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ON (α− ϕ)-MEIR-KEELER CONTRACTIONS ON PARTIAL HAUSDORFF

METRIC SPACES

Chi-Ming Chen1, Erdal Karapınar2, Donal O’Regan3

In this note we introduce the concept of a (α− ϕ)-Meir-Keeler contraction for
multi-valued mappings and we investigate the existence of fixed points of such mappings

in a complete partial metric space. Our results generalize, extend and unify several
recent fixed point results.

Keywords: Fixed point; strictly α-admissible; ϕ-Meir-Keeler contraction; Partial Haus-
dorff metric space.

1. Introduction and Preliminaries

Throughout the paper, N and N0 denote the set of positive integers and the set of
nonnegative integers, respectively. Furthermore, R, R+ and R+

0 represent the set of reals,
positive reals and nonnegative reals, respectively.

We recall the notion of a partial metric introduced by Matthews [13].

Definition 1.1. [13] A partial metric on a nonempty set X is a function p : X ×X → R+
0

such that for all x, y, z ∈ X,
(p1) x = y if and only if p(x, x) = p(x, y) = p(y, y);
(p2) p(x, x) ≤ p(x, y);
(p3) p(x, y) = p(y, x);
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
A pair (X, p) is called a partial metric space.

Remark 1.1. If p(x, y) = 0, then from (p1) and (p2), we have x = y. The converse may
not hold. For example let X = R+

0 and p : X × X → R+
0 be p(x, y) = max{x, y}. Then

(X, p) is a partial metric space and p(x, x) ̸= 0 for all x ∈ X \ {0}.

Each partial metric p on X generates a T0 topology τp on X which has as a base
the family of open p-balls {Bp(x, γ) : x ∈ X, γ > 0}, where Bp(x, γ) = {y ∈ X : p(x, y) <
p(x, x) + γ} for all x ∈ X and γ > 0. If p is a partial metric on X, then the function
dp : X ×X → R+

0 given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X.

Definition 1.2. [13, 5] Let (X, p) be a partial metric space. Then
(1) a sequence {xn} in (X, p) converges to x ∈ X if p(x, x) = limn→∞ p(x, xn);
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(2) a sequence {xn} in (X, p) is called a Cauchy sequence if limm,n→∞ p(xm, xn) exists
(and is finite);

(3) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with respect
to τp, to a point x ∈ X such that p(x, x) = limm,n→∞ p(xm, xn);

(4) a subset A of a partial metric space (X, p) is closed in (X, p) if it contains its limit
points, that is, if a sequence {xn} in A converges to some x ∈ X, then x ∈ A.

(5) a subset A of a partial metric space (X, p) is bounded in (X, p) if there exist x0 ∈ X and
M ∈ R such that for all a ∈ A, we have a ∈ Bp(x0,M), that is, p(x0, a) < p(a, a)+M .

Remark 1.2. The limit in a partial metric space may not be unique. For example, consider
the sequence { 1

n2+2}n∈N in the partial metric space (X, p) where p(x, y) = max{x, y}. Note

p(1, 1) = lim
n→∞

p(1,
1

n2 + 2
) and p(2, 2) = lim

n→∞
p(2,

1

n2 + 2
).

Lemma 1.1. [13, 16] (1) {xn} is a Cauchy sequence in a partial metric space (X, p) if and
only if it is a Cauchy sequence in the metric space (X, dp);

(2) a partial metric space (X, p) is complete if and only if the metric space (X, dp) is
complete. Furthermore, limn→∞ dp(xn, x) = 0 if and only if p(x, x) = limn→∞ p(xn, x) =
limn→∞ p(xn, xm).

Fixed point theory in partial metric spaces were studied by many authors in the liter-
ature (see [1, 2, 3, 4, 8, 10, 11, 12, 16, 18, 19] and the reference therein). The authors in [9]
proved that some of the fixed point results in a partial metric space are equivalent to related
results in the associated metric space. In fact, for a self-mapping T on X, the authors in [9]
realized thatMT

d (x, y) =MT
p (x, y), whereMT

ρ (x, y) = max{ρ(x, y), ρ(x, Tx), ρ(Ty, y), ρ(Tx, y), ρ(x, Ty)}
with ρ = p, d where d, p are the metric, the partial metric, respectively. In our paper the
recent result in [9] is not applicable.

Let (X, d) be a metric space and let CB(X) denote the collection of all nonempty,
closed and bounded subsets of X. For A,B ∈ CB(X), we define

H(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)},

where d(x,B) := inf{d(x, b) : b ∈ B}. In the literature, H is called the Hausdorff metric
induced by the metric d. A multi-valued mapping T : X → CB(X) is called a contraction if

H(Tx, Ty) ≤ kd(x, y),

for all x, y ∈ X and k ∈ [0, 1).

Theorem 1.1. [15] Let (X, d) be a complete metric space and T : X → CB(X) be a
multi-valued contraction. Then there exists x ∈ X such that x ∈ Tx.

The authors in [5] considered the notion of a Hausdorff metric in a partial metric
space (called the partial Hausdorff metric Hp). Let (X, p) be a partial metric space and let
CBp(X) be the collection of all nonempty, closed and bounded subset of the partial metric
space (X, p). Let δp : CBp(X) × CBp(X) → R+

0 and Hp : CBp(X) × CBp(X) → R+
0 be

mappings such that

p(x,A) := inf{p(x, a) : a ∈ A},
δp(A,B) := sup{p(a,B) : a ∈ A},
δp(B,A) := sup{p(b, A) : b ∈ B},

Hp(A,B) = max{δp(A,B), δp(B,A)},
for A,B ∈ CBp(X) and x ∈ X (for more details see [5]). If p(x,A) = 0, then dp(x,A) = 0
where dp(x,A) = inf{dp(x, a) : a ∈ A}.
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Remark 1.3. [5] Let (X, p) be a partial metric space and A be a nonempty subset of X.
Then

a ∈ A if and only if p(a,A) = p(a, a).

The authors in [5] considered the mappings δp : CBp(X) × CBp(X) → R+
0 and

Hp : CBp(X)× CBp(X) → R+
0 and proved the following results.

Proposition 1.1. [5] Let (X, p) be a partial metric space. For A,B ∈ CBp(X), the following
properties hold:
(1) δp(A,A) = sup{p(a, a) : a ∈ A};
(2) δp(A,A) ≤ δp(A,B);
(3) δp(A,B) = 0 implies that A ⊂ B;
(4) δp(A,B) ≤ δp(A,C) + δp(C,B)− infc∈C p(c, c).

Proposition 1.2. [5] Let (X, p) be a partial metric space. For A,B ∈ CBp(X), the following
properties hold:
(1) Hp(A,A) ≤ Hp(A,B);
(2) Hp(A,B) = Hp(B,A);
(3) Hp(A,B) ≤ Hp(A,C) +Hp(C,B)− infc∈C p(c, c);
(4) Hp(A,B) = 0 implies that A = B.

Lemma 1.2. [5] Let (X, p) be a partial metric space, A,B ∈ CBp(X) and h > 1. For any
a ∈ A, there exists b = b(a) ∈ B such that

p(a, b) ≤ hHp(A,B).

In 1969, Meir and Keeler [14] introduced the notion of a Meir-Keeler-type contraction
in a metric space (X, d).

Definition 1.3. [14] Let (X, p) be a metric space, f : X → X. Then f is called a Meir-
Keeler-type contraction whenever for each η > 0 there exists γ > 0 such that

η ≤ d(x, y) < η + γ =⇒ d(fx, fy) < η.

Definition 1.4. [17] Let f : X → X be a self-mapping of a set X and α : X ×X → R+
0 .

Then f is called α-admissible if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α(fx, fy) ≥ 1.

In this paper we introduce the notion of a (α − ϕ)-Meir-Keeler contraction for a
multi-valued mapping T : X → CBp(X) in a partial metric space (X, p) and we examine
the existence of fixed points of such mappings. The results improve and extend several
results in the literature including a recent paper of Chen and Karapınar [6]. In particular
we note that the results are new in the metric space situation.

2. Main results

In this section, we state and prove our main result.
Let Ψ be the family of functions ψ : [0,∞) → [0,∞) satisfying the following condi-

tions:
i): ψ is nondecreasing;
ii): there exist k0 ∈ N and a ∈ (0, 1) and a convergent series of nonnegative terms

∑∞
k=1 vk

such that

ψk+1 (t) ≤ aψk (t) + vk,

for k ≥ k0 and any t ∈ R+.
In the literature such functions are called (c)-comparison functions (see [25] and also [28,
29, 30]).
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Lemma 2.1. (See e.g. [25]) If ψ ∈ Ψ, then the following hold:
(i) (ψn (t))n∈N converges to 0 as n→ ∞ for all t ∈ R+;
(ii) ψ (t) < t, for any t ∈ R+;
(iii) ψ is continuous at 0;
(iv) the series

∑∞
k=1 ψ

k (t) converges for any t ∈ R+.

We denote by Φ the class of functions ϕ : (R+
0 )

4 → R+
0 satisfying the following

conditions:
(ϕ1) ϕ is an increasing and continuous function in each coordinate;
(ϕ2) for each ϕ there exists ψ ∈ Ψ such that ϕ(t, t, t, t) = ψ(t) for all t ∈ R+

0 ,

Example 2.1. Let ϕ1, ϕ2, ϕ3, ϕ4 : (R+
0 )

4 → R+
0 be mappings such that

ϕ1(t1, t2, t3, t4) = k
4 (t1 + t2 + t3 + t4),

ϕ2(t1, t2, t3, t4) = kmax{t1, t2, t3, t4},
ϕ3(t1, t2, t3, t4) = ln(1 + k

4 (t1 + t2 + t3 + t4)),

where 0 < k < 1. Note ϕ1, ϕ2, ϕ3 ∈ Φ. Moreover, the corresponding (c)-comparison functions
are

ψ1(t) = kt, ψ2(t) = kt, ψ2(t) = ln(1 + t)

where ψ1, ψ2, ψ3 ∈ Ψ.

Example 2.2. Consider a mapping φ : (R+
0 )

4 → R+
0 which is defined as

φ2(t1, t2, t3, t4) = k1t1 + k2t2 + k3t3 + k4t4,

where 0 < ki, i = 1, 2, 3, 4 and
∑4

i=1 ki < 1. Hence, φ ∈ Φ. Notice also that the
corresponding (c)-comparison function is

ψ(t) = (k1 + k2 + k3 + k4)t,

where ψ ∈ Ψ.

We now introduce the notion of a (α−ϕ)-Meir-Keeler contraction with respect to the
partial Hausdorff metric Hp induced by the partial metric.

Definition 2.1. Let (X, p) be a partial metric space, α : X ×X → R+
0 be a mapping and

ϕ ∈ Φ. A multi-valued mapping T : X → CBp(X) is called a (α−ϕ)-Meir-Keeler contraction
with respect to the associated partial Hausdorff metric Hp if the following conditions hold:
(C) For each η > 0, there exists δ > 0 such that

η ≤ϕ(p(x, y), p(x, Tx), p(y, Ty), 1
2
[p(x, Ty) + p(y, Tx)]) < η + δ

=⇒ α(x, y)Hp(Tx, Ty) < η, (2.2)

for all x, y ∈ X.
A multi-valued mapping T is called a ϕ-Meir-Keeler-type contraction if α(x, y) = 1 for
all x, y ∈ X in (2.2), that is,

η ≤ ϕ(p(x, y), p(x, Tx), p(y, Ty),
1

2
[p(x, Ty) + p(y, Tx)]) < η + δ

=⇒Hp(Tx, Ty)) < η,

for all x, y ∈ X.

Remark 2.1. Note that if T : X → CBp(X) is a (α − ϕ)-Meir-Keeler contraction with
respect to the associated partial Hausdorff metric Hp, then we have

α(x, y)Hp(Tx, Ty) ≤ ϕ(p(x, y), p(x, Tx), p(y, Ty),
1

2
[p(x, Ty) + p(y, Tx)]),



On (α − ϕ)-Meir-Keeler contractions on partial Hausdorff metric spaces 105

for all x, y ∈ X. Notice that if ϕ(p(x, y), p(x, Tx), p(y, Ty), 12 [p(x, Ty)+ p(y, Tx)]) > 0, then
we have

α(x, y)Hp(Tx, Ty) < ϕ(p(x, y), p(x, Tx), p(y, Ty),
1

2
[p(x, Ty) + p(y, Tx)]).

We now introduce the notion of a strictly α-admissible mapping which is a slight
modification of Definition 1.4.

Definition 2.2. Let (X, p) be a partial metric space, T : X → CBp(X) and α : X ×X →
R+

0 . We say that T is strictly α-admissible if

α(x, y) > 1 implies α(y, z) > 1,

for all x ∈ X, y ∈ Tx and z ∈ Ty.

We now state and prove our main result.

Theorem 2.1. Let (X, p) be a complete partial metric space and α : X × X → R+
0 be a

mapping. Suppose that a multi-valued mapping T : X → CBp(X) is a (α− ϕ)-Meir-Keeler
contraction with respect to the associated partial Hausdorff metric Hp. Also assume that
(i) T is strictly α−admissible;
(ii) there exists x0 ∈ X such that α(x0, y) > 1 for all y ∈ Tx0;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) > 1 for all n and xn → x ∈ X as

n→ ∞, then α(xn, x) > 1 for all n.
Then T has a fixed point in X, that is, there exists x∗ ∈ X such that x∗ ∈ Tx∗.

Proof. Let x1 ∈ Tx0. Since T : X → CBp(X) is a (α − ϕ)-Meir-Keeler contraction
with respect to the associated partial Hausdorff metric Hp, by Remark 2.1, we have that

α(x0, x1)Hp(Tx0, Tx1)

≤ ϕ(p(x0, x1), p(x0, Tx0), p(x1, Tx1),
1

2
[p(x0, Tx1) + p(x1, Tx0)]). (2.3)

Let α(x0, x1) = k0. Note k0 > 1. Now Lemma 1.2 with h =
√
k0 implies that there exists

x2 ∈ Tx1 with

p(x1, x2) ≤
√
k0Hp(Tx0, Tx1). (2.4)

Using (2.3) and (2.4), we get

p(x1, x2) <
1√
k0
ϕ(p(x0, x1), p(x0, Tx0), p(x1, Tx1),

1

2
[p(x0, Tx1) + p(x1, Tx0)])

≤ 1√
k0
ϕ(p(x0, x1), p(x0, x1), p(x1, x2),

1

2
[p(x0, x2) + p(x1, x1)])

≤ 1√
k0
ϕ(p(x0, x1), p(x0, x1), p(x1, x2),

1

2
[p(x0, x1) + p(x1, x2)]). (2.5)

If p(x0, x1) ≤ p(x1, x2), then, by (ϕ1) we have

p(x1, x2) <
1√
k0
ϕ(p(x0, x1), p(x0, x1), p(x1, x2),

1

2
[p(x0, x1) + p(x1, x2)])

≤ 1√
k0
ϕ(p(x1, x2), p(x1, x2), p(x1, x2), p(x1, x2)).

By (ϕ1) there exists ψ ∈ Ψ so that

ϕ(p(x1, x2), p(x1, x2), p(x1, x2), p(x1, x2)) = ψ(p(x1, x2)).
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Combining the observations above, together with Lemma 2.1(ii), we find that

p(x1, x2) ≤
1√
k0
ψ(p(x1, x2)) < p(x1, x2),

which is a contradiction. Hence, we have p(x1, x2) < p(x0, x1). Due to (ψ1), we derive that

p(x1, x2) <
1√
k0
ϕ(p(x0, x1), p(x0, x1), p(x1, x2),

1

2
[p(x0, x1) + p(x1, x2)])

≤ 1√
k0
ϕ(p(x0, x1), p(x0, x1), p(x0, x1), p(x0, x1))

=
1√
k0
ψ(p(x0, x1)) (2.6)

≤ 1√
k0
p(x0, x1).

Let α(x1, x2) = k1. Note k1 > 1. Now Lemma 1.2 with h =
√
k1 implies that there

exists x3 ∈ Tx2 with

p(x2, x3) ≤
√
k1Hp(Tx1, Tx2). (2.7)

Using (2.3) and (2.7), we obtain

p(x2, x3) <
1√
k1
ϕ(p(x1, x2), p(x1, Tx1), p(x2, Tx2),

1

2
[p(x1, Tx2) + p(x2, Tx1)])

≤ 1√
k1
ϕ(p(x1, x2), p(x1, x2), p(x2, x3),

1

2
[p(x1, x3) + p(x2, x2)])

≤ 1√
k1
ϕ(p(x1, x2), p(x1, x2), p(x2, x3),

1

2
[p(x1, x2) + p(x2, x3)]).

If p(x1, x2) ≤ p(x2, x3), then by (ϕ1) and (ϕ2), we get

p(x2, x3) <
1√
k1
ϕ(p(x1, x2), p(x1, x2), p(x2, x3),

1

2
[p(x1, x2) + p(x2, x3)])

≤ 1√
k1
ϕ(p(x2, x3), p(x2, x3), p(x2, x3), p(x2, x3))

≤ 1√
k1
ψ(p(x2, x3)) < p(x2, x3),

a contradiction. Thus, p(x2, x3) < p(x1, x2) and hence, we have

p(x2, x3) <
1√
k1
ϕ(p(x1, x2), p(x1, x2), p(x2, x3),

1

2
[p(x1, x2) + p(x2, x3)])

≤ 1√
k1
ϕ(p(x1, x2), p(x1, x2), p(x1, x2), p(x1, x2))

≤ 1√
k1
ψ(p(x1, x2)) ≤ ψ(p(x1, x2))

≤ ψ2(p(x0, x1)) < p(x0, x1). (2.8)

Recursively, we obtain an iterative sequence {xn} ∈ X as follows:

xn ∈ Txn−1 for all n ∈ N.

Moreover, we put

α(xn, xn+1) = kn > 1, for all n ∈ N0. (2.9)
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Since T : X → CBp(X) is a (α− ϕ)-Meir-Keeler contraction with respect to the associated
partial Hausdorff metric Hp, again by Remark 2.1, we have

α(xn, xn+1)Hp(Txn, Txn+1)

≤ϕ(p(xn, xn+1), p(xn, Txn), p(xn+1, Txn+1),
1

2
[p(xn, Txn+1) + p(xn+1, Txn)]) (2.10)

for all n ∈ N0. From Lemma 1.2 with h =
√
kn, we obtain xn+2 ∈ Txn+1 such that

p(xn+1, xn+2) ≤
√
knHp(Txn, Txn+1), n ∈ N0. (2.11)

Using (2.10) and (2.11), we observe that

p(xn+1, xn+2)

<
1√
kn
ϕ(p(xn, xn+1), p(xn, Txn), p(xn+1, Txn+1),

1

2
[p(xn, Txn+1) + p(xn+1, Txn)])

≤ 1√
kn
ϕ(p(xn, xn+1), p(xn, xn+1), p(xn+1, xn+2),

1

2
[p(xn, xn+2) + p(xn+1, xn+1)])

≤ 1√
kn
ϕ(p(xn, xn+1), p(xn, xn+1), p(xn+1, xn+2),

1

2
[p(xn, xn+1) + p(xn+1, xn+2)]).

If p(xn, xn+1) ≤ p(xn+1, xn+2), then

p(xn+1, xn+2) <
1√
kn
ϕ(p(xn+1, xn+2), p(xn+1, xn+2), p(xn+1, xn+2), p(xn+1, xn+2))

≤ ψ(p(xn+1, xn+2)) < p(xn+1, xn+2),

a contradiction. Hence, we conclude that p(xn, xn+1) > p(xn+1, xn+2). Therefore, we have

p(xn+1, xn+2) ≤
1√
kn
ψ(p(xn, xn+1)) ≤ ψ(p(xn, xn+1)) < p(xn, xn+1). (2.12)

Keeping the expression (2.6), (2.8) and (2.12) in mind, we obtain

p(xn+1, xn+2) ≤
1√
kn
ψ(p(xn, xn+1)))

≤ ψ(p(xn, xn+1))

≤ ψ2(p(xn−1, xn))

≤ · · ·
≤ ψn(p(x0, x1)). (2.13)

Taking Lemma 2.1(i) into account and by letting n → ∞ in the inequality above we find
that

lim
n→∞

p(xn, xn+1) = 0. (2.16)

From the property (p2) of a partial metric and using (2.16), we have

lim
n→∞

p(xn, xn) = 0. (2.17)
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Now (2.15) together with the property (p4) of a partial metric, for any m ∈ N, we have

p(xn, xn+m) ≤
m∑
i=1

p(xn+i−1, xn+i)−
m−1∑
i=1

p(xn+i, xn+i)

≤
n+m−1∑
p=n

ψn(p(x1, x0))−
m−1∑
i=1

p(xn+i, xn+i)

≤
n+m−1∑
p=n

ψn(p(x1, x0))

≤
+∞∑
p=n

ψn(p(x1, x0)) → 0 as n→ ∞.

Thus,
lim

n→∞
p(xn, xn+m) = 0.

From the definition of dp, we obtain that for any m ∈ N,
lim

n→∞
dp(xn, xn+m) ≤ lim

n→∞
2p(xn, xn+m) = 0. (2.19)

Hence, we conclude that {xn} is a Cauchy sequence in (X, dp). Since (X, p) is complete,
from Lemma 1.1, (X, dp) is a complete metric space. Therefore, {xn} converges to some
x∗ ∈ X with respect to the associated partial metric, and, hence,

p(x∗, x∗) = lim
n→∞

p(xn, x
∗) = lim

n→∞
p(xn, xm) = 0. (2.20)

Now we claim p(x∗, Tx∗) = 0. Suppose, on the contrary, that p(x∗, Tx∗) > 0. Since T :
X → CBp(X) is a (α − ϕ)-Meir-Keeler contraction with respect to associated the partial
Hausdorff metric Hp, by Remark 2.1, we have

α(xn, x
∗)Hp(Txn, Tx

∗) < ϕ(p(xn, x
∗), p(xn, Txn), p(x

∗, Tx∗), 12 [p(xn, Tx
∗) + p(x∗, Txn)])

≤ ϕ(p(xn, x
∗), p(xn, xn+1), p(x

∗, Tx∗), 12 [p(xn, Tx
∗) + p(x∗, xn+1)]).

Letting n → ∞ in the inequality above (note (iii) in the statement of Theorem 2.1 and
(2.20)), we have

lim
n→∞

Hp(Txn, Tx
∗) ≤ lim

n→∞
α(xn, x

∗)Hp(Txn, Tx
∗)

≤ lim
n→∞

ϕ(p(xn, x
∗), p(xn, xn+1), p(x

∗, Tx∗),
1

2
[p(xn, Tx

∗) + p(x∗, xn+1)])

= ϕ(0, 0, p(x∗, Tx∗),
1

2
p(x∗, Tx∗)

≤ ϕ(p(x∗, Tx∗), p(x∗, Tx∗), p(x∗, Tx∗), p(x∗, Tx∗)

= ψ(p(x∗, Tx∗))

< p(x∗, Tx∗); (2.21)

Hence,
lim
n→∞

Hp(Txn, Tx
∗) < p(x∗, Tx∗). (2.23)

Now xn+1 ∈ Txn, so

p(xn+1, Tx
∗) ≤ δp(Txn, Tx

∗) ≤ Hp(Txn, Tx
∗). (2.24)

From the weakened triangle inequality, together with the inequality (2.24) we have

p(x∗, Tx∗) ≤ p(x∗, xn+1) + p(xn+1, Tx
∗)− p(xn+1, xn+1)

≤ p(x∗, xn+1) + p(xn+1, Tx
∗)

≤ p(x∗, xn+1) +Hp(Txn, Tx
∗).
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Keeping the inequality (2.23) in mind and letting n→ ∞ in the inequality above, we derive
that

p(x∗, Tx∗) ≤ lim
n→∞

p(x∗, xn+1) + lim
n→∞

Hp(Txn, Tx
∗) < p(x∗, Tx∗),

which is a contradiction. As a result we have

p(x∗, Tx∗) = 0.

Now from (2.20), p(x∗, x∗) = 0, so we have

p(x∗, x∗) = 0 = p(x∗, Tx∗).

This implies x∗ ∈ Tx∗ from Remark 1.3. �
Example 2.3. Let X = {0, 1, 2} be endowed with the partial metric p : X×X → R+ defined
by

p(x, y) =
1

2
|x− y|+max{x, y} for all x, y ∈ X.

Then (X, p) is a complete partial metric space, and we have

p(0, 0) = 0; p(1, 1) = 1; p(2, 2) = 2;

p(0, 1) = p(1, 0) =
3

2
; p(0, 2) = p(2, 0) = 3; p(1, 2) =

5

2
.

We next define T : X → CB(X) by

T (0) = T (1) = {0} and T (2) = {0, 1}.
Then we have

(1) if x, y ∈ {0, 1}, then Hp(T (x), T (y)) = Hp({0}, {0}) = 0;
(2) if x ∈ {0, 1} and y = 2; then Hp(T (0), T (2)) = Hp(T (1), T (2)) = Hp({0}, {0, 1}) =

3
2 ;

(3) if x = y = 2; then Hp(T (2), T (2)) = Hp({0, 1}, {0, 1}) = sup{p(x, x) : x ∈
{0, 1}} = 1;

(4) p(0, T (0)) = 0, p(1, T (1)) = p(1, {0}) = 3
2 , p(2, T (2)) = p(2, {0, 1}) = 5

2 ;

(5) p(0, T (1)) = 0, p(1, T (0)) = 3
2 , p(0, T (2)) = 0, p(2, T (0)) = 3, p(1, T (2)) = 1,

p(2, T (1)) = 3.
Now, we put ϕ(t1, t2, t3, t4) =

2
3 max{t1, t2, t3, t4}. Then all of the hypotheses of The-

orem 2.1 are satisfied. Note x = 0 is the unique fixed point of T .

3. Conclusion

One could list several corollaries using Example 2.1. In addition choosing α in a
suitable way (see for example [17]) one can list several corollaries . Finally since each metric
space is a partial metric space, we see that the analog of Theorem 2.1 in a metric space is
new.
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