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ACCURATE ELEMENT METHOD STRATEGY FOR THE
INTEGRATION OF FIRST ORDER ORDINARY
DIFFERENTIAL EQUATIONS

M. BLUMENFELD?

Metoda intitulata “The Accurate Element Method” dezvoltatd recent de catre
autor poate rezolva in acelasi mod toate problemele legate de integrarea ecuatiilor
diferentiale ordinare: Problema cu valori initiale (IVP), cea bilocald (BVP) si cea a
valorilor proprii (EVP) [1,2]. Pentru problema cu valori initiale (IVP) mai multi
specialisti in domeniul analizei numerice au considerat necesar un studiu mai
dezvoltat privind doud aspecte esentiale: stabilitatea metodei §i capacitatea sa de a
inlocui solutia exactd a unei ecuatii diferentiale ordinare prin polinoame. Articolul
de fata este rezultatul acestui studiu.

The Accurate Element Method (AEM) developed recently by the author can
solve in the same way all the problems connected to the Ordinary Differential
Equations (ODE) namely the Initial Value Problem (IVP), the Boundary Value
Problem (BVP) and the Eigenvalue Problem (EVP) [1,2]. Connected to the IVP
problem several academics considered necessary a more elaborate study
concerning two essential problems: the stability of the method and its capacities to
replace the exact solution of an ODE by several polynomials. The paper is the result
of this study.

Keywords: Ordinary Differential Equation, Accurate Element Method,
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1. Introduction: Problems to be solved

Consider a first order Ordinary Differential Equation (ODE)
d\
El(x)d—fwo () 0+Ep(x)= Ey(x) 0 + Eo ()0 + Ep (=0 (1.2)

where Ei(x), Eo(X), Er(x) are three known functions. This ODE has to be
integrated between a start (initial) point xs and a target (final) point X7, leading
to two different problems that will be analyzed below:

1. Supposing the initial value ¢g = ¢(S0) = (I)(xsz) as known one has to

calculate the value of the function ¢, = ¢(TO) =¢(x =xT) at the target point, no

! Professor Emeritus, Strength of Materials Department, University “Politehnica” of Bucharest,
ROMANIA



28 M. Blumenfeld

matter how far this point is. This will be considered as a Target Value Problem
(TVP), being in fact the trivial approach of an Initial VValue Problem (IVP).

2. Supposing the integration field xs — xr divided in a small number NE of
sub-intervals (elements), find NE polynomials ¢n(X) (»=1,2...NE) that can be
considered as accurate solutions of the ODE on each element. This problem that
can have an important use for a wide class of real time simulation programs like
SIMULINK and AMESIm?, will be referred as a Field Polynomial Solution
(FPS).

It will result that the strategy for solving these two problems leads to
different approaches that can be nevertheless controlled and optimized. The
Accurate Element Method (AEM), which can usually give good answers to both
TVP and FPS will be compared with the “classic" fourth—order Runge-Kutta
method, which is not always able to solve a 7VP and whose results are only
discrete (non-continuous) values.

2. ODEs to be integrated

Three linear ODEs will be integrated below. For all of them the functions
E1(x), Eo(X), EF(x) are represented by polynomials.

2.1 ODE1

The ODEL is a “build-up” problem for which a solution has been chosen
as a nineteen-degree polynomial given by the product

¢(x) = (FA) (FB) (2.1)

where FA = (x-1) (x-1.6) (x-1.7) (x-1.8) (x-2.02)(x-3.05) (x-3.2) (x-3.6) (x-4.3)
FB = (x-4.55) (x-4.86) (x-5.2) (x-5.64) (x-6.02)(x-7.03)(x-8)(x-9) (x-9.78) (x-10)
If Ei=1+2x-X+3xX+x" and Eg=5-2x+ 3 x* +4x3+x*, the free term
Er(X) results as a twenty-three degree polynomial. The starting value ¢s of the
function results from (2.1) by replacing X = Xs.
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Fig.2.1 From x=1.5to x=3.5 Fig.2.2 From x=3.5 to x=6

2 Advanced Modeling and Simulation language for Engineers, Imagines, Roanne, 2006.
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The function ¢(x) that has 18 extremes is represented between x=7.5 — 3.5
in Fig 2.1 and between x=3.5 — 6 in Fig 2.2. Because the solution (2.1) is known,
it possible in this case to compare the TVP result (¢computed) t0 the accurate one
(baccurate), by calculating an actual relative error given by

(I)computed - (I)accurate

actual error = (2.2)
¢accurate
2.2 ODE2
The second ODE is taken at random being given by
(1.1-0.1x) oW + (5-2x+3x*+4x3+x?) @ +2+3 x+2x*+x% = 0 (2.3)
The integration will start from xs=0, for which ¢s is chosen as
Ps=¢(x=xs) = ¢(0) = 1 (2.4)

No closed solution is known by the author for ODE2 (2.3). The graphic of the
solution obtained by using the strategy described later on is given in Fig.2.3.
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Fig.2.3. ODE2 from x=0 to x=5 Fig.2.4.0DE3 from x=0 to x=5

2.3 ODE3

The ODES is similar to ODE2 (2.4), but with a modified first term E;(x)

(6-5x +x%) oM + (5-2x+3x*+4x3+x?) ¢ @ +2+3x+2x*+x3 = 0 (2.5)
The integration starts from xs=0, for which ¢s is chosen as

Ps=¢(x=xs) = ¢(0) = 0 (2.6)
No closed solution is known by the author for ODE2 (2.5). The graphic of the
solution obtained by using the strategy described later on is given in Fig.2.4.

3. The complete transfer relation and concordant functions

Since 1768 the one-step "classical” methods used for the integration of
ODEs (like Euler, Heun, Runge-Kutta) carefully avoid integration. On the
contrary, the Accurate Element Method (AEM) starts by an accurate integration
of the ODE, being based on two concepts:
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1. The COMPLETE TRANSFER RELATION (CTR) , represents the
result of an accurate integration that leads to one or more integral equations. For
instance, the first order ODE (2.1) can be integrated between xs and xr leading to

xT d¢ xT xT
jEl(x)EdH [Eo(x)¢(x) dx+ [Ep(x)dx=0 (3.1)
xS xS xS

If the coefficients E;=constant and Ep,=constant, the first integral is performed
straightforward®

xT xT
Eydr =Eyds —Eo | 0(x) dv— [ Ep(x)dx (3.2)
xS xS

The only difficulty (typical for an integral equation) is the first integral that
includes the urnknown function ¢(x) under the integral sign. This integral can be
performed by replacing ¢(x) by an approximation function ¢(x). Seemingly, for a
first order ODE the only possible approximation is the linear interpolation
function

d(x) =Ky + Ky x (3.3)
where Ky =(9sx7 —d7xs )/ (vp —x5) 3 Ko =(07 —05)/ (x7 —x5) (34)
If such function is replaced in (3.1) it will lead to poor and unacceptable result,
similar to those obtained by using Euler's method.

2. The CONCORDANT FUNCTION (CF) is a higher order polynomial
that can be used as a replacing function ¢(x) instead of (3.3), without modifying
the number of the end unknowns, which remain ¢s and ¢t. Suppose, for
instance, that the ODE2 (2.3) has to be integrated between xs=/ and xy=2, for
which it will be used a Concordant Function represented by a third-degree
polynomial referred as CF4

¢(x)=Cp+Cpx+Cax? +Cyx° (3.5)
whose derivativeis  d§(x)/dx=Cy +2 C3x+3Cy x° (3.6)

In order to obtain the four unknown constants C; ( i = 1,2,3,4 ), two end
conditions are obvious:
x=xs=1 :>(I)S = Cl +C2 +C3 +C4 (a) X =xr=2=> ¢T =C1+2C2 +4C3 +8C4 (b)

® For the general case when E,=E;(x) and Eq=E(x) the relation (3.2) becomes [1]

xT

XT
Eir 01 =Eis 05— J‘(Eo(x)_d%)fx))d)(x) dx — IEF(X) dx (3.2a)
xS

xS

where Ejs=E;(x=xs) and E;1=E;(X=x7) are two constants resulting from E;(x).
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The two other conditions are obtained by AEM from the derivative (3.6), which is
also transferred at both ends by replacing in (3.6) the two end abscissas

x=x5=> (dp(x) di)g = Cp +2C3 +3C4 (¢); x=xr =>(d(x)/dx)y = +4C3+12C,  (d)
The four conditions (a), (), (c), (d), represent a system of 4 equations from which
it result the 4 constants C;. They depend at this stage not only on the initial
unknowns ¢s and ¢t but also on the two unknown end derivatives. The Accurate
Element Method eliminates accurately these new unknowns by using the

governing equation itself. The equation ODE2 (2.3) considered here applied at
both ends leads to

y=xe=1= (dp(x)/dx)g +1105+8=0 = (dg(x)/dx); =—11¢5-8 (3.7a)
x=xr = 09 (d(x)/dx) +61¢; +24=0 = (dd(x)/dx), =—(61/0.9) b —(24/0.9) (3.7b)

If (3.7a) and (3.7b) are replaced in (¢) and (d), respectively, all the four
constants C; will depend only on the initial unknowns ¢s and ¢ being given by
C1=-59 ¢s + (1184/9) o1 + (40/3) ; Co=144 ds—(2978/9) ¢t —(112/3)  (3.8)
C3=-108 ¢s +(2395/9) o1 + (104/3) ;  C4=24 ¢s— (601/9) o1 — (32/3)

Now (3.5) is replaced in (3.1), leading finally to a single equation with two
unknowns (¢s, ). Because the initial (start) value ¢s is known the target value ¢+
results immediately.

This methodology allows the use of higher degree polynomials by
applying a similar methodology [1]. For instance for CF6 (a five-degree
polynomial with 6 constants) it is necessary to use besides the first derivative of
the ODE, also its second derivative. This procedure (increasing by two units the
degree of the polynomial and adding simultaneously a higher order derivative,
which applied at both ends give two new accurate conditions) may continue
similarly for polynomials of any degree. Below will be analyzed the influence on
the precision of 7 different Concordant Functions (CF4, CF6, CF8, CF10, CF12,
CF14, CF16). The smallest degree of the replacing polynomial corresponds to
CF4 (4 constants, third degree) and the highest to CF16 (16 C;, fifteen-degree).
Remark. The derivatives mentioned above concern only the functions E;(x), Eo(X),
Er(X), independently of each other. This task is processed by a program without
any intervention of the user [1].

4. The Accurate element method is an implicit method thus generally stable

The stability of the procedure for solving numerically an ODE is a term
not always clearly specified. Usually a procedure is considered as unstable if
errors introduced at some stage of the calculation are propagated without bound
throughout subsequent calculations. A large number of studies have been
dedicated to the methodologies establishing the conditions that secure the stability
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of the Runge-Kutta method, which is an explicit method. Usually they lead to the
limitation of the length of each step, possibly imposing a great number of steps.

The Accurate Element Method is an implicit method. In fact the integral
equation (3.2) shows that the target value ¢t depends on the first integral that
includes ¢(x). The function ¢(x) is replaced by (3.5), where the constants C; that
depend on ¢sand ¢r are given by (3.8). After performing the integration the result
will finally include only three terms : Ki ¢s + Kz ¢t +K3 , where Ky, Ky, Ks, are
three constants depending on each specific problem®. Consequently (3.2) becomes

xT
Exr b7 = Exs b5 — (Kabs + Ko7 + Kg)— [ Ep (x)dx (4.1)
xS

It results that the target value ¢r is included on both left and right sides of (4.1).
The target value results by solving (4.1)

xT
[Ers - K1]os +[K3 - jEF (x) dx}

xS
= 4.2
b7 Fir 4Ky (4.2)

This represents a specific form of an implicit solution that is generally or
unconditionally stable®. For instance an integral using a single element starting
from xs=0 and having as target xt=10 000 was perfectly stable (see[1], page 118).
It is important to underline that for a linear ODE the Accurate Element Method
obtains ¢t directly, without any iterative approach or any procedure for
solving a system of equations usually specific for the implicit methods.

5. Preliminary step for solving an ODE: finding the roots of E;(x)

The procedure for obtaining a CF is conditioned by the computation of the
end derivatives as it results from (3.7a) and (3.7b) [see [1], pagel78]. This remark
is also valid for Euler or Runge-Kutta methods. Consequently, it is necessary to
know before starting to solve an ODE the roots of E;(x) in order to avoid them
during the computation. For the three ODEs analyzed here it results:

ODEL1: two real roots, x;=—3.43, x,=— 3.67, outside the integration interval;
ODEZ2: one real root, x;=11, outside the integration interval;
ODES3: two real roots, x1= 2, x,=3, both of them inside the integration interval.

* Here:

T 2
j;S o (x) dr = jl (cl +Cyx+C3x°+Cy x3)dx =55 +(619/108)dp7 —16/9
®S.C.Chapra, R.P.Canale, Numerical Methods for Engineers, McGraw-Hill, 2002
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It results that this aspect has to be taken into consideration only for ODES3.

6. Parameters that can be chosen: Concordant function and/or
number of elements(NE)

In order to improve the results the user that tries to integrate an ODE can
modify the CF and/or the number of sub-intervals (elements) on which the
integration is performed. This double possible choice is benefactor, but raises a
dilemma: which parameter has to be modified and how? The short time since
AEM has been developed [2] and the relatively small number of examples
analyzed by the author are not enough to give a definite answer. Nevertheless
below is outlined a strategy that can be a guide for the users (or for possible
researchers) in order to find a good answer to the above question. Before
presenting the strategy, it deserves to underline some aspects, which will simplify
the search:

1. Though the number of CFs is here limited to 7, there is a huge
difference between the behavior of a third degree (CF4) and a fifteen-degree
(CF16) polynomial. The lower value CF4 leads to results that are better but not far
from those obtained by using the fourth-order Runge-Kutta [1]. The results
improve usually when a higher CF is used, but not always steadily so that a good
estimation of the precision during the computation is compulsory.

2. The estimation of the precision is based on the comparison between two
successive computations: the new and the previous. This approach is not time-
consuming due to the small number of elements involved. As it was shown in 84
AEM is unconditionally stable so0 that the computation starts usually by using a
single element (NE=1), no matter the length of integration interval. The number
of elements that have to be used in order to obtain good results (if possible
accurate) is quite small: usually under 10 elements, seldom more than 30.

7. The target value problem (TVP)

Our experience has shown that for the Target Value Problem the results
improve (usually but not always) when the order of the CF increases. In order to
appreciate the efficiency of each CF, below are presented the values of o¢r
obtained by using all the seven-CFs mentioned above. Obviously, such an
approach represents only an "academic™ approach, because for practical problems
only some of the CFs are considered. The user has to be sustained — in order to
choose an appropriate CF and the smallest number of elements — by some
quantitative criteria that can be moreover included in a the program: using a small
number of criteria is good; using a single criterion is for the best.
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7.1 Criteria for choosing an efficient concordant function and a small
number of elements (NE)

As it will result below from all the numerical experiments the results of
TVP usually improve when the degree of CF increases. Consequently, based on
our experience it is advisable to start the computation by using a higher order CF
(for instance CF16) and NE=1.

Obviously no criterion is available in order to appreciate how good is the
value of the ¢t obtained with NE=1. Consequently, it is necessary to proceed to a
second computation by increasing NE with an increment that can be 7 element or
many elements. The computation can be continued in a first attempt by using
NE=2, 3, 4... elements. Starting from N=2 one can have a first appreciation of the
precision of the whole procedure by calculating a relative error similar to (2.2).
This time the comparison is made between the new computed value (¢new) and the
value already known from the previous computation (¢previous). This criterion will
be referred as the estimated error [1,2]

¢new - ¢ previous

estimated error = (7.2)
(I)new

It is useful to observe that the value resulted from (7.1) gives a good
estimation of the number of digits that can be considered as accurate [1]. Usually
an estimated error having as exponent e-6 or e-7 can be considered as satisfactory
because 6 or 7 digits of the result are expected to be accurate. For a given Imposed
Estimated Error (IEE) the program is able to stop automatically the computation
at a desired level of precision (for a first attempt one can use IEE = le-6 (10°) or
IEE = le-7 (107), but other values can also lead to good results). This procedure
is based on the presumption that the computed value of ¢t converges towards an
accurate value, which means that the estimated error decreases when the number
of elements NE increases. Or, as it resulted from some numerical experiments,
this tendency is true only up to a certain number of elements, then the values of
the estimated error become to oscillate [1]. In such case the computation with a
chosen CF can be stopped by the program, the result retained being for instance
the last value of ¢ before the starting of the oscillations.

Being used for a single CF the criterion (7.1) can be considered as being
an internal evaluation of the precision. 1t is possible to use an external criterion,
by choosing another CF and performing the same procedure as that described
above. In this case one can on one side compare the results obtained with the two
CFs (consequently to verify the first computation) and on another side try to
overcome the oscillation of the results.
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7.2 The ODEL1 solved as a target value problem
7.2.1 Accurate element method

For ODEL1 two analysis will be performed starting from xs=1 and having
as targets xy=6 (Table 1) and xt=11 (Table 2), respectively. The results include:
the estimated error (7.1), the actual error (2.2) for NE = 1,3,5 and the target
value ¢r obtained for NE=5 given in the last column. It is useful to observe:

1. The actual error (2.2) is given only for ODE1 because the solution (2.1)
is known.

2. The estimated error decreases when the degree of CF increases.

3. For CF4, CF6, CF8 the results obtained for a small number o elements
NE are quite far from the accurate values.

Table 1
ODE1 (xs=1 ; X7=6); {t.exaci= 5.833807525634766 e+4
NE= | NE=1 NE=3 NE=5
CFU | Acterr. | Esterr. | Acterr. | Esterr. | Acterr. ¢1(x=6)
CF4 -488 2752 | -8.8%-1 | 2.87e-1 | -7.18e-1 | 1.8462353339%+4
CF6 3426 -32 -8.62e-1 | 2.68e-1 | -3.12e-1 | 3.3250465205e+4

CF8 | -10836 | 8.90e-1 2.53 -3.98e-1 | 1.38e-1 | 6.5017232134e+4
CF10 | 19148 3.53 -6.61e-1 | 3.58e-2 | -5.48e-3 | 5.8121358160e+4
CF12 | -19497 | 7.69e-1 | 1.8%e-2 | -2.13e-3 | 2.75e-5 | 5.8339409129%¢+4
CF14 | 10973 | 1.00e-2 | -6.54e-3 | -6.23e-4 | -1.30e-4 | 5.8331752647e+4
CF16 | -2914 | -2.78e-3 | -2.75e-3 | -6.72e-4 | -1.26e-4 | 5.8331974901e+4

Table 2
ODE1 (xs=1 ; X7=11); drexac= 3.9563530203 e+13
NE= | NE=1 NE=3 NE=5
CF U | Acterr. | Esterr. | Acterr. | Esterr. | Acterr. $r(x=11)

CF4 1.44 -2.16e-1 | 6.58e-1 | -9.85e-2 | 2.36e-1 | 5.893854401e+13
CF6 -2.91 111 -5.14e-1 | 1.04e-1 | -8.84e-2 | 3.645999924e+13
CF8 5.16 -6.10e-1 | 1.55e-1 | -2.69e-2 | 1.07e-2 | 3.998864283e+13
CF10 -5.15 2.75e-1 | -2.81e-2 | 3.02e-3 | -7.22e-4 | 3.953891953e+13
CF12 2.79 -6.92e-2 | 2.31e-3 | -1.35e-4 | 1.51e-5 | 3.956412986e+13
CF14 -1.20 6.94e-3 | -8.90e-5 | 2.35e-6 | -1.43e-7 | 3.956352454e+13
CF16 | 2.93e-1 | -2.20e-4 | 9.40e-7 | -9.62e-9 | 5.57e-9 | 3.956353038e+13

7.3 The ODEZ2 solved as a target value problem

7.3.1 Accurate element method

The ODEZ2 (2.4) will be integrated on two different intervals: between xs =
0, xr = 5 (Table 3) and xs = 0, x7 = 10 (Table 4). The results given in both two
tables represent the estimated error (7.1) for NE = 2,3,4,5. The target values ¢r
given in the second column are obtained by using NE=2.

For the case xt = 5 (Table 3) it is useful to observe:
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1.Based on the estimated errors one can divide the CFs in two groups:
those with poor or medium errors (CF4, CF6, a little better CF8) and those errors
indicating accurate results (CF10 to CF16).

2. The value that can be considered as accurate is ¢ = — 0.1606841854,
which is confirmed by all the CFs between CF10 and CF16.

3. This value is obtained starting with NE=2 for CF10 to CF16.

4. In this case the precision does not increase with the rise of the degree of
the CF, because seemingly the best value corresponds to CF12 (the smallest

estimated error).
Table 3
ODE2 (xs=0 ; xr=5)
CF o7 Estimated errors
NE=2 NE=2 NE=3 NE=4 NE=5
CF4 -0.160 1813334619398 3.25e-3 1.76 e-3 7.31e-4 191e4
CF6 -0.1606 830756433705 -1.97e-5 1.11e5 -6.09 e-6 8.53 e-7
CF8 -0.16068418 29643502 2.13e-8 1.37e-8 121e-9 9.20 e-10
CF10 -0.1606841854 438049 | -9.02e-11 | 2.37e-11 | -8.63e-12 | -1.28¢e-13
CF12 -0.1606841854 464673 | -1.82e-12 | -3.45e-12 | 3.44e-12 | -8.23e-13
CF14 -0.1606841854 524707 | -5.78e-11 | -6.81e-10 | 1.69e-11 5.01e-12
CF16 | -0.1606841854 007920 | 7.09e-11 | 1.43e-10 | 1.77e-10 | -2.04e-11

For the case xt = 10 (Table 4) the conclusions are somehow different:
1.The smaller degree CFs that give poor results are CF4 and CF6 (better)
2.The value that can be considered as accurate is ¢t = — 0.086244366353

(CF8,CF10,CF12)
Table 4
ODE2 (xs=0 ; xt=10)
CF o1 Estimated errors
NE=2 NE=2 NE=3 NE=4 NE=5
CF4 | -0.0862 3535064991550 | 7.91e-5 3.26e-5 2.19e-5 1.65e-5
CF6 | -0.086244366 06473081 | -9.03e-9 6.63 e-9 -5.05e-9 3.19e-9
CF8 | -0.086244366353 17155 | 7.33e-14 | 2.39e-14 | 7.21e-14 | 824e-15
CF10 | -0.086244366353 20805 | 1.08e-13 | 2.59e-13 | -6.27e-13 | 1.54¢-13
CF12 | -0.086244366353 60698 | 6.52e-12 | -2.23e-12 | -1.71e-12 | -159e-12
CF14 | -0.08624436635 569120 | -542e-12 | -3.53e-11 | 2.93e-12 | 3.10e-12
CF16 | -0.0862443663 4221143 | -8.31e-11 | 1.81e-10 | 6.85e-14 | -1.25e-10

3.The results given by CF14 and CF16 are a little worse (the accuracy

does not increase steadily in this case together with the degree of CF)

4. The above value of ¢t corresponds to NE=2. For nearly all CFs the
accuracy does not increase significantly when the number of elements increases.

7.3.2 Runge — Kutta method
This time the values given in Tables 3 and 4 will be compared to those
given by the Runge — Kutta method with constant steps. In the last case the results
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are disappointing (if not useless) due probably to the instability. In fact, for the
case xt = 5, for NE=500 and NE=1000 the code MATLAB gives a harsh verdict:
NaN (Not a Number), resulting from operations which have undefined numerical
results. If one increases NE the answers continue to be wrong: for NE=2000, ¢t =
— 1.874 e+141 (?); for NE=3000, ¢t = — 2.835 e+13 (?). Only starting from
NE=4000 the result becomes credible ¢t = — 0.1606841935, being not far from
NE=5000 for which ¢ = — 0.1606841868. This last result that coincides with 8
digits to the value given in Table 3 needs duration 80 times greater then that
corresponding to AEM.

For the case xt = 10 the Runge — Kutta method with constant steps gives
no answer, because for NE=5000, NE=10000, NE=15000 steps the result is
invariably NaN.

7.3.3 Comparison between CFs and Runge-Kutta for accurate solutions

Two integration of ODE2 have been performed both starting from xs=0
but with targets having smaller values x;=1 and x;=2, respectively (Table 5).

Table 5
ODE2
Xs=0 ; Xxy=1 Xs=0 ; Xy=2
NE ¢r(x=1) NE ¢1(x=2)
CF16 4 | -0.7529609952 579179 3 -0.3965673643 553024
CF14 4 | -0.7529609952 655538 4 -0.3965673643 558060
CF12 5 | -0.7529609952 683732 5 -0.3965673643 549966
CF10 7 | -0.7529609952 746303 6 -0.3965673643 793142
CF8 11 | -0.7529609952 928821 9 -0.3965673643 194347
CF6 29 | -0.7529609952 965156 | 18 | -0.3965673643 988034
CF4 82 | -0.752960995 9757841 | 131 | -0.3965673643 954343
Runge-Kutta | 320 | -0.752960995 0214358 | 1500 | -0.3965673643 917458

These integration intervals allow a normal behavior of the Runge-Kutta
method, so that a comparison between this last method and AEM with different
CFs is possible. The comparison is based on the number of elements NE
necessary to obtain accurate results. For each case the results with 10 digits
have been considered as representing the accurate value:

for xy=1, ¢1(x=1) =-0.7529609952 ; forxr=2, ¢r(x=2) =-0.3965673643

7.4 The ODE3 solved as a target value problem

The ODE3 will be integrated between xs=0 and xr=5. As it was shown in
84 solving ODES3 rises a special problem: E;(x) has two real roots (x;= 2, x,=3),
both of them inside the integration interval. The Runge-Kutta method tries to find
the value of ¢ at the end of each step, by using the value of the derivative at the
beginning of the same step. Or, when the abscissa x tends to the value of the



38 M. Blumenfeld

smallest root (in our case x = 2), E1(x) tends to zero. In such case the value of the
first derivative — that results from a computation where E;(x) is the denominator
[see (3.5a)] — tends to infinity. Consequently the Runge-Kutta method stops at the
smallest root. This can be observed quite clearly from Table 6 where, in order to
obtain credible results when x increases towards 2, it was necessary to rise the
number of steps up to NE = 5000. For x = 1.998 no credible value of ¢ has been
obtained even for NE=10000.

Table 6
ODE3
X AEM Runge-Kutta
ot (NE=2) Estim.er. NE=1000 NE=5000 NE=10000
1.9 | -0.41533884308 | 1.98e-10 | -0.4153388 * *
1.95 | -0.40407866493 | 1.41e-10 | -0.4040787 * *
1.98 | -0.39762555610 | 2.75e-11 | -0.19122 (?) | -0.39762555695 *
1.99 | -0.39552244408 | -6.10 e-11 | -2.77 e+10 (?) | -0.39552245265 *
1.995 | -0.39447964673 | 1.35¢e-10 * -0.39535726520 *
1.998 | -0.39385674271 | 1.42 e-10 * -5.2695 e+10 (?) | -0.92980 (?)

The AEM leads to good estimated errors up x = 1.998, but when x tends to
2 the computation fails due to a division by E;=0. For instance if x;=5 and NE=35,
the right end abscissa of the second element will be x=2, so that for this case no
answer can be obtained. The problem of avoiding x=2 (or x=3) can be solved by
modifying slightly the "target" abscissa (for instance x7=5.23). If not, one can use
the Non-symmetrical Concordant Functions [1], which are not affected by the
coincidence with the roots of E;(x).

The computation for finding the target value ¢t(x=5) has been performed
for NE=1, 2, 3, 4 then stopped in order to avoid NE=5 (see above). From the
values given in Table 7 it results:

1.The higher order CFs (CF16,14,12,10) lead to very good values of the
estimated errors.

Table 7
ODES3 (solved by AEM)
NE=3 NE=4 Convergence criterion
¢7(x=5) Estim.err. ¢1(x=5) Estim.err. | NE=3 NE=4
CF16 | -0.1608168891606 | 1.78 -7 | -0.1608168493921 | -2.47e-7 | 1.36e+3 | 3.01e+2
CF14 | -0.1608168378795 | -7.50e-8 | -0.1608168502207 | 8.67 e-8 141 1.01

CF12 | -0.1608168491291 | -6.20e-9 | -0.1608168475431 | -9.86e-9 | 1.34e-2 | 6.12¢-3

CF10 | -0.1608168552608 | 9.20e-8 | -0.1608168259850 | -1.82e-7 | 1.70e-2 | 6.09 e-3

CF8 | -0.1608172920844 | 2.62e-7 | -0.1608172320923 | -3.73e-7 | 2.53e-2 | 8.16e-3

CF6 | -0.1608399995519 | 2.70e-4 | -0.1608374059234 | -1.61e-5 | 536e-2 | 1.35e-2

CF4 | -0.1621552942969 | 1.00e-4 | -0.1602284414990 | -1.20e-2 | 7.48e-2 | 3.23e-3

2.1t can be considered as accurate value ¢(x=5)= - 0.1608168 , value for
which all the above mentioned CF’s coincide for NE=4.

Because none of the NEs used lead to end abscissas x=2 or x=3, AEM
"jumps" beyond them without any trouble.
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8. The field polynomial solution (FPS)

Though finding polynomial solutions for an ODE is not always necessary,
the analysis of the procedure is very instructive making clearer the behavior of
AEM. The problem has already been formulated in §1: finding Polynomial
Solutions ¢n(x) (n=1,2...NE), each one being valid on a single element from the
integration field.

8.1 A single polynomial function cannot usually be a solution for a
longer field

It is seldom possible to find a single polynomial solution of an ODE valid
on a great integration field. Suppose for instance ODE1 having as accurate
solution the 19" degree polynomial (2.2). It is obvious that the solution obtained —
for instance — by using a third-degree polynomial (CF4) cannot accurately replace
(2.2). Both functions have been drawn between x = 3.92 and x = 5.54 in Fig.8.1:
the exact solution (2.2) as a continuous line and CF4 as a dotted line. Any
comment concerning their coincidence is useless.

Nevertheless it is remarkable the fact that though CF4 has a completely
different trajectory than the exact solution, they both tend to meet (with a certain
error) at the target point. This is due to the stock of information detained by
CF4 that includes not only the target function ¢t but also its first derivative®.

8.2 The CF curves converge towards the exact solution

When NE=2 the trajectory of CF4 becomes to tend towards the accurate
solution. This is due to the fact that now the first step calculates ¢ at the right end
of the first element (x=4.73) so that CF4 forcibly comes near to the exact
solution. As it results from Fig.8.2 the error in the middle point becomes smaller
than that corresponding to NE=1, having as consequence the reducing of the error
at the target point as compared to Fig.8.1.

4
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® For the higher CFs also the second, third or higher order derivatives
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For NE=3 (Fig.8.3) the errors of CF4 at the right ends of element I
(x=4.46) and element 2 (x=5) are quite small, so that the target value ¢r(x=5.54)
becomes more credible. This tendency continues for NE=4 (Fig.8.4), NE=5
(Fig.8.5), NE=6 (Fig.8.6). What is important is that each time when NE is
increased there is a new point that comes near to the exact solution, which
seemingly makes that for NE=6 (Fig.8.6) the two curves coincide. From this
analysis it results that when the number of elements increases the CF curve
converges towards the exact solution. But the visual examination of a graphic is
not enough to decide if a CF curve is satisfactory convergent, because the
qualitative appreciation can be roughly delusive. A numerical criterion becomes
necessary in order to decide if the convergence process has reached a satisfactory
level.

8.3 The function ¢ in natural coordinates

In order to simplify the approach the Concordant Function has been given
in 83 as (3.3), which is a function of x. Because according to the methodology of
AEM the constants C; are obtained by calculating the inverse of a square matrix,
this procedure becomes difficult (even inaccurate) when the degree of CF
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increases beyond CF18 [1]. This problem is eliminated if ¢ is expressed in
natural (dimensionless) abscissas given by

X—Xp _ X=X (8.1) , where h=xp—xp (8.2)

XR — Xy, h
XL being the Left end abscissa, respectively xg the Right end abscissa of the
element. It is obvious that for x = x;, 7 = 0, while for x = xz, 7 = 1. By using
(8.1), the function ¢ (3.3) becomes [1]

o) =C+Com+C3n° +Cyn’° (83)

The use of the natural abscissas is necessary because the inverse of the
matrix that allows obtaining the coefficients C; is always the same regardless of
the Cartesian end abscissas of the elements. Consequently the inverse has been
calculated once and for all’, being given (for all CFs between CF4 and CF16) in
the Appendix A of [1]. The coefficients included in (8.3) being known, ¢ can be

written as function of x by using (8.1)
2 3
o(x) =G +Ez[x_h” j+53(x_thj +E4(x‘h”j (8.4)
This function (used for drawing all the graphics) can also be written as
d(x) = [X][cxT] (8.5), where

G G G
Xl=b (-x) (e-x,) (x—xL)"’J(s.e):[CxT]:[q 7 h—g‘} (87)
8.4 A numerical criterion for establishing the level of convergence
The convergence process of the CF curves towards the exact solution can
be established by comparing two curves based on an increasing number of
elements. If one notes dprevious aNd dnew the two solutions of two successive curves,
there are many possibilities to establish a criterion of convergence. Though the
number of elements is different between the two cases, one can calculate the
ordinates of the two curves at the same abscissa x5 by using (8.5). Here will be
accepted the criterion used with good results in [2, page 160]

— 2
. 1 n NP (I)new - ¢ previous
convergence criterion = — z (8.9)
NP n=0 ((I)new + d)previous )/ 2

where NP is the number of test points xze,; and dmean=(Pprevious + Prew) / 2.
The most difficult problem is to choose the value of the criterion (8.9),
which can be considered as a conventional frontier between "unacceptable™ and

" for a CF16 the inverted matrix is [16 x 16]
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"acceptable”. This value chosen by the author based on some numerical
experiments is

allowable convergence criterion = 9.9 x 107 (8.10)
Obviously this value is disputable.
Remark. 1t is important to observe that the continuity between two elements is
secured (regardless the number of elements) as it follows: for CF4, continuity C;
(function and its first derivative), for CF6, continuity C, (function and the
derivatives / and 2), for CF8, continuity Cs (function and the derivatives 7, 2 and
3) and so on [2].

8.5 A strategy for finding a field polynomial solution

As it was shown in 84 there are two parameters that can be chosen by the
user: CF and/or NE. The strategy used for TVP in 8§87 was simple: because the
precision resulted by using a low degree polynomial is usually unsatisfactory, one
starts by using CF16 (or other high order CF), the parameter to be modified being
the number of elements. The same procedure is repeated (if necessary) for smaller
degrees CF. Usually two such attempts are enough.

The strategy for solving a FPS is totally different because it is not obvious
which CF will lead to better results. Apparently the problem is to find two
successive numbers of elements that leads to a good convergence criterion for a
given CF. In fact this is not enough, because the solution has to be the minimum
set of polynomials giving an analytic form valid on the integration field.
Consequently the strategy presented here includes the following steps:

1. Choosing a value of the allowable convergence criterion that is
considered as suitable.

2. Making a "'transverse cut" throughout all the CFs, by testing the
behavior of each CF based on the criterion (8.9).

3. Selecting the minimum number of elements Npi, that satisfies the
chosen convergence criterion.

Remark. The last decision has to take also into account the estimated error of the
computed target value.

8.6 Field polynomial solutions for ODE2 and ODE3

The strategy sketched above has been applied to ODE2 (2.3) and ODE3
(2.5) for an integration interval between xs=0 and x=5. The results given in Table
8 and Table 9 include for each CF: the pair of elements for which the (8.10)
allowable convergence criterion is reached {NE(conv)}, the computed value of
the (8.9) convergence criterion {Conv.} and the (7.1) estimated error {Est.er.}. As
it results for both cases the better results are those corresponding to the middle
values of the concordant functions (CF10 with Npin=4 for ODE2, CF8 with
Nmin=6 for ODE3). The value of the estimated error is very good for ODE2
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(3.69 e-13) but only satisfactory for ODE3 (2.61 e-6). The graphics given in
Fig.2.3 and Fig.2.4 correspond to these two cases.

ODE2 Table 8 ODE3 Table 9
CF | NE(conv) | Conv. Est.er. CF | NE(conv) | Er.pat. Est.er.
CF4 14/15 7.60e-4 | 5.73e-7 CF4 12/13 7.33e-4 | -2.39e-4

CF6 7/8 7.81e-4 | -4.89e-8 CF6 8/9 6.21e-4 | 5.22e-7
CF8 5/6 7.59¢e-4 | -5.52¢-10 CF8 6/7 8.60e-4 | 2.61e-6
CF10 4/5 9.79e-5 | 3.69e-13 CF10 8/9 1.46e-5 | 3.32e-9
CF12 5/6 3.99e-4 | 1.25e-13 CF12 15/16 7.41e-4 | -3.46e-8
CF14 17/18 1.02e-4 | -5.53e-13 CF14 10/11 4.72e-2 | -3.92e-7
CF16 29/30 191e-3 | 5.13e-13 CFl6 * * *

It is interesting to observe from Table 9 that for NE<30 the value (8.10)
has not been reached for CF14, while for CF16 no result has been obtained though
the value of the allowable convergence criterion has been reduced to 9.9 x 10™.
Or the value of the convergence criterion = 4.72 e-2 for CF14 (see Table 9) is not
enough to lead to a good convergence, as it results clearly from Fig.8.7. On the
other hand the estimated error for the target value is very good (-3.92e-7).
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9. The analytic form of the solution

Obtaining a graphic that confirms the convergence tendency by the
superposed curves is not the goal of the Field Polynomial Solution approach.
After finding the minimum number of elements Nmi, from which on the
convergence tendency is considered as satisfactory for a chosen CF, the answer
has to be the polynomial function based on which the graphic has been drawn. At
this stage the problem is solved because the constants included in [CxT] (8.7) are
already obtained during the computation procedure.

Suppose it is necessary to describe the solution of ODE2. In order to
simplify the exposure the integration interval is considered only between xs=0
and x1=0.8. If CF10 is used for this reduced interval it results Nmin=1, because the
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convergence criterion between NE=1 and NE=2 is 2.74 x 10®. In this particular
case the Left end abscissa used in (8.2) is x. = xs = 0, so that n= x / h.
Consequently, the analytic function results directly as a polynomial given by
(3.3), but obviously including 10 terms that corresponds to CF10

(x) =1-6.363636363636363 x+13.71900826446281 x*—25.32682193839218 x>+

+36.49204289324499x"-42.19755051295832 x°+40.21378331540018 x° —

— 26.78179129972301x"+10.03215529655342x°-1.540291191858282 x°
How accurate this solution is? A quick answer can be obtained by
calculating the function at the middle of the integration interval, where the

possible error is supposed to have a great value. If one replaces xu=0.4 in q~>(x) it

results ¢,, = q~>(o.4) =-0.3422291815. A better result is obtained if the
integration is performed directly between xs=0 and xt=0.4 in which case it results
¢7 =-0.3423036660. The error of ¢,,is -2.17 e-4 , which is satisfactory.

A better answer can be obtained by using a more general method: verify if
the polynomial solution (8.11) satisfies the ODE2 (2.3). This problem will be
analyzed elsewhere.
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10. Conclusions

The paper identifies two types of problems connected to the integration of the
Ordinary Differential Equations: the Target Value Problem (TVP) and the Field
Polynomial Solution (FPS). The Accurate Element Method is an implicit method
thus generally stable, which makes possible the integration over long intervals
leading to accurate solutions with a small number of elements.
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