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ON (a— ¢)-MEIR-KEELER CONTRACTIONS ON PARTIAL HAUSDORFF
METRIC SPACES

Chi-Ming Chen!, Erdal Karapmar?, Donal O’Regan®

In this note we introduce the concept of a (o — ¢)-Meir-Keeler contraction for
multi-valued mappings and we investigate the existence of fized points of such mappings
in a complete partial metric space. Our results generalize, extend and unify several
recent fixed point results.

Keywords: Fixed point; strictly a-admissible; ¢-Meir-Keeler contraction; Partial Haus-
dorff metric space.

1. Introduction and Preliminaries

Throughout the paper, N and Ny denote the set of positive integers and the set of
nonnegative integers, respectively. Furthermore, R, RT and RS‘ represent the set of reals,
positive reals and nonnegative reals, respectively.

We recall the notion of a partial metric introduced by Matthews [13].

Definition 1.1. [13] A partial metric on a nonempty set X is a functionp: X x X — RS’
such that for all x,y,z € X,

(p1) @ =y if and only if p(z,z) = p(x,y) = p(y, y);

(p2) p(z,z) < p(z,y);

(p3) p(z,y) = p(y,z);

(pa) p(z,y) < p(z,2) + p(2,y) — p(2,2).

A pair (X,p) is called a partial metric space.

Remark 1.1. If p(z,y) = 0, then from (p1) and (p2), we have x = y. The converse may
not hold. For example let X = RY and p : X x X — R{ be p(z,y) = max{z,y}. Then
(X,p) is a partial metric space and p(z,x) # 0 for all x € X \ {0}.

Each partial metric p on X generates a Tj topology 7, on X which has as a base
the family of open p-balls {B,(z,v) : € X,y > 0}, where By(z,v) = {y € X : p(z,y) <
p(xz,x) +~} for all x € X and v > 0. If p is a partial metric on X, then the function
dy: X x X = R{ given by

dp(,y) = 2p(x,y) — p(x, ) — p(y, y)

is a metric on X.

Definition 1.2. [13, 5] Let (X,p) be a partial metric space. Then
(1) a sequence {x,,} in (X,p) converges to x € X if p(x,x) = limy, 00 (T, Tpn);
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(2) a sequence {x,} in (X,p) is called a Cauchy sequence if limy, n—soo P(Tm, Tpn) exists
(and is finite);

(3) (X,p) is said to be complete if every Cauchy sequence {xy} in X converges, with respect
to Tp, to a point x € X such that p(x,x) = limy, posoo P(Tm, Tn);

(4) a subset A of a partial metric space (X,p) is closed in (X,p) if it contains its limit
points, that is, if a sequence {x,} in A converges to some x € X, then x € A.

(5) a subset A of a partial metric space (X, p) is bounded in (X, p) if there exist xg € X and
M € R such that for all a € A, we have a € By(xo, M), that is, p(xg,a) < p(a,a)+ M.

Remark 1.2. The limit in a partial metric space may not be unique. For example, consider
the sequence {n%w}neN in the partial metric space (X,p) where p(z,y) = max{z,y}. Note

. 1 .
p(1,1) = Tim p(1, m) and  p(2,2) = nlggop(lm

Lemma 1.1. [13, 16] (1) {z,} is a Cauchy sequence in a partial metric space (X, p) if and
only if it is a Cauchy sequence in the metric space (X,dp);

(2) a partial metric space (X, p) is complete if and only if the metric space (X,dy) is
complete. Furthermore, lim,,_ o dp(zy,x) = 0 if and only if p(z,z) = lim,— oo p(Tp, ) =
My, 00 p(Tn, T

Fixed point theory in partial metric spaces were studied by many authors in the liter-
ature (see [1, 2, 3, 4, 8, 10, 11, 12, 16, 18, 19] and the reference therein). The authors in [9]
proved that some of the fixed point results in a partial metric space are equivalent to related
results in the associated metric space. In fact, for a self-mapping T on X, the authors in [9]
realized that MJ (z,y) = M, (z,y), where M (z,y) = max{p(z,y), p(z, Tx), p(Ty,y), p(T,y), p(z, Ty)}
with p = p,d where d, p are the metric, the partial metric, respectively. In our paper the
recent result in [9] is not applicable.

Let (X,d) be a metric space and let CB(X) denote the collection of all nonempty,
closed and bounded subsets of X. For A, B € CB(X), we define

H(A, B) := max{sup d(a, B),supd(b, A)},
a€A beB

where d(z, B) := inf{d(x,b) : b € B}. In the literature, H is called the Hausdorff metric

induced by the metric d. A multi-valued mapping T': X — CB(X) is called a contraction if
H(Tz, Ty) < kd(z,y),

for all z,y € X and k € [0,1).

Theorem 1.1. [15] Let (X,d) be a complete metric space and T : X — CB(X) be a
multi-valued contraction. Then there exists x € X such that x € Tx.

The authors in [5] considered the notion of a Hausdorff metric in a partial metric
space (called the partial Hausdorff metric 3(,). Let (X, p) be a partial metric space and let
C'BP(X) be the collection of all nonempty, closed and bounded subset of the partial metric
space (X,p). Let §, : CBP(X) x CBP(X) — R and H, : CBP(X) x CBP(X) — R be
mappings such that

p(z, A) .= inf{p(z,a) : a € A},
0,(A, B) :=sup{p(a, B) : a € A},
dp(B, A) :=sup{p(b, A) : b € B},
H,(A, B) = max{d,(4, B),,(B,A)},
for A,B € CBP(X) and z € X (for more details see [5]). If p(z, A) = 0, then d,(z,A) =0
where dy(z, A) = inf{d,(z,a) : a € A}.
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Remark 1.3. [5] Let (X,p) be a partial metric space and A be a nonempty subset of X.
Then
a € A if and only if p(a, A) = p(a,a).

The authors in [5] considered the mappings d§, : CBP(X) x CBP(X) — R} and
H, : CBP(X) x CBP(X) — R and proved the following results.

Proposition 1.1. [5] Let (X, p) be a partial metric space. For A, B € CBP(X), the following
properties hold:

(1) 6P(Aa A) = sup{p(a,a) : a € A};

(2) 6,(A. 4) < 6,(A, B);

(3) 9,(A, B) = 0 implies that A C B;

(4) 9,(A,B) < §,(A,C)+6,(C,B) —infeec ple, c).

Proposition 1.2. [5] Let (X, p) be a partial metric space. For A, B € CBP(X), the following
properties hold:

(2) }CP(A’ B) = :HP(B’A);
(3) Hp(A,B) <H,(A,C)+ H,(C, B) —infece p(e, ¢);
(4) H,(A, B) =0 implies that A = B.

Lemma 1.2. [5] Let (X,p) be a partial metric space, A, B € CBP(X) and h > 1. For any
a € A, there exists b= b(a) € B such that

p(a,b) < hdH,(A, B).

In 1969, Meir and Keeler [14] introduced the notion of a Meir-Keeler-type contraction
in a metric space (X, d).

Definition 1.3. [14] Let (X,p) be a metric space, f : X — X. Then f is called a Meir-
Keeler-type contraction whenever for each n > 0 there exists v > 0 such that

n<d(z,y) <n+vy=d(fr, fy) <n.

Definition 1.4. [17] Let f : X — X be a self-mapping of a set X and o : X x X — R{.
Then f is called a-admissible if

r,ye X, alz,y) >1= ofz, fy) > 1.

In this paper we introduce the notion of a (o — ¢)-Meir-Keeler contraction for a
multi-valued mapping T : X — CBP(X) in a partial metric space (X,p) and we examine
the existence of fixed points of such mappings. The results improve and extend several
results in the literature including a recent paper of Chen and Karapmar [6]. In particular
we note that the results are new in the metric space situation.

2. Main results

In this section, we state and prove our main result.
Let ¥ be the family of functions 1 : [0,00) — [0, 00) satisfying the following condi-
tions:
i): v is nondecreasing;
ii): there exist ky € Nand a € (0, 1) and a convergent series of nonnegative terms y ;- | v
such that
YE () < adt (1) + o,
for k > ko and any t € RT.
In the literature such functions are called (c)-comparison functions (see [25] and also [28,
29, 30]).
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Lemma 2.1. (See e.g. [25]) If ¢ € U, then the following hold:
(i) (" (1)), ey converges to 0 asn — oo for all t € RY;

(i1) ¥ (t) < t, for any t € RT;
(79t) 1 is continuous at 0;
iv) the series S oo * (t) converges for any t € RY.
k=1

We denote by ® the class of functions ¢ : (RJ)* — Ry satisfying the following
conditions:
(¢1) ¢ is an increasing and continuous function in each coordinate;
(¢2) for each ¢ there exists ¢ € W such that ¢(t,¢,t,t) = (t) for all t € Ry,

Example 2.1. Let ¢1, ¢, ¢3, b4 : (RF)* — RE be mappings such that

Pr(ty,to,ts,ta) = 5(tr +ta +t3 +ta),
¢o(t1,to,t3,ts) = kmax{ty,to, 13,14},
G3(ti,to,ts,ts) =In(1+E(t; + 6o +t3+ 1))

)
where 0 < k < 1. Note ¢1, pa, p3 € . Moreover, the corresponding (c)-comparison functions
are

U (t) = kt, ¢2(t) = kt, ’ng(t) = 111(1 + t)
where Py, 1P, 1P3 € V.
Example 2.2. Consider a mapping ¢ : (RT)* — R which is defined as
pa(t1,ta,t3,ts) = kity + kato + K3tz + katy,

where 0 < k;, 1 = 1,2,3,4 and Z?Zl k; < 1. Hence, ¢ € ®. Notice also that the
corresponding (c)-comparison function is

P(t) = (k1 + ko + k3 + ka)t,
where ¥ € W.

We now introduce the notion of a (o — ¢)-Meir-Keeler contraction with respect to the
partial Hausdorff metric H,, induced by the partial metric.

Definition 2.1. Let (X,p) be a partial metric space, o : X X X — R(J{ be a mapping and
¢ € ©. A multi-valued mapping T : X — CBP(X) is called a (a«—¢p)-Meir-Keeler contraction
with respect to the associated partial Hausdorff metric 3, if the following conditions hold:
(C) For each n > 0, there exists § > 0 such that

1
n <o(p(w,y).p(z, ), p(y, Ty), 5lp(x, Ty) + ply, Tw)]) <n+6
= oz, y)H,(Tz,Ty) <n, (2.2)
forall x,y € X.
A multi-valued mapping T is called a ¢-Meir-Keeler-type contraction if a(x,y) =1 for
all x,y € X in (2.2), that is,
1
=3,(Tz,Ty)) <n,
forallz,y € X.

Remark 2.1. Note that if T : X — CBP(X) is a (o — ¢)-Meir-Keeler contraction with
respect to the associated partial Hausdorff metric 3, then we have

Lip(e, Ty) + ply, T2)),

Ol(:l?,y)f}{p(Tl‘,Ty) < gi)(p(x, y)vp(va*T’)ap(yaTy)’ 5
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for allz,y € X. Notice that if ¢(p(z,y), p(x, Tx), p(y, Ty), 3[p(x, Ty) + p(y, Tx)]) > 0, then
we have

oz, y)H,(Tx, Ty) < ¢(p(x,y), p(x, Tx), p(y, Ty), %[p(w, Ty) + p(y, Tx)]).

We now introduce the notion of a strictly a-admissible mapping which is a slight
modification of Definition 1.4.

Definition 2.2. Let (X,p) be a partial metric space, T : X — CBP(X) and o : X x X —
Rar. We say that T is strictly a-admissible if

a(z,y) > 1 implies a(y,z) > 1,
foralxe X, yeTx and z € Ty.
We now state and prove our main result.

Theorem 2.1. Let (X,p) be a complete partial metric space and o : X x X — RS’ be a

mapping. Suppose that a multi-valued mapping T : X — CBP(X) is a (o — ¢)-Meir-Keeler

contraction with respect to the associated partial Hausdorff metric 3,. Also assume that
(1) T is strictly a—admissible;

(i3) there exists xg € X such that a(xo,y) > 1 for ally € Txop;

(#3t) if {zn} is a sequence in X such that a(Tpn,Tpy1) > 1 for alln and 2, — x € X as

n — oo, then a(xy,x) > 1 for all n.
Then T has a fized point in X, that is, there exists x* € X such that x* € Tx*.

Proof. Let x1 € Tzg. Since T : X — CBP(X) is a (o — ¢)-Meir-Keeler contraction
with respect to the associated partial Hausdorff metric 3{,, by Remark 2.1, we have that

a(xo, z1)H,(Txo, Tx1)
1
S ¢(p(x07xl)vp(x07TxO)7p(xla Txl)a §[p(x07Tx1) +p($1»T=TO)]) (23)
Let a(zo,21) = ko. Note kg > 1. Now Lemma 1.2 with h = /ko implies that there exists
To € Txy with
p(x1,22) < VkoHp(Txo, Tx1). (2.4)
Using (2.3) and (2.4), we get
1

p(x1,x2) < é(p(xo, 1), (w0, Tx0), p(21, T21), %[p(ﬂfo,Txl) + p(z1,Tx0)])

Vko
< \/Lk»oﬂp(l“o’ 1‘1),]7(1‘0, 1‘1),])(]}1, x2)’ %[p(l‘o, 332) +p(l‘1, 1‘1)])
< V%(b(p(xo’xl),p(xo,ml)ap(fﬂh T2), %[p(fﬂoy z1) + p(z1, 72)])- (2.5)

If p(zo, z1) < p(w1,72), then, by (¢1) we have

p(ry, x2) < ﬁéﬂp(%afl)yp(fo,xl),P(xl, T3), %[P(xo, x1) + p(x1, 22)])

1
< ﬁ (p(x1,22), p(w1,22),p(21, 22), p(T1, T2)).

By (¢1) there exists ¢ € ¥ so that

d(p(z1,22), p(w1, 72), p(1, T2), P(T1, 72)) = P (P(71, 72)).
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Combining the observations above, together with Lemma 2.1(ii), we find that
1
p(mth) < 77”17(951,232)) < p(3317$2)7
Vko
which is a contradiction. Hence, we have p(x1,x2) < p(xg,x1). Due to (11), we derive that

p(z1,22) < \/Lk»ocb(p(xo? x1),p(xo, 1), p(x1, T2), %[p(xo, x1) + p(x1, 22)])

< Lkoqb(p(ﬂv"m331)717(9730,a:l),p(g:m xl),p(l‘o,xl))

1
\/7»07#(2?(960, 1)) (2.6)
1

< ——=p(xo,T1).
< kop( 0,71)
Let a(x1,x2) = k1. Note k; > 1. Now Lemma 1.2 with h = \/k; implies that there
exists x3 € Txy with

p(l‘271‘3) S v klg{p(TiEth'g). (27)

Using (2.3) and (2.7), we obtain
1 1

p(x2, x3) < d(p(x1, x2), p(xr, Tr1), p(22, TX2), §[p($1,T$2) + p(x2, Tx1)])

5p(1,23) + plaz. )

Op1,22), D01, 22), D2, ), 3 [Pl 22) + D2, 23)]).

IN

($1,.’E2)7p<$1,l‘2),p(l‘2, mS)

o

=

IN

Bl

If p(21, 22) < p(x2,x3), then by (¢1) and (¢2), we get

p(x2,73) < \/%éb(p(xh$2)7P(9317172),p(172a r3), %[p(xh T2) + p(2,73)])
< \/%Qi?(p@m563)717(5627903),]9(962,$3)ap($2a$3))
< \/%7#(17(562@3)) < plas,xs),

a contradiction. Thus, p(zs, x3) < p(z1,z2) and hence, we have
Pl 2) < Z=0(plar,22).p(w1.72).plaz,23). 3ol 22) + plaz,23))
< 0ol ) plar.a2). ples,z2) o, )
< (bl a2)) < H(plar,a2)
< W (p(e0,21)) < plo, 1) (2.9

Recursively, we obtain an iterative sequence {z,} € X as follows:
T, € Tx,_1 forall neN.

Moreover, we put
a(xy, Tpy1) =k, > 1, for all n € Ny. (2.9)
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Since T : X — CBP(X) is a (o — ¢)-Meir-Keeler contraction with respect to the associated
partial Hausdorff metric J(,, again by Remark 2.1, we have

(@, Tnt1)Hp(Txyn, Tng1)
<P 41): P, T0), D1, T ), 3 o, Tnis) + planss, Tan)]) (210
for all n € Ng. From Lemma 1.2 with h = /k,,, we obtain x,, 1o € T2, such that
P(Tpa1, Tpnta) < \/Eﬂfp(Ta:n,Tan), n € Np. (2.11)
Using (2.10) and (2.11), we observe that

P(Trt1, Tnt2)

<

1
¢(p(xn7 xn—&-l):p(xna T.Tn),p(lfn+1, T$n+1), 9 [p(zna T.In+1) + p(zn-&-la T,In)D
2

»—l%»—l
3

IN

-5
3

1
SP(@n, Tng1), P(@n, Tni1), P(Tng1, Tng2), 5 D(Zn, Tnt2) + P(Tni1, Tn1)])

IN

5

(],5(])(27”, xn+1)7p(x'fla xn-‘rl)a p(xn-‘rla xn+2)a 5 [p(arn, xn+1) + p(mn—&-la xn+2)D-

If p(xvuxn—&-l) S p(xn+1a mn+2)a then

—_

p($n+17 $n+2) ¢(p(33n+1, $n+2), p($n+1, $n+2)7p(33n+17 $n+2)7p($n+17 $n+2))

A

<
S ’(/}(p(anrlaanrZ)) < p($n+17$n+2)7

a contradiction. Hence, we conclude that p(z,, n41) > p(Tnt1, Tnye). Therefore, we have

P(Trg1, Tny2) < \/Lk—nw(P(xml’n—&-l)) < Y(p(Tn, Tpy1)) < p(Tns Togr)- (2.12)

Keeping the expression (2.6), (2.8) and (2.12) in mind, we obtain

P(ns1 Eniz) < \/%wp(xmwm

n

< Y(p(Tn, Tpy1))

< 1/)2(10(%—1, zn))
< ...

< 4" (p(ao, 21). (2.13)

Taking Lemma 2.1(i) into account and by letting n — oo in the inequality above we find
that

lim p(xn, zp41) = 0. (2.16)

n— oo

From the property (p2) of a partial metric and using (2.16), we have

lim p(z,,z,) = 0. (2.17)

n—oo
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Now (2.15) together with the property (p4) of a partial metric, for any m € N, we have

I
—

p(:cnaxn+m) < Zp(xrwi—laxn—ki)* p(xn—&-i,xn—&-i)

%
n+m—1 1

> (a1, 20) = Y P(@nsis Toti)

1

3
[

IN

i

n+m—1
S v (p(ar, o))

o0
an(p(ml,xo)) — 0 asn — oo.

p=n

IN

IN

Thus,

nli_}n;op(:nn, Tptm) = 0.

From the definition of d,, we obtain that for any m € N,
711320 dp(Tns Tngm) < HILH;O 2p(zp, Tptm) = 0. (2.19)

Hence, we conclude that {z,} is a Cauchy sequence in (X,d,). Since (X,p) is complete,
from Lemma 1.1, (X,d),) is a complete metric space. Therefore, {z,} converges to some
x* € X with respect to the associated partial metric, and, hence,

p(z*,2*) = lim p(z,,z") = lim p(x,,zm) =0. (2.20)
n—oo n—oo
Now we claim p(z*,Tz*) = 0. Suppose, on the contrary, that p(z*,Tx*) > 0. Since T :

X — CBP(X) is a (a — ¢)-Meir-Keeler contraction with respect to associated the partial
Hausdorff metric 3, by Remark 2.1, we have

(T, v ){]—[ (Tzn, Tz*) < (p(wn,z¥), p(xn,Txn),p(x*,Tx*),%[p(xn,Tx*)+p(m*,Txn)})
< ¢( (xn’ ) p(mn,xn+1),p(x*,Tx*), %[p(xnaTx*> +p($*,xn+1)}).

Letting n — oo in the inequality above (note (iii) in the statement of Theorem 2.1 and
(2.20)), we have

lim H,(Txy,, Tx*) < lim a(x,,2")H,(Tz,, Tx")
n—oo

n— oo

< B (p(rn 2°), P, Tns1), (@ Ta), 2 [ To) 4 pla”, 20)])

= ¢(0,0,p(z*, Tx™), ; (z*,Tx")
< ¢(p(z*, Tx"),p(z*, Tax"), p(z*, Tz*), p(z*, Tz")
= Y(p(z”, Tx"))

< p(z*, Tx"); (2.21)
Hence,
nlgl;oi]{ (Txp, Tx*) < p(z”, Tz"). (2.23)
Now z,,41 € Txy, sO
P(@ny1, T2") < 6p(Tay, Tae") < Hp(Tay, Tx™). (2.24)

From the weakened triangle inequality, together with the inequality (2.24) we have

p(x*a T'T*) S p(l'*, xn+1) +p($n+1’ TI*) - p(xn+17 xn+1)
<p(*, wpi1) + p(@pt1, Tx")
<pla*, zpy1) + Hp(Tzp, Ta").
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Keeping the inequality (2.23) in mind and letting n — oo in the inequality above, we derive
that
p(a*, Te*) < lim pla*,wni1) + lim 9, (Ta,, Ta*) < p(a*, Ta*),
n—oo n—oo
which is a contradiction. As a result we have
p(z*, Tz*) = 0.

Now from (2.20), p(z*,z*) = 0, so we have

p(z”,2%) =0 =p(a",Tz").
This implies z* € Txz* from Remark 1.3. [J
Example 2.3. Let X = {0,1,2} be endowed with the partial metricp : X x X — RT defined
by

1

p(z,y) = §|m —y| + max{x,y} forall x,y € X.

Then (X,p) is a complete partial metric space, and we have

p(0,0) =0; p(1,1) =1; p(2,2) = 2;

p(0.1) = p(1,0) = 55 p(0,2) = p(2,0) = 35 p(1,2) =
We next define T : X — CB(X) by
T(0)=T(1) ={0} and T(2) ={0,1}.

Then we have

(1) if x,y € {0, 1}, then Hp(T z),T(y)) = j{p({o}v {0}) =0;
(2) ifz € {0,1} andy = 2; then H,(T(0),T(2)) = H,(T(1),T(2)) = H,({0},{0,1}) =

3.
oL

(3) if x = y = 2; then H,(T(2),T(2)) = H,({0,1},{0,1}) = sup{p(z,x) : = €
{0,1}} = 1;

(4) p(0,7(0)) =0, p(1, (1)) = p(1,{0}) = 3. p(2,T(2)) = p(2,{0,1}) = 3;

(5) p(O,T(l)) =0, p(l,T(O)) = %: p(07T(2)) =0, p(2,T(O)> =3, p(17T(2)) =1,
p(2,T(1)) = 3.

Now, we put ¢(t1,ta,t3,t4) = %maX{t17t27t3,t4}. Then all of the hypotheses of The-
orem 2.1 are satisfied. Note x = 0 is the unique fized point of T'.

3. Conclusion

One could list several corollaries using Example 2.1. In addition choosing « in a
suitable way (see for example [17]) one can list several corollaries . Finally since each metric
space is a partial metric space, we see that the analog of Theorem 2.1 in a metric space is
new.
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