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WHEEL/RAIL INTERACTION DUE TO THE POLYGONAL 
WHEEL 

Traian MAZILU1, Mădălina DUMITRIU2, Cristina TUDORACHE3, Mircea 
SEBEŞAN4  

Articolul de faţă este consacrat studierii interacţiunii dintre o osie elastică şi 
o cale balastată cauzată de roţile poligonale. Osia este considerată o grindă 
Timoshenko având corpuri rigide fixate de ea  reprezentând cutiile de osie, roţile şi 
discurile de frână. Modelul căii include un nou model al reazemului periodic al 
şinei constând din două sisteme Kelvin-Voigt tri-direcţionale pentru suportul de şină 
şi balast, şi un sistem mixt Kelvin-Voigt/Maxwell pentru terasament. Principalele 
caracteristici ale vibraţiei roată-şină datorită roţii poligonale sunt analizate 
utilizând o nouă tratare a metodei matricei Green a căii. 

 
The paper aims at studying the interaction between an elastic wheelset and 

ballasted track due to the polygonal wheels. The wheelset is considered a 
Timoshenko beam with attached rigid-bodies as axle boxes, wheels and brake discs. 
The track model includes a new model of the rail periodic support consisting in two 
three-directional Kelvin-Voigt systems for the rail pad and the ballast, and a mixed 
Kelvin-Voigt/Maxwell system for the subgrade. The main features of the wheel/rail 
vibration due to the polygonal wheel are analyzed via a new approach of the 
Green’s matrix of the track method. 
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1. Introduction 

Upon studying the dynamic behaviour between the railway vehicle and the 
track, we may find the responses to many issues such as the passengers’ comfort, 
the rolling noise, the structures’ mechanical resistance (the vehicle and the track) 
and the propagation of the vibrations induced by the trains to the buildings located 
in the track environment [1-3].   

One of the common defects in the railway wheel is the so-called out-of-
roundness [4] that may take the shape of the corrugation wheel due to tread 
braking [5], the wheel flat [6-8] or even the polygonal wheel [9-11]. The former 
wheel defect consists in the periodic diameter variation around the mean value, so 
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that the wheel circumference is multiple integer of the wavelength of this defect. 
The spectrum of the polygonal wheel is dominated by a few waves that 
correspond to 1-5 wavelengths around the wheel circumference, and the 
amplitudes are in the order of 1 mm. The frequency range of the vibration induced 
by the polygonal wheels is situated between 5 and 125 Hz when train velocities 
are in the interval of 50-250 km/h [12]. 

All railway wheel types are dominated by the common wheel eccentricity 
(one harmonic). As a general rule, besides this harmonic, the standard solid steel 
wheels are dominated by the third harmonic, while the rubber spring wheels 
prevalently exhibit the second harmonic [13]. Many papers suggest that the 
polygonal wheel of the third order occurs because of the wheel clamping in a 
three-jaw chuck [5, 14-15].     

This paper herein describes the dynamic behaviour between a wheelset 
moving along a ballasted track due to the polygonal wheels in order to point out 
the basic feature of this particular excitation mechanism of the wheel/rail system. 
To this purpose, the wheelset is modelled as a Timshenko beam with attached 
rigid-bodies as axle boxes, wheels and brake discs [16]. The rail is considered as 
an infinite Timoshenko beam resting on a periodic support, including rail pad, 
semi-sleeper, ballast block and the sub-grade effect. The support model is 
improved compared to the already known models [17-18] and allows simulating 
the track response for an extended frequency range [19]. The Green matrix of the 
track method, previously used to simulate the rigid wheel/rail interaction [20] and 
the simple vehicle/track interaction [21], is developed here for the elastic 
wheelset/track interaction.  

2. The mechanical model and the governing equations 

One considers a wheelset with polygonal wheels uniformly running on a 
smooth, tangent ballasted track. Considering the two sub-systems, the wheelset 
and the track as symmetric structures, including the wheels defects and the 
wheel/rail contact forces, the model of the wheel/rail interaction may be reduced 
to a wheel running on a discretely supported rail (Fig. 1).  
 The rail is described using an infinite uniform Timoshenko beam on 
equidistant supports with a span d between them. The parameters for the rail are 
as follows: the mass per length unit m, the cross-section area S, the area moment 
of inertia I, the density ρ, theYoung’s modulus E, the shear modulus μ and the 
shear coefficient κ. The distance from the cross-section neutral fibre to the rail 
foot is h. The loss factor of the rail is neglected. The motion of the rail is 
described by the column vector q = [w(x, t) θ(x, t)]T, where w(x, t) and θ(x, t) 
stand for the vertical displacement, respectively the rotation of the cross-section; x 
is the coordinate along the rail and t stands for time. 
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 In terms of the relative displacements between the rail cross-section and 
the rail pad, the model of the rail pad has three Kelvin-Voigt systems with the 
elastic constants kx, kr and kα, and the viscous damping constants cx, cr and 

cα.  
Fig. 1. Mechanical model of the wheel/rail interaction due to the polygonal wheel: (1) polygonal 

wheel; (2) wheel/rail contact; (3) rail; (4) rail pad; (5) semi-sleeper; (6) ballast; (7) subgrade. 
 
 The semi-sleepers are taken as rigid bodies with three degrees of freedom, 
i.e. the xi(t) longitudinal translation, the zi(t) vertical displacement and  the αi(t) 
rotation across the rail, where i is the sleeper number, situated at the distance si 
from the reference. The parameters for the semi-sleepers are: the mass Ms, the 
mass moment of inertia Js and the distance h1 between the semi-sleeper and the 
rail pad. 
 The ballast model consists in a rigid body in the ui(t) vertical translation 
under the i semi-sleeper via the Kelvin-Voigt system. The longitudinal and 
rotational resistance of the ballast are taken into account by using two Kelvin-
Voigt systems connected to the semi-sleeper. The ballast model has the mass Mb, 
the elastic constants kb, kl and kβ and the viscous damping constants cb, cl and cβ. 
 Finaly, the subgrade influence is simulated using a mixed Kelvin-
Voigt/Maxwell system [19]. This solution is valid as long as the axle velocity is 
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much lower than the velocity of the waves excited in the subgrade by the axle 
travel. 
 The equations of motion for the rail and its periodical supports may be 
written as  
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and At, Bt, Ct stand for the following matrix differential  
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 The wheelset model is presented in Fig. 2, where a wheelset of a passenger 
coach with four brake discs is being looked at.  

Fig. 2. Mechanical model of the wheelset: (1) and (8) axle box; (2) and (7) wheel; (3-6) 
brake disc.  



100                 Traian Mazilu, Mădălina Dumitriu, Cristina Tudorache, Mircea Sebeşan  

The axle is modelled as a uniform Timoshenko beam with attached rigid bodies as 
wheels, axle boxes and brake discs. The displacements of the axle are described 
by the column vector qa(y, t) = [u(y, t) ϕ(y, t)]T, where u(y, t) and ϕ(y, t) are the 
vertical displacement and the rotation of the cross-section, y stands for the 
coordinate along the axle. The parameters of the axle are: the Young’s modulus E, 
the shear modulus μ, the density ρ, the length l, the mass per length unit ma, the 
cross-section area Sa, the area moment of inertia Ia and the shear coefficient κa. 
The body ‘i’ (i = 1÷8) is attached to the axle at the distance ei from the left end of 
the axle and has the mass Mi and the mass-moment inertia Ji. 
 Assuming the wheelset motion around the equilibrium position and 
neglecting the gyroscopic effects and the static and dynamic imbalances of the 
wheel set, the governing equations of motion may be written as follows 
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is the column vector of the forces acting on the wheels; Q(t) is the wheel/rail 
contact force, while Q0 is the static load. The matrix differential operators 
appearing in the equation of motion of the axle are as follows 
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The boundary conditions (free-free) are the same for both ends of the axle 
(y = 0 and y = l) 
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which means that the shear force and the moment are null. Also, the initial 
conditions for the axle are null.  
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 The wheel/rail interaction model has to contain a restriction, due to the 
hertzian contact between the wheel and the rail. According to Hertz’s theory, one 
reads 
                                         [ ] [ ])()(/)( 3/2

H tztzCtQ δδ σ= ,                                      (15) 
where zδ is the wheel/rail deflection, CH is the Hertzian constant and σ[.] is the 
unitary step function of Heaviside. The wheel/rail deflection may be written as 
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where z(t) = u(e2,t) ) = u(e7,t) is the wheel displacement and Δr(t) stands for the 
wheel/rail relative displacement due to the polygonal wheel. Neglecting the 
influence of the deviation (offset) between the contact point and the wheel centre, 
the wheel/rail relative displacement may be written as 
                                            tRVnrtr )/(cos)( 00Δ=Δ ,                                       (17) 
where Δr0 is the amplitude R0 is the wheel radius and n is an integer 
corresponding to the order of the polygonal wheel.  
 

3. Solution of equations of motion 

The solution of the equations of motion can be obtained by using the 
Green’s matrix of the track method [20-21]. To this end, the Green’s function of 
the wheelset at the wheel has to be calculated following the method suggested by 
the authors [16]. This function describes the wheel response when two impulse 
forces are symmetrically applied on the wheels and it has the form below 
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where M is the half-mass of the wheelset, Mi is the modal mass of the i vibration 
mode, ωi is the resonance angular frequency and ζi is the modal damping factor; 
the first N modes are taken into account. 
 Also, one needs the Green’s matrix of the track including the response of 
the rail along a sleeper bay due to a unit moving impulse force. This matrix is 
assembled by the Green’s functions of the rail. 
 In virtue of the convolution theorem, the wheel displacement and the rail 
displacement at the moving contact point are given as 
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where gw(Vt,ξ,t-τ) is the Green’s function of the rail at the moving point. 
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 Next, these displacements are introduced in the contact equation (15) and 
one obtains an integral nonlinear equation with the contact force as unknown 
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 The equation is valid as long as the wheel and the rail are in contact and it 
may be solved following a numerical approach.   

4. Numerical application 

 In this section, results are derived from the previous wheel/rail model for a 
particular wheelset that uniformly moves along a ballasted track, considering the 
symmetric polygonal wheels of the third order. The model parameters are listed in 
Table 1 for the wheelset and in Table 2 for the track.  

Table 1 
Parameters for the wheelset 

Parameter Value 
Density of the axle (steel) 
Young’s modulus of the axle 
Shear modulus of the axle 
Length of the axle 
Mass per length unit of the axle 
Cross-section area of the axle 
Area moment of inertia of the axle cross-section 
Shear coefficient of the axle cross-section 
Mass of the axle box 
Mass of the wheel 
Mass of the brake disc 
Mass moment inertia of the axle box 
Mass moment inertia of the wheel 
Mass moment inertia of the brake disc 
Positions of the axle boxes 
Positions of the wheels 
Position of the first two brake discs 
Static load 

ρ = 7850 kg/m3 

E = 210 GPa 
μ = 81 GPa 
l = 2.2 m 
ma = 157 kg/m 
Sa = 0.02 m2 

Ia = 3.22 ·10-5 m4 

κa = 0.9 
M1 = M8 = 80 kg 
M2 = M7 = 334 kg 
M3 = M4 = M5 = M6 =70 kg 
J1 = J8  = 1 kgm2 

J2 = J7 = 23 kgm2 

J3 = J4 = J5 = J6 =2 kg m2 
e1 = 0.08 m; e8 = 2.12 m 
e2  = 0.35 m; e7  = 1.85 m 
e3 = 0.65 m; e4 = 0.95 m 
Q0 =70 kN 

  
 For the numerical simulation, the track model length is of 50 sleeper bays;  
this length satisfies the mandatory criterion to keep the periodic feature of the 
track in the central zone of the model (14 sleeper bays). Only the rail receptance 
from this zone is used, with the purpose to calculate Green’s matrix of the track. 
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Table 2 
Parameters for the track 

Parameter Value 
Mass per length unit of the rail 
Cross-section area of the rail 
Area moment of inertia of the rail cross-section 
Shear coefficient of the rail cross-section 
Distance between the cross-section’s neutral fibre and the rail foot 
Longitudinal rail pad stiffness 
Vertical rail pad stiffness 
Rotational rail pad stiffness 
Longitudinal rail pad viscous damping constant 
Vertical rail pad viscous damping constant 
Rotational rail pad viscous damping constant 
Mass of semi-sleeper 
Mass-moment of inertia of semi-sleeper 
Sleeper bay 
Distance between the semi-sleeper centroid and the rail pad 
Longitudinal ballast stiffness 
Vertical ballast stiffness 
Rotational ballast stiffness 
Longitudinal ballast viscous damping constant 
Vertical ballast viscous damping constant 
Rotational ballast viscous damping constant 
Mass of ballast block 
Vertical subgrade stiffness (Kelvin-Voigt system) 
Vertical subgrade stiffness (Maxwell system) 
Vertical subgrade viscous damping constant (Kelvin-Voigt system) 
Vertical subgrade viscous damping constant (Maxwell system) 

m = 60 kg/m 
S = 7.69·10-3 m2 

I = 30.55·10-6 m4 

κ = 0.4 
h = 0.08 m 
kx = 50 MN/m 
kr = 280 MN/m 
kα = 597 kNm/rad 
cx = 10 kNs/m 
cr = 50 kNs/m 
cα = 107 Nms/rad 
Ms = 145 kg 
Js = 1.28 kgm2 

d = 0.6 m 
h1 = 0.116 m 
kl = 40 MN/m 
kb = 120 MN/m 
kβ = 676 kNm/rad 
cl = 52 kNs/m 
cb = 70 kNs/m 
cβ = 394 kNs/m 
Mb = 2500 kg 
ks = 60 MN/m 
ks1 = 100 MN/m 
cs = 150 kNs/m 
cs1 = 600 kNs/m 

 One considers that the wheel defect has the wavelength of 960 mm, 
corresponding to a wheel circumference of 2880 mm (wheel diameter about 920 
mm).  The defect amplitude is 100 μm and this value is currently obtained from 
the experimental data [5].  

Figure 3 shows the wheel displacement and the rail displacement at the 
contact point during the running at the speed of 62 m/s. The system vibration has 
two components, one is given by the parametric excitation due to the sleepers with 
the wavelength of 600 mm, and the other one is initialised by the wheel defect 
(wavelength of 960 mm). Consequently, the wheel/rail vibration is modulated 
with the wavelength of 4800 mm, corresponding to the frequency of 12.92 Hz. 
Notice the parametric frequency of 103.33 Hz and the frequency of 64.58 Hz due 
to the polygonal wheel. One may observe that the vibration is dominated by the 
component in the polygonal wheel.   
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Fig. 3. Wheel/rail displacements at 62 m/s in the presence of the third order polygonal wheel 
(amplitude of 0.1 mm): ―, rail displacement at contact point; – – –, wheel displacement. 

 
Fig. 4. Wheel/rail contact force at 62 m/s in the presence of the third order polygonal 

wheel (amplitude of 0.1 mm): (a) the time history; (b) the spectrum. 
The time history and the spectrum of the contact force are presented in 

Fig. 4. The contact force has high oscillations around the static load value; the 
maximum value is 102 kN and the minimum 39.7 kN. Also, the effective contact 
force is 20.16 kN, resulting from the numerical simulation. The highest 
component of the contact force spectrum has the amplitude of 28.4 kN and it 
comes from the polygonal defect of the wheel (a frequency of 64.58 Hz). The 
component deriving from the parametric excitation of the sleepers is significant, 
its amplitude reaching 2.53 kN (frequency of 103.33 Hz). Apart from this, all 
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components are very low, excepting the second component of the parametric 
excitation with the amplitude of 0.96 kN (a frequency of 206.7 Hz). 

 

 
Fig. 5. Wheel/rail effective contact force versus the velocity in the presence of the third order 

polygonal wheel (the amplitude of 0.1 mm). 
 
Fig. 5 displays the effective contact force versus the wheelset velocity, 

taking into account the same polygonal wheel. The contact force has two peaks at 
62 and 76 m/s corresponding to the resonance frequencies of the wheelset/track 
system – the resonance due the first symmetric bending mode and the resonance 
given by the rigid-body mode of the wheelset. In fact, the vibration level turns 
high for the velocity between 200 km/h and 335 km/h. 

When the defect amplitude is higher than a particular value, the contact 
force leads to the contact loss. Such situation is depicted in Fig. 6 where the 
results from the numeric simulation of the polygonal wheel/rail interaction are 
presented for the amplitude of 260 μm and the velocity of 62 m/s. At contact point 
the wheel and the rail vibrate almost in phase. One remarks the very high level of 
the contact force showing as periodic shocks. The maximum value is two times 
higher than the static load.  

Finally, the last issue studied here is shown in Fig. 7, where the diagram of 
the maximum and minimum contact force versus the polygonal wheel amplitude  
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Fig. 6. Wheel/rail interaction due to the polygonal wheel (amplitude of 0.260 mm) at speed of 62 

m/s: (a) ―, rail displacement at contact point; – – –, wheel displacement; (b) contact force. 
 

Fig. 7. Maximum and minimum contact force at speed of 62 m/s: ―, maximum contact force; 
 – – –, minimum contact force.  

 
is presented. The wheelset velocity of 62 m/s has been taken into account for. 
Obviously, when the defect amplitude increases, the maximum contact force 
increases as well, while the minimum contact force decreases. These trends are 
linear because the elasticity of the contact is much lower than the rail and wheel 
receptances, and, subsequently, the nonlinear contact has a very marginal 
influence. When the defect amplitude is higher than 250 μm, the contact loss 
occurs and the maximum contact force increases linearly but its slope is smaller. 
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6. Conclusions 

The dynamic stresses due to the wheel/rail vibration induced by the 
irregularities of the rolling surfaces affect the mechanical structure of both vehicle 
and track.  

This paper shows a study meant for the dynamic behaviour of the 
wheel/rail interaction when the wheels exhibit the third-order polygonal defect. 
This kind of wheel defect comes from the machine work of the wheels and it is 
prevalent.  
 To this end, one considered the case of a wheelset with four brake discs in 
a passenger coach moving along a ballasted track. The axle is taken as a 
Timoshenko beam with attached rigid-bodies as axle boxes, wheels and brake 
discs. Only the symmetric bending modes are taken into account. The time-
domain Green’s function at the wheel is obtained via the receptance and the modal 
analysis. The model track is reduced to a discretely supported rail, since the track 
is considered a symmetric structure. The rail is modelled as an infinite uniform 
Timoshenko beam. The support of the rail model is improved to extend the results 
range according to the measurements, both for low and high frequencies. In fact, 
this model of the periodic support consists in two three-directional Kelvin-Voigt 
systems for the rail pad and the ballast, and a mixed Kelvin-Voigt/Maxwell 
system for the subgrade. Also, the inertia of the sleeper and the ballast block is 
introduced.    

The numerical simulations show that the dynamic behaviour due to the 
polygonal wheel is dominant, while the one from the parametric excitation of the 
sleepers play a marginal role. The influence of the wheelset velocity consists in 
two peaks of the effective contact force corresponding to the bending resonance of 
the wheelset on the track and the resonance of wheelset/track system due to the 
rigid-body mode of the wheelset. The contact force increases with the amplitude 
of the wheel irregularity. However, when contact is lost, the contact force lowers. 
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