U.P.B. Sci. Bull., Series C, Vol. 71, Iss. 2, 2009 ISSN 1454-234x

LOSSLESS COMPRESSION TOOL FOR LIMITED NUMBER
OF COLORS

Radu RADESCU!

Obiectivul utilitarului ICompress, descris in acest articol, este studiul in
conditii reale al compresiei secventelor masive de date avand un numar limitat de
culori. Datorita faptului ca standardele actuale nu oferd suficienta flexibilitate,
precum §i a implementarii unor rutine de compresie si decompresie pentru aceste
standarde, care nu diferd foarte mult fata de aplicatiile existente, articolul propune
crearea unor noi formate de fisiere in scopul implementarii compresiei fara
pierderi. Algoritmii de compresie studiati sunt LZW §i RLC, pentru fiecare in parte
introducdndu-se un format propriu si studiindu-se performantele in cazul unor
imagini medicale.

The objective of the ICompress tool is to study the compression behavior in
real situations with large data sequences for images with limited number of colors.
Because the existing standards do not offer enough flexibility, and the
implementation of some compression and decompression routines for these
standards would not differ very much from the existing applications, it was chosen
the creation of new file formats in order to apply the lossless compression. The
studied compression algorithms are LZW and RLC, for each one introducing a file
format and studying the performance in the case of some medical images.

Keywords: lossless compression, statistical algorithms, dictionary-based methods
1. Introduction

The ICompress application carries out the encoding for images with at
most as 255 colors. The LZW coding [1]-[4] is inspired by the one used for the
GIF standard [3], attaining a better packing of the factors compared to the GIF
format. The RLC encoding [1]-[4] is a common algorithm, which aims the
replacement of the repeated character sequences. Details of the coding method
will be provided in the following. As output, the application produces two file types,
named after the encoding type used to make them. The LZW type file is aligned at 32
bits; it has a header with the coding and image parameters, and a color palette [5].
The same idea is found at the RLC format, except the 32 bits alignment, which is
not necessary [6].

' Reader, Applied Electronics and Information Engineering Department, University
POLITEHNICA of Bucharest, Romania, rradescu@gmail.com

50 Radu Radescu

As source, the program accepts BMP files, represented on 8, 16 or 32 bits,
with the condition that these files will contain less than 255 colors. If only images
with a large number of colors, ICompress has an algorithm to reduce the color
depth [7]. In addition, the coded files can be loaded and viewed, being converted
automatically to the BMP format for memory storage.

2. Implementing the compression

A general problem regarding the image processing is the image run
through to find the exact number of different colors.

This is the algorithm: the colors are stored in a table, which is built as the
image is run through pixel by pixel. If the color of the pixel exists in the table, it is
ignored, and if not, it is added to the table. This kind of simple algorithm has a
major disadvantage from the speed point of view. A simple computation shows
that for an image with 50,000 colors, in a common 1024x768 pixels format, a
50,000-positions vector will be made which needs to be run through more or less
entirely, for the majority of the 786,432 pixels. The problem can be solved using
advanced methods to run through the image or data storage, so that the search
time for the color table can be reduced substantially.

For the implementation of the ICompress application, the second solution
was chosen. There are many methods of fast search, like the binary trees or map
type structures. The MFC CMap class was used, which implements a map
structure and has a very efficient search algorithm like Hash Table.

The image is first run through and brought to a brute form and the color
table is made up. The encoder runs over this brute form, coding the color table
identifiers. The pointers are ASCII characters with codes form 1 to 255. The
problems related strictly to the LZW encoding have been the dictionary search
speed and the optimization for writing of factors in file. If the first problem was
solved using a map dictionary implemented with CMap, the second one is more
complicated. Characteristic to the LZW coding is the fact that it provides a series
of words that can be binary represented with different lengths, assigned by the
current number of inputs in the dictionary for building of the code words.

If a fixed format for the writing of data would be used, adequate from point of
view of the maximum inputs in the dictionary (e.g., for 4.096 WORD positions
for 16 bits), the coding would not be efficient. Thus for a word written at the
beginning of the process, when the dictionary is not full, many bits would by
redundant. From this situation, the necessity of binary writing the code words
emerges.

In the application, the factors are first binary written using consecutive
moves in a DWORD (double word with 32 bits). When the DWORD space is
finished, the current DWORD is written in the file, and the writing of code words

Lossless compression tool for limited number of colors 51

continues in another DWORD. At the decoding, the information is read DWORD
by DWORD, and the code words are extracted with the use of some bit wise masks.

A problem related to the string storing in the CMap of the code words has
appeared because of the impossibility of using the character with the ASCII code
0 — character used for the end of strings. For this reason, it was accepted that the
images would have at most 255 colors and the indexes from the color table would
begin with 1. A possible solution is to store the exact string length, but this would
lead to a performance decrease.

For RLC, the encoding is made at character level, and the O character is used
as an indicator for the encoding presence, so it cannot take part in the source
symbols. A coded sequence is composed of the O character, indicator of the
encoding, and then a character whose ASCII code represents the number of
repetitions in the source sequence of the third character, which is the encoded
character. Only sequences for which the compression is effective are coded (larger
than 3 characters and shorter than 255 characters, the maximum ASCII code).

To have an encoding flexibility, in the case of LZW, a variable size
dictionary is used, with 2,048, 4,096 or 8,192 positions, and in the case of RLC —
two ways to run through the image: up and down or left to right, which exploits in
two different ways the image correlation. The algorithm to reduce the number of
colors is sufficiently effective without high expectations, its intentions being
strictly for use. The algorithm is based on the nearest color method, computed
based on the mean square method. The generated color palette is a joint one,
including 128 standard colors, allocated equally in the color space, and other 127
colors calculated based on the bar graph of the image.

Because the search of the nearest color for every pixel in a 255-position
map is time consuming (even when the Cmap is used), 3 maps with balanced
colors were used. Therefore, the colors are divided between the three maps,
depending on the distance to the three base colors: R, G, and B. When the picture
run through is performed, the nearest value is searched in the nearest map. It is
also specified an acceptable step for the difference of two colors, in order to avoid
the exhaustively search for every pixel in the map.

3. Experimental results

A study was made concerning the effect of implemented algorithms on
images with different correlations and different number of colors. Two pairs of
images were chosen (one with a large color dispersion, with different sizes, and
the other with large areas of the same color, also with different sizes) and their
number of colors was reduces gradually from 255 to 128 and finally to 16 colors.

In order to have an accurate image of the performances, the original BMP
file and the same file compressed with GIF have been compared to the files

52 Radu Radescu

obtained with the ICompress application. A usual compression software was used,
RAR, with the best compression method offered by it.
The experimental results are presented in Tables 1, 2 and 3.

The dimensions of graphic compressed formats (B) for images with 255 colors fovle
255 NMR Angiographies | Tomographies | Ultrasounds X rays
colors 600600 600x600 600x600 540%405 540%405
BMP 361,078 361,078 361,078 219,778 219,778
LZW 150,951 258,532 130,190 62,608 100,527
RLC 272,950 356,454 201,309 96,037 212,335
RAR 120,595 209,811 110,156 53,667 84,009
Table 2
The dimensions of graphic compressed formats (B) for images with 128 colors
128 NMR | Angiographies | Tomographies | Ultrasounds X rays
colors 600600 600x600 600%600 540%405 540%405
BMP 180,118 180,118 180,118 110,278 110,278
LzZw 81,094 101,070 62,770 27,782 49,582
RLC 203,886 268,667 149,215 62,007 140,527
RAR 61,001 78,773 47,664 22,802 38,536
Table 3
The dimensions of graphic compressed formats (B) for images with 16 colors
16 NMR | Angiographies | Tomographies | Ultrasounds X rays
colors 600x600 600x600 600%600 540%405 540x405
BMP 180,118 180,118 180,118 110,278 110,278
LZW 81,094 101,070 62,770 27,782 49,582
RLC 203,886 268,667 149,215 62,007 140,527
RAR 61,001 78,773 47,664 22,802 38,536

Lossless compression tool for limited number of colors 53

4. Conclusions

One can see that the ICompress program gives a superior compression
compared to GIF, mostly because of a better saving of coded words in files and
because of the fact that it builds a color palette with the size obtained by the exact
colors in the image.

The ICompress application has an advantage before the GIF compression
as the file size is growing and the color number is decreasing. The particular case
of 16 color files accentuates the major deficiency of the ICompress program.
Because the 0 index is not used — by the above-mentioned reasons — the
compression is affected and the primary indexes of the colors from the table need
an extra bit comparing to the indexes used by the GIF format.

For images with 15 colors or less, the ICompress application has better
results than GIF, but the above-mentioned problem appears for black and white (1
bit) images.

The usual archiver (RAR) proved to be the best from the point of view of
the compression rate. The reason is the combination of statistic and adaptive
methods (LZW, Huffman).

One can observe (see Figures 1 and 2) that the result does not depend very
much on the number of colors from the input image (an effect of the general
character of the encoding) but on the size of the source file. From the point of
view of the compression time, this one is the slowest.

-

BMP

0 100D0D 200000 30DDDO 400DDDD
sreinbytes

Fig. 1. The performance of coding for 255 colors

54

Radu Radescu

RAR

JAC

=

.

“LZw

W |
) 100DOD 20000D 30DODD ADDDDD

sirein bytes
Fig. 2. The performance of coding for 128 colors

For the RLC compression, one can see that it does not depend very much

on the number of colors from the image, depending more on the correlation within
the image. In the case of the 16 color images, the RLE compression for the BMP
format, with the combination of two pixels on the same byte, is superior to the
RLC encoding for The ICompress format. Exceptions are images that, after
decreasing the number of colors, have become more correlated, in advantage of
the RLC encoding.

(6]

(7]

REFERENCES

G. Held, Data Compression, J. Wiley, New York, 1984.

A.T. Murgan, The Principles of Information Theory in Information and Communication
Engineering, Romanian Academy Press, Bucharest, 1998.

R. Radescu, Lossless Compression — Methods and Applications, Matrix Rom Press,
Bucharest, 2003.

R. Radescu, Digital Transmission of Information — Applications and Practical Works, UPB
Press, Bucharest, 2006.

A.T. Murgan, R. Radescu, Comparison of Algorithms for Lossless Data Compression
Using the Lempel-Ziv-Welch Type Methods, Proceedings of 1994 IEEE-IMS Workshop on
Information Theory and Statistics, pp. 105, Alexandria, Virginia, USA, October 1994.

R. Rddescu, C. Sindelaru, An Application in Image Compression Using the RLC and LZW
Algorithms, EEA Revue on Electronics, Electro-technique and Automatics, Electra Press,
Bucharest, Vol. 51, No. 4, pp. 39-42, 2003.

R. Radescu, St. Olteanu, Text and Image Compression with Derived LZW Algorithms, EEA
Revue on Electronics, Electro-technique and Automatics, Electra Press, Bucharest, Vol. 53,
Nr. 4, pp. 7-10, Oct.-Dec. 2005.

