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AN EFFICIENT APPROACH FOR SOLUTION OF MODIFIED 

CAMASSA-HOLM AND DEGASPERIS-PROCESI 

EQUATIONS  
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In this article, optimal homotopy asymptotic method (OHAM) has been 

introduced for finding the approximate solutions of modified Camassa-Holm (mCH) 

and Degasperis-Procesi (mDP) equations. The obtained results give higher accuracy 

than that of Variational Homotopy Perturbation Method (VHPM) [1]. It is shown that 

the proposed technique is effective, suitable, and reliable for solving these types of 

equations. 
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1. Introduction: 

Most of the problems in nature can be expressed in terms of nonlinear partial 

differential equations. In such situation, it is very difficult to achieve the exact 

solution for these types of equations. Therefore analytical methods have been used 

to find approximate solutions. Recently, variety of analytical methods such as the 

Adomian decomposition method(ADM) [2-3], the Homotopy Analysis 

Method(HAM) [4-5], the Variational Iteration Method (VIM) [6-7], the Homotopy 

Perturbation Method (HPM) [8-11], and Variational Homotopy Perturbation 

Method (VHPM)[12-13] have been tested to solve linear and nonlinear partial 

differential equations. Optimal Homotopy Asymptotic Method (OHAM) is one of 

the powerful techniques which was introduced by Marinca and Herisanu et al. for 

solving Non-linear Differential equations and for steady flow of a fourth-grade fluid 

past a porous plate [14-18]. By means of the more elastic supporter function called 

the auxiliary function the proposed technique give us more precise results.  

Our aim in this paper is to find accurate approximate solution of mCH and mDP 

equations by using OHAM. They are the special cases of the modifiedb –equation 

[19] 
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where b is a positive integer. For b = 2, Eq. (1.1) reduces to mCH equation, while 

for b = 3 mDP equation is obtained. 

Different techniques have been used in the literature to find the approximate 

solution of mCH and mDP equations. Zhang et al. employed HPM for finding the 

solution of mCH and mDP equations [20]. Behera et al. found approximate solution 

of mCH and mDP equations using wavelet optimized finite difference method [21]. 

Yıldırım employed VIM for solving mCH and mDP equations. Yousif et al. found 

the solitary wave solutions of mCH and mDPby VHPM [1]. 

 

2. Basic Mathematical Theory of OHAM 

Consider the general form of the partial differential equation as: 

         , , , 0,u x t g x t u x t             (2.1) 


 

 
 
, 0,
u

u
t

               (2.2) 

where ,  and  are linear ,nonlinear and boundary operator respectively.  ,u x t

is a unknown function and  ,g x t  is a known function ,t  and x  denote temporal 

and spatial variables, respectively,   is the domain of the problem. 

According to homotopy    , ; :x t q R    0,1  which satisfied: 

                 (1 ) , ; ( , ) ( ) , ; ( , ) , ; ,q x t q g x t H q x t q g x t x t q

(2.3) 

where   0,1q  is an embedding parameter, ( )H q  is an auxiliary function. When

 0q , or 1q   then clearly, we have: 

       0 , ;0 ,0 ( ( , ;0)) ( , ) 0,q H x t x t g x t            (2.4) 

            1 , ;1 ,1 (1) ( ( , ; )) ( , ) ( ( , ; )) 0.q H x t H x t q g x t x t q
      

(2.5) 

Obviously, when 0q   and 1q  . It keeps that 

         
0

, ;0 , and , ;1 ,x t u x t x t u x t respectively. So as q  varies from

0 to 1 , the result   , ;x t q  approaches from 0
( , )u x t to ( , )u x t , where 0

( , )u x t  is 

achieved from Eq.(3.1). For  0q : 
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       
0 0 0
( , ) ( , ) 0, , / 0u x t g x t u u t .           (2.6) 

By choosing auxiliary function ( )H q  as: 

    2

1 2
...H q qC q C               (2.7) 

Here 
1 2,
, ...C C  are constants to be determined. by expanding   , ; ,

i
x t q C  in 

Taylor’s series about q as 

      









  0
1

, ; , , , ; , 1,2,...
i i

x t q C u x t u x t C q i            (2.8) 

Substituting Eq. (2.8) into Eq. (2.2) and equating the coefficient of q , we get zeroth 

order equation, given by Eq. (2.4), the first and second order equations are given by 

Eqs. (2.9-2.10) respectively and 
( , )u x t  are given by Eq. (2.11): 

 
         

1 1 0 0 1 1
( , ) ( , ) , , / 0u x t C u x t u u t                              (2.9)
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(2.10) 
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Here   


 0 1
( , ), ( , ),..., ( , )

i i
u x t u x t u x t  is the coefficient of 

iq  in the expansion 

of     , ;x t q  about the embedding parameter . 

       

 


   


 0 0 0 1 2
1

, ; , ( , ) , , , ... , .
i

x t q C u x t u u u u q
            

(2.12) 

The convergence of the series in Eq. (2.8) depends upon the convergence control 

parameters
1 2,
, ...C C ., If it is convergent at 1q , one has: 

   


 0
1

, ; ( , ) , ; .
i i

u x t C u x t u x t C            (2.13) 

Substituting Eq. (2.13) into Eq. (2.1), we gained residual: 
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    , ; ( ( , ; )) ( , ) ( ( , ; )).
i i i

R x t C u x t C g x t u x t C                (2.14) 

   If , ; 0, then , ;
i i

R x t C u x t C
 
will be the exact solution. For calculating the 

of convergence control parameters, , 1,2,...,
i
C i m

 
there are many methods. We 

used Least Squares method as 



  
2

0

( ) ( , , ) ,
t

i i
j C R x t C dxdt            (2.15) 

whereR is the residual, 

         , ; , ; ( , ) , ; ,
i i i

R x t C u x t C g x t u x t C  

and 

  
   

  
1 2

... 0.
m

j j j

C C C
           (2.16) 

To determine the convergence control parameters iC  we used another method as. 

         
1 2

1,2; ; ... ; 0, ,..., .
i i m i

R C R C R C i m              (2.17) 

at any timet , where 
i . 

 

3. Application of OHAM  

3.1: Application of OHAM to mCH Equation: 

Consider mCH equation with initial condition as follow: 

 

2

2

3 2 0,

1
( ,0) 2sech .

2

t xxt x x xx xxu u u u u u uu

u x x

    

 
   

 

           (3.1.1) 

The exact solution of eq. (3.1.1) is [19] 

2 1
( , ) 2sech .

2
u x t x t

 
   

 
           (3.1.2) 

According to OHAM formulation, the zeroth and 1st order problems are given under 

as: 

Zeroth order problem 

20 ( , ) 1
0, ( ,0) 2sech .

2

u x t
u x x

tt

  
    

  
         (3.1.3) 

Its solution is given under as 

2

0 ( , ) 2sech .
2

x
u x t

 
   

 
           (3.1.4) 
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1st order problem: 

20 0 0 01
1 1 1

2 2 2

0 0 0
1 1 0 12 2

( , ) ( , ) ( , ) ( , )( , )
3 ( , ) 2

( , ) ( , ) ( , )
( , ) 0, ( ,0) 0.

u x t u x t u x t u x tu x t
C C u x t C

t t t x x

u x t u x t u x t
C C u x t u x

x x t x

   
   

    

  
   

            

(3.1.5) 

Its solution is given under as 

 

6 4 3

1 1 1 1( , , ) 12sech tanh sech tanh .
2 2 2 2

x x x x
u x t C C C

        
         

        
  (3.1.6) 

At last we can have obtained the following expression as, 

0 11 1( , , ) ( , ) ( , , ).u x t u x tC x t Cu            (3.1.7) 

The value of convergence control parameter is calculated by using least square 

method and its optimum value is 

1  -0.16706435582136045C  . 

3.2: Application of OHAM to mDP Equation: 

Consider mDP equation with initial condition as: 

 

2

2

4 3 0,

15 1
( ,0) sech .

8 2

t xxt x x xx xxu u u u u u uu

u x x

    

 
   

 

                      (3.2.1) 

Exact solution of eq.(3.2.1) is [19], 

215 1 5
( , ) sech .

8 2 4
u x t x t

 
   

 
                             (3.2.2) 

According to OHAM formulation, the zeroth and 1st order problems are given under 

as: 

Zeroth order problem 

20 ( , ) 15 1
0, ( ,0) sech .

8 2

u x t
u x x

tt

  
    
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                           (3.2.3) 

Its solution is given under as 

2

0

15
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8 2

x
u x t

 
   
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1st order problem: 

 

20 0 0 01
1 1 0 1

2 2 2

0 0 0
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C C u x t C

t t t x x

u x t u x t u x t
C C u x t u x

x x t x
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   
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  
   
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(3.2.4) 
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Its solution is given under as 

 

6 4 3

1 1 1 1

225
( , , ) sech tanh sech tanh .

16 2 2 2 2

x x x x
u x t C t C C

        
         

        
      (3.2.5) 

At last we can obtained the following expression as, 

1 0 1 1( , , ) ( , ) ( , , )u x t C u x t u x t C  ,     

6 4 3

1 1

2

1

225
sech tanh sech tanh .

16 2 2 2

15
( , , ) sec

8 2
h

2

x
u x t

x x x x
C t C C

        
  

 
   

 
     

            
(3.2.6) 

The value of convergence control parameter is calculated by using least square 

method and its optimum value is 

1  -0.15288211787484748C  . 

4. Tables and Figures 

In tables (4.1-4.2) the absolute error of 1st order approximate solution by OHAM 

are compared with VHPM solution for mCH equation at 0.01 and 0.001t t   

respectively. Table 4.3 and 4.4 shows comparison of 1st order approximate solution 

by OHAM with VHPM solution for mDP equation at 0.01 and 0.001t t   

respectively. From absolute errors it is clear that 1st order approximate solution by 

OHAM is more accurate than that of VHPM. Figures (5.1-5.3) show the 3D plots 

of exact solution, 1st order OHAM solution and VHPM solution for mCH equation 

respectively. Figure 5.4 shows the comparison of 1st order OHAM and exact 

solution while Figure 5.5 shows the comparison of VHPM and exact solution for 

mCH equation at 0.1.t  Figures (5.6-5.8) show the 3D plots of exact solution, 1st 

order OHAM solution and VHPM solution for mDP equation respectively. Figure 

5.9 shows the comparison of 1st order OHAM and exact solution while figure 5.10 

shows the comparison of VHPM and exact solution mDP equation at 0.1.t   from 

all these figures we can see that 1st order OHAM solution is in close agreement with 

exact solution than that of VHPM solution.  
Table 4.1 

Comparison of absolute errors of 1st order OHAM and VHPM solution [1] for mCH 

equation at 0.01.t   

x  OHAM Exact Absolute Error VHPM [1] Absolute Error OHAM 

-1. -1.56717 -1.5583 0.0197059 0.00886242 

-0.5 -1.87569 -1.87067 0.0166079 0.00502347 

0. -2. -1.9998 0.000199987 0.000199987 

0.5 -1.88437 -1.88908 0.0169162 0.00471514 

1. -1.57863 -1.58737 0.0198189 0.00874937 
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Table 4.2 

Comparison of absolute errors of 1st order OHAM and VHPM solution [1] for mCH 

equation  at 0.001.t   

x  OHAM Exact Absolute Error VHPM [1] Absolute Error OHAM 

-1. -1.57232 -1.57144 0.00197555 0.000881285 

-0.5 -1.8796 -1.87911 0.00167455 0.000488583 

0. -2. -2. 2.×10-6 2.×10-6 

0.5 -1.88046 -1.88095 0.00167764 0.000485499 

1. -1.57347 -1.57435 0.00197668 0.000880154 

 

Table 4.3 

Comparison of absolute errors of 1st order OHAM and VHPM solution [1] for mDP equation at 

0.01.t   

x  OHAM  Exact Absolute error VHPM [1] Absolute Error OHAM 

-1. -1.46844 -1.45747 0.0230771 0.0109714 

-0.5 -1.75788 -1.75151 0.019418 0.00636291 

0. -1.875 -1.87471 0.000292938 0.000292938 

0.5 -1.76718 -1.77309 0.0198696 0.00591127 

1. -1.48073 -1.49154 0.0232427 0.0108058 

 

 Table 4.4 

Comparison of absolute errors of 1st order OHAM and VHPM solution [1] for mDP      equation at   

0.001.t   

x  OHAM Exact Absolute Error VHPM [1] Absolute Error OHAM 

-1. -1.47398 -1.47289 0.00231493 0.00108992 

-0.5 -1.76206 -1.76145 0.00196192 0.00061617 

0. -1.875 -1.875 2.92968×10-6 2.92968×10-6 

0.5 -1.76299 -1.7636 0.00196643 0.000611654 

1. -1.4752 -1.47629 0.00231658 0.00108827 

 

 

 

  

 

 

 

Fig 5.1: 3D plot exact solution              Fig 5.2:  3D plot 1st order OHAM                 Fig 5.3: 3D plot VHPM for mCH          

equation for mCH eqution                     solution for mCH equation                                    solution mCH equation 
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  Fig 5.4: 2D plot for exact and 1st order approximate solution                  Fig 5.5: 2D plot for exact and VHPM solution at 

by OHAM at 0.1t   for mCH equation   0.1t   for mCH equation 

 

 

 

 

 

 

Fig 5.6: 3D plot exact solution                 Fig 5.7:  3D plot 1st order OHAM                    Fig 5.8: 3D plot VHPM solution            

       of mDP equation                                      solution for mDP equation        for mDP equation 

 

 

 

 

 

Fig 5.9: 2D plot for exact and 1st order approximate solution                    Fig 5.10: 2D plot for exact and VHPM solution      

by OHAM at 0.1t   for mDP equation   at 0.1t   for mDP equation 

 

 6. Conclusion 

OHAM formulation is tested upon Modified Camassa-Holm and 

Degasperis-Procesi equations. The solutions obtained by proposed method are 

compared with the VHPM [1] and exact solution. It is shown that the results 

Exact ------ 

VHPM   
 

Exact ------------- 

VHPM  

Exact --------------- 

OHAM  

Exact     ------ 

OHAM    
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obtained by OHAM have good agreement with exact solution than that of VHPM. 

We concluded that the proposed method is simple, effective and reliable for solving 

nonlinear equations. 
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