact force has two peaks at
62 and 76 m/s corresponding to the resonance frequencies of the wheelset/track
system — the resonance due the first symmetric bending mode and the resonance
given by the rigid-body mode of the wheelset. In fact, the vibration level turns
high for the velocity between 200 km/h and 335 km/h.

When the defect amplitude is higher than a particular value, the contact
force leads to the contact loss. Such situation is depicted in Fig. 6 where the
results from the numeric simulation of the polygonal wheel/rail interaction are
presented for the amplitude of 260 um and the velocity of 62 m/s. At contact point
the wheel and the rail vibrate almost in phase. One remarks the very high level of
the contact force showing as periodic shocks. The maximum value is two times
higher than the static load.

Finally, the last issue studied here is shown in Fig. 7, where the diagram of
the maximum and minimum contact force versus the polygonal wheel amplitude
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Fig. 6. Wheel/rail interaction due to the polygonal wheel (amplitude of 0.260 mm) at speed of 62
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Fig. 7. Maximum and minimum contact force at speed of 62 m/s: —, maximum contact force;
— — —, minimum contact force.

is presented. The wheelset velocity of 62 m/s has been taken into account for.
Obviously, when the defect amplitude increases, the maximum contact force
increases as well, while the minimum contact force decreases. These trends are
linear because the elasticity of the contact is much lower than the rail and wheel
receptances, and, subsequently, the nonlinear contact has a very marginal
influence. When the defect amplitude is higher than 250 pum, the contact loss
occurs and the maximum contact force increases linearly but its slope is smaller.
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6. Conclusions

The dynamic stresses due to the wheel/rail vibration induced by the
irregularities of the rolling surfaces affect the mechanical structure of both vehicle
and track.

This paper shows a study meant for the dynamic behaviour of the
wheel/rail interaction when the wheels exhibit the third-order polygonal defect.
This kind of wheel defect comes from the machine work of the wheels and it is
prevalent.

To this end, one considered the case of a wheelset with four brake discs in
a passenger coach moving along a ballasted track. The axle is taken as a
Timoshenko beam with attached rigid-bodies as axle boxes, wheels and brake
discs. Only the symmetric bending modes are taken into account. The time-
domain Green’s function at the wheel is obtained via the receptance and the modal
analysis. The model track is reduced to a discretely supported rail, since the track
is considered a symmetric structure. The rail is modelled as an infinite uniform
Timoshenko beam. The support of the rail model is improved to extend the results
range according to the measurements, both for low and high frequencies. In fact,
this model of the periodic support consists in two three-directional Kelvin-Voigt
systems for the rail pad and the ballast, and a mixed Kelvin-Voigt/Maxwell
system for the subgrade. Also, the inertia of the sleeper and the ballast block is
introduced.

The numerical simulations show that the dynamic behaviour due to the
polygonal wheel is dominant, while the one from the parametric excitation of the
sleepers play a marginal role. The influence of the wheelset velocity consists in
two peaks of the effective contact force corresponding to the bending resonance of
the wheelset on the track and the resonance of wheelset/track system due to the
rigid-body mode of the wheelset. The contact force increases with the amplitude
of the wheel irregularity. However, when contact is lost, the contact force lowers.
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