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INTEGRATING A V-REP SIMULATED MOBILE ROBOT
INTO ROS

Andrei George Florea1

Robotics courses usually require students to implement and test
various algorithms on real mobile robots in order to observe minute tech-
nical details that influence the behavior of the robot. However, most robots
have a high price tag that prevents students from owning a robot and testing
algorithms at home. An extension for the V-REP robotics simulator is pre-
sented in this paper. This extension is used to integrate multiple simulated
educational robots (e-puck) into the Robot Operating System (ROS) with the
aim of offering students a free experimentation platform that uses standard
models and conventions. The accuracy and flexibility of the extension are
discussed in this paper, along with two use case scenarios.
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1. Introduction

During robotics courses, there are several aspects that are best under-
stood when studied on real robots. For example, understanding the need for
a proportional controller for controlling the robot speed requires that the stu-
dents note movement errors that are accumulated over time.

As even educational robots have a high price tag, robot experiments can
only be done in class. Computer simulations are a solution, provided that the
simulator has a low price and reasonable accuracy.

The differences in architecture between robots and computers are usually
noticeable also at a software level. This results in less code portability between
real robots and computer simulations and is error prone. A robotics develop-
ment framework, such as the Robot Operating System (ROS), can provide
a solution. ROS consists of a set of high level software packages that allow
for the development of general purpose behaviours that are portable from one
platform to another [10, p. 3]

These aspects present different sides of a more complex problem, that of
presenting robotics course material, without loosing contact with the physical
details. This paper attempts to address all issues by making a compromise
between cost effectiveness, utility, portability and accessibility.
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In essence, the proposed solution is an extension for a free robotics sim-
ulator (V-REP) that allows one or more educational robots (e-puck) to be
interfaced with a standardized robot software framework (ROS), thus allowing
the use of high level code for the control of both simulated and real robots,
without modification. The extension is free and open-source (available at [3])
as is the robot software framework while the robotics simulator is free for
academic/hobbyist use.

The paper continues with a short overview of the hardware and software
resources that were used, followed by a short presentation of the design aspects
that were considered for the extension. In the fourth section there is a discus-
sion regarding general robot simulation characteristics as well as a particular
analysis that is focused on the simulation accuracy of the proposed extension.
The paper ends with two case studies and the conclusions.

2. Background

2.1. ROS

Robots generally employ complex electronics, mechanics and software.
The software side has the task of coordinating all of the sensing and actuation
components while working on or more general objectives of the robotic system.
A common approach in order to handle these distinct tasks is to employ a
layered architecture based on complexity/abstraction level. Different layers
can be physically separated on distinct computing boards.

At each abstraction level, there are well-studied algorithms that ensure
optimal performance. Integrating each algorithm into the control architec-
ture can be difficult and error prone due to the use of different programming
languages, communication protocols and numeric scales.

Robotics software middleware are software systems that are designed
to interconnect specialized software components using common communica-
tion channels. The Robot Operating System (ROS ) is an open-source software
framework that offers a ”structured communication layer” [9], a packaging sys-
tem, for distributing ready-made algorithm implementations and a multitude
of special-purpose applications.

Interfacing a robot with ROS consists of exposing the robot’s sensors and
actuators to the ROS communication network. After this step, the robot can
be controlled using various control algorithms that need not be originally de-
signed for that particular robot. As an example, consider a two wheel mobile
robot and a drone. Although the movement mechanisms differ greatly, within
ROS there is a single generic movement message that stores linear and angular
velocities for all three axes. Using this communication mechanism allows algo-
rithms to be deployed on an extended range of devices without modifications.

The four basic items that compose a ROS system are: (1) nodes, (2) mes-
sages, (3) topics and (4) services. Nodes can be compared to operating system
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processes where both have a unique ID in the system, receive parameters and
executed one or more sub-tasks in order to run an application.

Messages represent a previously agreed-upon data format that is used by
nodes when exchanging information. A message can be as simple as a single
integer value or as complex as camera images and 3D point clouds. The ROS
framework provides a set of standard messages, but any application can define
custom messages if necessary, using a language-neutral paradigm [9].

Topics are a means of identifying information flows in the publisher-
subscriber model that is used in ROS. Each topic is described by its name
and the message type that it allows. This identification becomes necessary
when dealing with complex systems that transfer various types of informa-
tion, as there can be multiple publishers and multiple subscribers [9]. This
communication method is asynchronous.

Services are used for exchanging data in a synchronous manner, using a
request-reply model. A client requests a server to do a certain task and then
waits for a response. As with topics, services are also identified uniquely in
the system and are composed of two message types, one for the request and
one for the response [9].

The ROS system allows a developer to construct a distributed robotic
system by connecting multiple nodes, either locally or through a network. The
free and open-source license of ROS has allowed it to receive contributions from
many sources. One notable example of a ROS package is tf. This package
offers both a library and inspection/debug applications that are used mainly
for geometric tracking and transformations, at the present time and also in the
past [4].

All of these components and features have determined researchers to use
ROS for a wide range of applications that target both beginner and advanced
users. One example for the former user category is ”rosbridge”, a secondary
middleware on top of ROS, that allows remote users to interact with ROS us-
ing web technologies such as browsers, Javascript and webGL, in an attempt
to lower the robotics knowledge entry barrier for general application devel-
opers [2]. At the other end of the scale are robotics applications with tight
requirements such as long term autonomy and reliability, operating without
human intervention. An example in this sense is the ”STRANDS” project
which aims at providing a robotic platform that is capable of long term de-
ployment in indoor environments with the goal of monitoring and modeling
the environment while also generating alerts for unusual behavior [5].

2.2. V-REP

V-REP is a scalable, general purpose, 3D robot simulation framework [12].
Among the main features of the simulator are: (1) portability, (2) versatility,
and (3) a comprehensive set of programming interfaces
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The first feature, portability, refers to both operating system portability
as well as robotic application portability. V-REP can run on Windows, Linux
and Mac and uses internal scripts that are attached to each simulated object
and specify its behavior [12]. These scripts, known as child scripts are written
in Lua and are portable across all supported operating system platforms. These
scripts can be attached to complete robots or to specific components such as
a custom-designed sensor/effector.

The second feature, versatility, stems from the distributed architecture
used for connecting internal calculation modules [12]. V-REP uses both free
and proprietary modules for the following tasks [12]: kinematics, dynamics,
collision detection, mesh-mesh distance calculation, path/motion planning.

The third feature, the programming interfaces, are important because
they allow external applications to interact with the simulation. V-REP offers
external programming interfaces for the following languages [12]: C/C++,
Python, Java, Matlab, Urbi and a ROS interface.

2.3. e-puck

The e-puck is a small two-wheel robot that was designed for educational
use [7]. The robot, presented in Fig. 1, measures 75 mm in diameter and is
powered by a dsPIC microcontroller that runs at 64 Mhz and provides 8 KB
of RAM memory and 144 KB of flash memory. The most important sensors
and effectors are presented in Fig. 1.

A distinct feature of the e-puck is that it uses a free license for both the
hardware and the software components [7]. This has ensured the wide spread
adoption of the robot in educational institutions and in the development of
various hardware and software extensions and tools. On the hardware side,
there are several boards that can be connected to the robot’s main board in
order to add functionalities such as [7]: Zigbee radio communication, omnidi-
rectional vision, line followers and others. On the software side, there are APIs
for programming languages such as C/C++, Python, Matlab and others, as
well as two well established simulation platforms: Webots and Enki [7].

The two available simulation platforms differ in both licensing and fea-
tures. Webots is a commercial 3D simulator that uses physics modules and
can transfer controllers to the real robot [6], while Enki is a free 2D simulator
that features a less accurate but fast physics module [7]. What is missing in
this context is a free, accurate, 3D simulator.

V-REP can fill this gap as it has a free license for educational entities
and hobbyists and also includes a model of the e-puck robot. The downsides,
when compared with Webots, are twofold.

Firstly, the simulated e-puck, in the provided form, can only be controlled
using V-REP scripts written in Lua. Although the simulator offers external
APIs in various languages, these have to be interfaced with the robot control
code written in Lua.
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Fig. 1. e-puck simulated in V-REP. The main components, that
have been interfaced with ROS are: (a) ring of 8 red LEDs, (b)
stepper motors, (c) ring of 8 infrared range sensors, (d) RGB
camera and (e) accelerometer and gyroscope

Secondly, there is no method to automatically transfer a controller from
the simulated robot to a real robot. This implies that a considerable amount
of time will have to be invested in adapting the Lua source code used in the
simulation to the C source code that is used on the e-puck, without considering
API differences.

The contribution of this paper, described in detail in the next section, is
that of exposing each V-REP simulated e-puck robot to the ROS system. This
allows on one hand to control an e-puck robot using generic ROS nodes that
are written in either C++ or Python and on the other hand, the same nodes
can be used to control a real robot, without any source code modifications.
The latter objective was achieved by making the simulated robot use the same
communication topics and message types as the real robot.

3. Design aspects

The ROS integration of each simulated e-puck is performed through the
use of the ROSInterface plugin of V-REP, that comes shipped with the sim-
ulator. This plugin offers an almost exact replica of the ROS API within the
internal scripts (written in Lua) that control each individual robot.

Simulated robots are usually designed to be a drop-in replacement of the
real robot driver [10, p. 93] and this aspect has been considered for the e-puck
simulations. The topics that the simulator node will publish and subscribe
are presented in Fig. 2a, above and bellow the vrep ros interface node re-
spectively. This arrangement will be repeated for each robot, under a different
namespace.

The Transform Library topic /tf is shared by all simulated robots. This
is a core library of the ROS system and was designed to accept asynchronous,
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(a) ROS node-topic graph for a V-REP simu-
lated e-puck (b) TF tree

Fig. 2. ROS integration of each V-REP simulated e-puck

distributed sources of information (publishers), that function at various rates
and can occasionally experience latency or packet loss [4].

The TF tree for a single simulated e-puck robot is presented in Fig. 2b.
Each item in the tree is a coordinate frame, and a transformation vector and
rotation quaternion between any pair of frames can be computed by the li-
brary [4]. For instance, consider that the distance sensor ePuck0/base prox0

would detect an obstacle that is 2cm away from the sensor. In this example,
the controller needs to adjust the movement of the robot based on the posi-
tion of the obstacle related to the center of the robot. This task is greatly
simplified by requesting a transformation between the ePuck0/base link and
ePuck0/base prox0 TF frames. This task would remain straightforward even
if the aim would be to obtain a transformation from a pair of TF frames that
are part of different robots.

4. Simulation characteristics

In order for a simulation to be valuable in the development of robotics
applications, didactic or not, there are certain characteristics of the simulation
that must be offered. These characteristics are best observed when comparing
simulations with real robot experiments, that they intend to replace.

A simulation is generally easier to prepare and more cost-effective than a
real experiment [6]. This is particularly true for multi-robot experiments that
involve large numbers of robots that have to be reprogrammed and repositioned
before each trial run.

Another desired characteristic is simulation speed, where faster than real
robot executions allow for a faster development cycle [6].
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Accuracy is an important characteristic of any simulator, particularly in
robotics where the aim is to replicate a real mechatronic system. In order to
maximize simulator utility, this property should be adjustable [10, p. 92].

On the lower end of the accuracy scale, there are 2D simulators that
consider perfect sensor measurements and occasionally use simple objects such
as cubes in order to represent the world. These simulators usually compensate
by offering a faster execution speed and repeatable experiments [10, p. 93].

On the upper end of the scale are the 3D simulators that introduce
some (configurable) amount of noise into the sensor readings and also into
the kinematics model of the moving robot.

The increase in simulation accuracy, and therefore complexity, can lower
the performance of the simulator i.e the simulation speed. The trade-off be-
tween performance and accuracy is well studied, especially for the often used
rigid-body dynamics [10, p. 95].

4.1. Simulation accuracy when compared to a real robot

In this context of simulation accuracy, the proposed V-REP extension
was evaluated in terms of sensor accuracy. For this purpose, the ROS infor-
mation provided by the respective devices in simulation was compared with
data obtained from real robot experiments. All of the numerical values where
extracted from ROS recordings of the experiments, converted to CSV files and
analyzed using the R statistical language [11].

Of particular interest in this analysis have been the accelerometer and
proximity sensors. By studying the former, one can observe the precision of
the internal dynamics engine used by V-REP while the latter is required by
obstacle avoidance algorithms and thus has to replicate, as closely as possible,
the real sensor parameters such as minimum, maximum range and noise levels,
among others.

The accelerometer values for the simulation and real robot have been
compared over each component in Fig. 3. A statistical summary of the observed
values is shown in Table 1. The coordinate frames of all sensors and the robot
center use the following convention: X is forward, Y points to the left and
Z points upwards. Although the average values do not coincide, it can be

Table 1. Statistical summary of accelerometer values for
straight movement for a real and simulated robot

Min. 1st Qu. Median Mean 3rd Qu. Max. St. dev
sim x -0.06554 -0.03160 -0.00663 -0.00045 0.03301 0.07084 0.03630
sim y -0.00677 -0.00151 -0.00017 -0.00010 0.00151 0.00663 0.00215
sim z -9.85761 -9.83361 -9.80537 -9.81005 -9.78845 -9.76215 0.02562
real x -0.15941 -0.07358 -0.04905 -0.05254 -0.03679 0.04905 0.03559
real y -0.35561 -0.28204 -0.25751 -0.26087 -0.24525 -0.18394 0.03079
real z 9.55249 9.65059 9.68737 9.68479 9.71190 9.82226 0.04930
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(a) X axis

0 100 200 300

−
0.

3
−

0.
1

0.
0

0.
1

Measurement number

A
cc

el
er

at
io

n 
Y

 a
xi

s 
(m

/s
2 )

(b) Y axis
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(c) Z axis

Fig. 3. Accelerometer values recorded while moving on a
straight path. Real robot values are plotted using black lines
while simulations use a green color.

observed that the differences are not major and that the dynamics engine in
V-REP does produce vibrations as the robot moves.

The only axis where the differences are notable is Y and this is most
probably caused by the flatness of the plane onto which the robot is moving.
In real life, the robot was placed on a wooden surface, while in simulation, the
plane was perfectly flat.

The proximity sensors are a vital component of the navigation stack of
any robot because they provide means of avoiding obstacles, following walls
and, to some extend, building a map of the world. It is for these reasons that
the sensors must provide similar range information in simulation and real life
scenarios.

In order to evaluate the proximity sensors, a rectangular wall was placed
in front of the real and simulated robots at a distance of 0.5 cm. This wall
was detected by four front-facing sensors numbered 0, 1, 6, 7, where the first
two are the closest to the center of the robot while the latter are farther away.
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The robot was set to move backwards for three seconds at a constant speed,
enough to exit the maximum sensing range of the sensors (5 cm).

In Fig. 4, there is a plot of the range that was detected by sensors 0 and
1, during real and simulated tests. The values obtained from V-REP simulated
sensors are depicted as ”Sim sensor 0” and ”Sim sensor 1”. It can be easily
seen that V-REP distance sensors offer an exact minimum distance between
the sensor and the target object that is within the configurable detection cone
of the sensor [12]. On the other hand, real robot sensors, that function using
infrared-light, introduce a certain amount of noise, even when the robot is
stationary, due to lighting variations.

Such differences in noise level between real and simulated sensor values
can negatively influence the response of the previously mentioned navigation
algorithms. This was the main motivation for adding a configurable noise
model to the proximity sensors of V-REP simulated e-pucks. In order to
analyze the sensor noise, the real robot was placed in an area with no obstacles
and the sensor values where read. Without noise, the returned value would
be the maximum sensing range, 5 cm or 0.05 m. By subtracting the actual
value from 0.05, the non-zero values that remained were all error values. For
the specific e-puck used in the experiments, sensor 0 proved to be the most
error prone because there where a total of 61 errors out of 380 measurements
or otherwise said, a noise probability of 16%.

The next step towards implementing a noise model for the simulated
e-puck was the analysis of the value distribution, for the real measurements.
This distribution is presented using a histogram in Fig. 5a. Although not a
perfect match, the Gaussian distribution was chosen to model simulated sensor
noise, due to its simplicity, and is presented using a histogram in Fig. 5b.
The distribution was configured to use the same mean and standard deviance
as observed for the real sensor values. In the actual implementation, these
parameters are user configurable.

Random numbers could now be generated according to the configured
distribution, using a fast generator such as the Box-Muller algorithm [1]. This
algorithm requires only a pair of uniformly distributed (pseudo) random values
U1, U2 in the [0; 1] interval, for use in equation (1).

X =
√

−2loge U1 ∗ cos(2π U2) (1)

Y = noiseMean+ noiseStDev ·X (2)

The result, variable X, is a Gaussian distributed random number with
mean 0 and variance 1 [1]. For use in the noise model, the variable is adjusted
to use the user configurable mean and standard deviance, as shown in (2).

Once the Gaussian distributed random variable Y is generated, obtaining
sensor noise is a matter of adding the Y to the sensor value, with a certain
probability. In Fig. 4, the simulated sensor values that include generated noise
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Fig. 4. Plot of the distance returned by proximity sensors 0
and 1 for real and simulated experiments.
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Fig. 5. Histogram representation of the sensor noise distribution

are labeled as ”Enhanced Sim sensor” 0 and 1. It can be seen that these values
are more similar to the values returned by real sensors.

5. Pedagogical case studies

This section includes brief descriptions of several pedagogical use case
scenarios of the presented software. These scenarios increase in complexity
and can be used for hands-on robotics courses.
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5.1. Sensor data live plot

One of the first tasks that have to be done before attempting complex
robotics experiments is to ensure that information travels from one node to
another and has the expected value, delay, time variation and other numerical
attributes.

As ROS was designed with the UNIX philosophy in mind, i.e. using
many small specialized programs [10, p. 4], there are several tools for this
task.

For this example, a readily available plotting application, rqt plot, is
considered. This tool allows students to view a time plot of arbitrary numeric
values that are extracted from ROS messages.

For instance, the plot from Fig. 6 was obtained by issuing the command
rosrun rqt plot rqt plot /ePuck0/imu/linear acceleration. Students
can notice from this plot that the Z component of the acceleration has values
close to −9.8 m/s2 while the other two components have value very close to
0. The actual variation of the values can be observed by zooming in, thus
observing that even as the robot is standing still, there is a small variation in
the accelerometer readings.

5.2. Multi-robot simulations

The use of multiple cooperating robots for a single robotics task is a
widely studied topic because of advantages such as cost reduction, increase in
efficiency and fault tolerance [8].

All of these advantages require a strong coordination mechanism and sup-
porting communications and interaction mechanisms. Teaching multi-robot
systems theory can be complemented with case studies involving simulated
e-pucks along with the distributed communication/coordination mechanisms
provided by the ROS environment.

A simple case study can be that of following another robot, an example
often referred to as ’follow the leader’. Implementing this behavior using the
e-puck is relatively straightforward given the circular positioning of the range
sensors. A proportional controller can be used for this purpose.

The disadvantage of relying exclusively on direct sensor information is
that the task depends on sensor parameters such as range. For the e-puck,
this means that the leader and follower should be no more than 4 cm apart.
This issue can be avoided by using the TF library that is available in ROS
and requesting a transformation between the centers of the leader and follower
robots.

An example of the utility of the TF library is presented in Fig. 7 where the
leader robot (ePuck0) is out of the sensing range of the follower robot (ePuck1).
In this circumstance, the user can request a transformation from the frame of
the leader to that of the follower, using the global position as reference. The
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Fig. 6. Time plot of the accelerometer values (vertical axis) for
a simululated e-puck

Fig. 7. Rviz visualization of the follow the leader experiment
with two e-puck robots. TF frames are represented using axes
and labels.

resulting transformation will consist of a translation and rotation and will be
used to generate linear and angular speeds, the output of the controller.

6. Conclusions

Robotics can be both fascinating and difficult to comprehend by students
because robotics courses generally involve complex algorithms and strategies.



Integrating a V-REP simulated mobile robot into ROS 15

These concepts can be easier to comprehend by testing each concept on sim-
ple mobile robots that are controlled using high level middleware software.
The robots allow for an in depth view of the real challenges faced by mobile
robots while the middleware, ROS in this case, allow for a fast deployment of
ready-made software components, with the objective of studying the interac-
tion between them and also implementing high level control strategies.

All of these advantages imply a certain financial cost because although
most middleware projects (including ROS) are free software, the actual robots
can have a high price. A sufficiently accurate computer simulation of the robot
and its operating environment can provide students with a much needed tool
that allows for fast experimentation of various concepts.

This paper has presented an extension for the V-REP simulator that al-
lows one or more simulated e-puck robots to be exposed to the ROS middleware
using the same interfaces as the real robot thus allowing the same ROS code
to control both real and simulated robots without any modifications. The pre-
cision of the simulated devices found on the robots was analyzed by comparing
their output with real robot values. A simulated noise model was proposed and
applied to the sensors in order to compensate for the initial noise-free values
that did not reflect real-life conditions.

Further work involves similar adaptations for other types of robots that
have distinct characteristics that the simulation must reflect. For instance,
quadrotor drones require an accurate particle simulation model that has to be
coupled with inertial measurement units and various specialized sensors 3D
optical flow motion detection sensors.
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