

ON $(\alpha - \phi)$ -MEIR-KEELER CONTRACTIONS ON PARTIAL HAUSDORFF METRIC SPACES

Chi-Ming Chen¹, Erdal Karapinar², Donal O'Regan³

In this note we introduce the concept of a $(\alpha - \phi)$ -Meir-Keeler contraction for multi-valued mappings and we investigate the existence of fixed points of such mappings in a complete partial metric space. Our results generalize, extend and unify several recent fixed point results.

Keywords: Fixed point; strictly α -admissible; ϕ -Meir-Keeler contraction; Partial Hausdorff metric space.

1. Introduction and Preliminaries

Throughout the paper, \mathbb{N} and \mathbb{N}_0 denote the set of positive integers and the set of nonnegative integers, respectively. Furthermore, \mathbb{R} , \mathbb{R}^+ and \mathbb{R}_0^+ represent the set of reals, positive reals and nonnegative reals, respectively.

We recall the notion of a partial metric introduced by Matthews [13].

Definition 1.1. [13] *A partial metric on a nonempty set X is a function $p : X \times X \rightarrow \mathbb{R}_0^+$ such that for all $x, y, z \in X$,*

- (p₁) $x = y$ if and only if $p(x, x) = p(x, y) = p(y, y)$;
- (p₂) $p(x, x) \leq p(x, y)$;
- (p₃) $p(x, y) = p(y, x)$;
- (p₄) $p(x, y) \leq p(x, z) + p(z, y) - p(z, z)$.

A pair (X, p) is called a partial metric space.

Remark 1.1. *If $p(x, y) = 0$, then from (p₁) and (p₂), we have $x = y$. The converse may not hold. For example let $X = \mathbb{R}_0^+$ and $p : X \times X \rightarrow \mathbb{R}_0^+$ be $p(x, y) = \max\{x, y\}$. Then (X, p) is a partial metric space and $p(x, x) \neq 0$ for all $x \in X \setminus \{0\}$.*

Each partial metric p on X generates a T_0 topology τ_p on X which has as a base the family of open p -balls $\{B_p(x, \gamma) : x \in X, \gamma > 0\}$, where $B_p(x, \gamma) = \{y \in X : p(x, y) < p(x, x) + \gamma\}$ for all $x \in X$ and $\gamma > 0$. If p is a partial metric on X , then the function $d_p : X \times X \rightarrow \mathbb{R}_0^+$ given by

$$d_p(x, y) = 2p(x, y) - p(x, x) - p(y, y)$$

is a metric on X .

Definition 1.2. [13, 5] *Let (X, p) be a partial metric space. Then*

- (1) *a sequence $\{x_n\}$ in (X, p) converges to $x \in X$ if $p(x, x) = \lim_{n \rightarrow \infty} p(x, x_n)$;*

¹Department of Applied Mathematics, National Hsinchu University of Education, Taiwan

² Department of Mathematics, Atilim University 06836, Incek, Ankara-Turkey and, Nonlinear Analysis and Applied Mathematics Research Group (NAAM), King Abdulaziz University, Jeddah, Saudi Arabia, e-mail: erdalkarapinar@yahoo.com

³Professor, School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

- (2) a sequence $\{x_n\}$ in (X, p) is called a Cauchy sequence if $\lim_{m,n \rightarrow \infty} p(x_m, x_n)$ exists (and is finite);
- (3) (X, p) is said to be complete if every Cauchy sequence $\{x_n\}$ in X converges, with respect to τ_p , to a point $x \in X$ such that $p(x, x) = \lim_{m,n \rightarrow \infty} p(x_m, x_n)$;
- (4) a subset A of a partial metric space (X, p) is closed in (X, p) if it contains its limit points, that is, if a sequence $\{x_n\}$ in A converges to some $x \in X$, then $x \in A$.
- (5) a subset A of a partial metric space (X, p) is bounded in (X, p) if there exist $x_0 \in X$ and $M \in \mathbb{R}$ such that for all $a \in A$, we have $a \in B_p(x_0, M)$, that is, $p(x_0, a) < p(a, a) + M$.

Remark 1.2. The limit in a partial metric space may not be unique. For example, consider the sequence $\{\frac{1}{n^2+2}\}_{n \in \mathbb{N}}$ in the partial metric space (X, p) where $p(x, y) = \max\{x, y\}$. Note

$$p(1, 1) = \lim_{n \rightarrow \infty} p(1, \frac{1}{n^2+2}) \quad \text{and} \quad p(2, 2) = \lim_{n \rightarrow \infty} p(2, \frac{1}{n^2+2}).$$

Lemma 1.1. [13, 16] (1) $\{x_n\}$ is a Cauchy sequence in a partial metric space (X, p) if and only if it is a Cauchy sequence in the metric space (X, d_p) ;

(2) a partial metric space (X, p) is complete if and only if the metric space (X, d_p) is complete. Furthermore, $\lim_{n \rightarrow \infty} d_p(x_n, x) = 0$ if and only if $p(x, x) = \lim_{n \rightarrow \infty} p(x_n, x) = \lim_{n \rightarrow \infty} p(x_n, x_m)$.

Fixed point theory in partial metric spaces were studied by many authors in the literature (see [1, 2, 3, 4, 8, 10, 11, 12, 16, 18, 19] and the reference therein). The authors in [9] proved that some of the fixed point results in a partial metric space are equivalent to related results in the associated metric space. In fact, for a self-mapping T on X , the authors in [9] realized that $M_d^T(x, y) = M_p^T(x, y)$, where $M_\rho^T(x, y) = \max\{\rho(x, y), \rho(x, Tx), \rho(Ty, y), \rho(Tx, y), \rho(x, Ty)\}$ with $\rho = p, d$ where d, p are the metric, the partial metric, respectively. In our paper the recent result in [9] is not applicable.

Let (X, d) be a metric space and let $CB(X)$ denote the collection of all nonempty, closed and bounded subsets of X . For $A, B \in CB(X)$, we define

$$\mathcal{H}(A, B) := \max\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A)\},$$

where $d(x, B) := \inf\{d(x, b) : b \in B\}$. In the literature, \mathcal{H} is called the Hausdorff metric induced by the metric d . A multi-valued mapping $T : X \rightarrow CB(X)$ is called a contraction if

$$\mathcal{H}(Tx, Ty) \leq kd(x, y),$$

for all $x, y \in X$ and $k \in [0, 1)$.

Theorem 1.1. [15] Let (X, d) be a complete metric space and $T : X \rightarrow CB(X)$ be a multi-valued contraction. Then there exists $x \in X$ such that $x \in Tx$.

The authors in [5] considered the notion of a Hausdorff metric in a partial metric space (called the partial Hausdorff metric \mathcal{H}_p). Let (X, p) be a partial metric space and let $CB^p(X)$ be the collection of all nonempty, closed and bounded subset of the partial metric space (X, p) . Let $\delta_p : CB^p(X) \times CB^p(X) \rightarrow \mathbb{R}_0^+$ and $\mathcal{H}_p : CB^p(X) \times CB^p(X) \rightarrow \mathbb{R}_0^+$ be mappings such that

$$\begin{aligned} p(x, A) &:= \inf\{p(x, a) : a \in A\}, \\ \delta_p(A, B) &:= \sup\{p(a, B) : a \in A\}, \\ \delta_p(B, A) &:= \sup\{p(b, A) : b \in B\}, \\ \mathcal{H}_p(A, B) &= \max\{\delta_p(A, B), \delta_p(B, A)\}, \end{aligned}$$

for $A, B \in CB^p(X)$ and $x \in X$ (for more details see [5]). If $p(x, A) = 0$, then $d_p(x, A) = 0$ where $d_p(x, A) = \inf\{d_p(x, a) : a \in A\}$.

Remark 1.3. [5] Let (X, p) be a partial metric space and A be a nonempty subset of X . Then

$$a \in \overline{A} \text{ if and only if } p(a, A) = p(a, a).$$

The authors in [5] considered the mappings $\delta_p : CB^p(X) \times CB^p(X) \rightarrow \mathbb{R}_0^+$ and $\mathcal{H}_p : CB^p(X) \times CB^p(X) \rightarrow \mathbb{R}_0^+$ and proved the following results.

Proposition 1.1. [5] Let (X, p) be a partial metric space. For $A, B \in CB^p(X)$, the following properties hold:

- (1) $\delta_p(A, A) = \sup\{p(a, a) : a \in A\};$
- (2) $\delta_p(A, A) \leq \delta_p(A, B);$
- (3) $\delta_p(A, B) = 0$ implies that $A \subset B$;
- (4) $\delta_p(A, B) \leq \delta_p(A, C) + \delta_p(C, B) - \inf_{c \in C} p(c, c).$

Proposition 1.2. [5] Let (X, p) be a partial metric space. For $A, B \in CB^p(X)$, the following properties hold:

- (1) $\mathcal{H}_p(A, A) \leq \mathcal{H}_p(A, B);$
- (2) $\mathcal{H}_p(A, B) = \mathcal{H}_p(B, A);$
- (3) $\mathcal{H}_p(A, B) \leq \mathcal{H}_p(A, C) + \mathcal{H}_p(C, B) - \inf_{c \in C} p(c, c);$
- (4) $\mathcal{H}_p(A, B) = 0$ implies that $A = B$.

Lemma 1.2. [5] Let (X, p) be a partial metric space, $A, B \in CB^p(X)$ and $h > 1$. For any $a \in A$, there exists $b = b(a) \in B$ such that

$$p(a, b) \leq h\mathcal{H}_p(A, B).$$

In 1969, Meir and Keeler [14] introduced the notion of a Meir-Keeler-type contraction in a metric space (X, d) .

Definition 1.3. [14] Let (X, p) be a metric space, $f : X \rightarrow X$. Then f is called a Meir-Keeler-type contraction whenever for each $\eta > 0$ there exists $\gamma > 0$ such that

$$\eta \leq d(x, y) < \eta + \gamma \implies d(fx, fy) < \eta.$$

Definition 1.4. [17] Let $f : X \rightarrow X$ be a self-mapping of a set X and $\alpha : X \times X \rightarrow \mathbb{R}_0^+$. Then f is called α -admissible if

$$x, y \in X, \alpha(x, y) \geq 1 \implies \alpha(fx, fy) \geq 1.$$

In this paper we introduce the notion of a $(\alpha - \phi)$ -Meir-Keeler contraction for a multi-valued mapping $T : X \rightarrow CB^p(X)$ in a partial metric space (X, p) and we examine the existence of fixed points of such mappings. The results improve and extend several results in the literature including a recent paper of Chen and Karapinar [6]. In particular we note that the results are new in the metric space situation.

2. Main results

In this section, we state and prove our main result.

Let Ψ be the family of functions $\psi : [0, \infty) \rightarrow [0, \infty)$ satisfying the following conditions:

- i): ψ is nondecreasing;
- ii): there exist $k_0 \in \mathbb{N}$ and $a \in (0, 1)$ and a convergent series of nonnegative terms $\sum_{k=1}^{\infty} v_k$ such that

$$\psi^{k+1}(t) \leq a\psi^k(t) + v_k,$$

for $k \geq k_0$ and any $t \in \mathbb{R}^+$.

In the literature such functions are called (c) -comparison functions (see [25] and also [28, 29, 30]).

Lemma 2.1. (See e.g. [25]) If $\psi \in \Psi$, then the following hold:

- (i) $(\psi^n(t))_{n \in \mathbb{N}}$ converges to 0 as $n \rightarrow \infty$ for all $t \in \mathbb{R}^+$;
- (ii) $\psi(t) < t$, for any $t \in \mathbb{R}^+$;
- (iii) ψ is continuous at 0;
- (iv) the series $\sum_{k=1}^{\infty} \psi^k(t)$ converges for any $t \in \mathbb{R}^+$.

We denote by Φ the class of functions $\phi : (\mathbb{R}_0^+)^4 \rightarrow \mathbb{R}_0^+$ satisfying the following conditions:

- (ϕ_1) ϕ is an increasing and continuous function in each coordinate;
- (ϕ_2) for each ϕ there exists $\psi \in \Psi$ such that $\phi(t, t, t, t) = \psi(t)$ for all $t \in \mathbb{R}_0^+$,

Example 2.1. Let $\phi_1, \phi_2, \phi_3, \phi_4 : (\mathbb{R}_0^+)^4 \rightarrow \mathbb{R}_0^+$ be mappings such that

$$\begin{aligned}\phi_1(t_1, t_2, t_3, t_4) &= \frac{k}{4}(t_1 + t_2 + t_3 + t_4), \\ \phi_2(t_1, t_2, t_3, t_4) &= k \max\{t_1, t_2, t_3, t_4\}, \\ \phi_3(t_1, t_2, t_3, t_4) &= \ln(1 + \frac{k}{4}(t_1 + t_2 + t_3 + t_4)),\end{aligned}$$

where $0 < k < 1$. Note $\phi_1, \phi_2, \phi_3 \in \Phi$. Moreover, the corresponding (c)-comparison functions are

$$\psi_1(t) = kt, \quad \psi_2(t) = kt, \quad \psi_3(t) = \ln(1 + t)$$

where $\psi_1, \psi_2, \psi_3 \in \Psi$.

Example 2.2. Consider a mapping $\varphi : (\mathbb{R}_0^+)^4 \rightarrow \mathbb{R}_0^+$ which is defined as

$$\varphi_2(t_1, t_2, t_3, t_4) = k_1 t_1 + k_2 t_2 + k_3 t_3 + k_4 t_4,$$

where $0 < k_i$, $i = 1, 2, 3, 4$ and $\sum_{i=1}^4 k_i < 1$. Hence, $\varphi \in \Phi$. Notice also that the corresponding (c)-comparison function is

$$\psi(t) = (k_1 + k_2 + k_3 + k_4)t,$$

where $\psi \in \Psi$.

We now introduce the notion of a $(\alpha - \phi)$ -Meir-Keeler contraction with respect to the partial Hausdorff metric \mathcal{H}_p induced by the partial metric.

Definition 2.1. Let (X, p) be a partial metric space, $\alpha : X \times X \rightarrow \mathbb{R}_0^+$ be a mapping and $\phi \in \Phi$. A multi-valued mapping $T : X \rightarrow CB^p(X)$ is called a $(\alpha - \phi)$ -Meir-Keeler contraction with respect to the associated partial Hausdorff metric \mathcal{H}_p if the following conditions hold:

(C) For each $\eta > 0$, there exists $\delta > 0$ such that

$$\begin{aligned}\eta \leq \phi(p(x, y), p(x, Tx), p(y, Ty), \frac{1}{2}[p(x, Ty) + p(y, Tx)]) &< \eta + \delta \\ \implies \alpha(x, y) \mathcal{H}_p(Tx, Ty) &< \eta,\end{aligned}\tag{2.2}$$

for all $x, y \in X$.

A multi-valued mapping T is called a ϕ -Meir-Keeler-type contraction if $\alpha(x, y) = 1$ for all $x, y \in X$ in (2.2), that is,

$$\begin{aligned}\eta \leq \phi(p(x, y), p(x, Tx), p(y, Ty), \frac{1}{2}[p(x, Ty) + p(y, Tx)]) &< \eta + \delta \\ \implies \mathcal{H}_p(Tx, Ty) &< \eta,\end{aligned}$$

for all $x, y \in X$.

Remark 2.1. Note that if $T : X \rightarrow CB^p(X)$ is a $(\alpha - \phi)$ -Meir-Keeler contraction with respect to the associated partial Hausdorff metric \mathcal{H}_p , then we have

$$\alpha(x, y) \mathcal{H}_p(Tx, Ty) \leq \phi(p(x, y), p(x, Tx), p(y, Ty), \frac{1}{2}[p(x, Ty) + p(y, Tx)]),$$

for all $x, y \in X$. Notice that if $\phi(p(x, y), p(x, Tx), p(y, Ty), \frac{1}{2}[p(x, Ty) + p(y, Tx)]) > 0$, then we have

$$\alpha(x, y)\mathcal{H}_p(Tx, Ty) < \phi(p(x, y), p(x, Tx), p(y, Ty), \frac{1}{2}[p(x, Ty) + p(y, Tx)]).$$

We now introduce the notion of a strictly α -admissible mapping which is a slight modification of Definition 1.4.

Definition 2.2. Let (X, p) be a partial metric space, $T : X \rightarrow CB^p(X)$ and $\alpha : X \times X \rightarrow \mathbb{R}_0^+$. We say that T is strictly α -admissible if

$$\alpha(x, y) > 1 \text{ implies } \alpha(y, z) > 1,$$

for all $x \in X$, $y \in Tx$ and $z \in Ty$.

We now state and prove our main result.

Theorem 2.1. Let (X, p) be a complete partial metric space and $\alpha : X \times X \rightarrow \mathbb{R}_0^+$ be a mapping. Suppose that a multi-valued mapping $T : X \rightarrow CB^p(X)$ is a $(\alpha - \phi)$ -Meir-Keeler contraction with respect to the associated partial Hausdorff metric \mathcal{H}_p . Also assume that

- (i) T is strictly α -admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, y) > 1$ for all $y \in Tx_0$;
- (iii) if $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) > 1$ for all n and $x_n \rightarrow x \in X$ as $n \rightarrow \infty$, then $\alpha(x_n, x) > 1$ for all n .

Then T has a fixed point in X , that is, there exists $x^* \in X$ such that $x^* \in Tx^*$.

Proof. Let $x_1 \in Tx_0$. Since $T : X \rightarrow CB^p(X)$ is a $(\alpha - \phi)$ -Meir-Keeler contraction with respect to the associated partial Hausdorff metric \mathcal{H}_p , by Remark 2.1, we have that

$$\begin{aligned} \alpha(x_0, x_1)\mathcal{H}_p(Tx_0, Tx_1) \\ \leq \phi(p(x_0, x_1), p(x_0, Tx_0), p(x_1, Tx_1), \frac{1}{2}[p(x_0, Tx_1) + p(x_1, Tx_0)]). \end{aligned} \quad (2.3)$$

Let $\alpha(x_0, x_1) = k_0$. Note $k_0 > 1$. Now Lemma 1.2 with $h = \sqrt{k_0}$ implies that there exists $x_2 \in Tx_1$ with

$$p(x_1, x_2) \leq \sqrt{k_0}\mathcal{H}_p(Tx_0, Tx_1). \quad (2.4)$$

Using (2.3) and (2.4), we get

$$\begin{aligned} p(x_1, x_2) &< \frac{1}{\sqrt{k_0}}\phi(p(x_0, x_1), p(x_0, Tx_0), p(x_1, Tx_1), \frac{1}{2}[p(x_0, Tx_1) + p(x_1, Tx_0)]) \\ &\leq \frac{1}{\sqrt{k_0}}\phi(p(x_0, x_1), p(x_0, x_1), p(x_1, x_2), \frac{1}{2}[p(x_0, x_2) + p(x_1, x_1)]) \\ &\leq \frac{1}{\sqrt{k_0}}\phi(p(x_0, x_1), p(x_0, x_1), p(x_1, x_2), \frac{1}{2}[p(x_0, x_1) + p(x_1, x_2)]). \end{aligned} \quad (2.5)$$

If $p(x_0, x_1) \leq p(x_1, x_2)$, then, by (ϕ_1) we have

$$\begin{aligned} p(x_1, x_2) &< \frac{1}{\sqrt{k_0}}\phi(p(x_0, x_1), p(x_0, x_1), p(x_1, x_2), \frac{1}{2}[p(x_0, x_1) + p(x_1, x_2)]) \\ &\leq \frac{1}{\sqrt{k_0}}\phi(p(x_1, x_2), p(x_1, x_2), p(x_1, x_2), p(x_1, x_2)). \end{aligned}$$

By (ϕ_1) there exists $\psi \in \Psi$ so that

$$\phi(p(x_1, x_2), p(x_1, x_2), p(x_1, x_2), p(x_1, x_2)) = \psi(p(x_1, x_2)).$$

Combining the observations above, together with Lemma 2.1(ii), we find that

$$p(x_1, x_2) \leq \frac{1}{\sqrt{k_0}}\psi(p(x_1, x_2)) < p(x_1, x_2),$$

which is a contradiction. Hence, we have $p(x_1, x_2) < p(x_0, x_1)$. Due to (ψ_1) , we derive that

$$\begin{aligned} p(x_1, x_2) &< \frac{1}{\sqrt{k_0}}\phi(p(x_0, x_1), p(x_0, x_1), p(x_1, x_2), \frac{1}{2}[p(x_0, x_1) + p(x_1, x_2)]) \\ &\leq \frac{1}{\sqrt{k_0}}\phi(p(x_0, x_1), p(x_0, x_1), p(x_0, x_1), p(x_0, x_1)) \\ &= \frac{1}{\sqrt{k_0}}\psi(p(x_0, x_1)) \\ &\leq \frac{1}{\sqrt{k_0}}p(x_0, x_1). \end{aligned} \tag{2.6}$$

Let $\alpha(x_1, x_2) = k_1$. Note $k_1 > 1$. Now Lemma 1.2 with $h = \sqrt{k_1}$ implies that there exists $x_3 \in Tx_2$ with

$$p(x_2, x_3) \leq \sqrt{k_1}\mathcal{H}_p(Tx_1, Tx_2). \tag{2.7}$$

Using (2.3) and (2.7), we obtain

$$\begin{aligned} p(x_2, x_3) &< \frac{1}{\sqrt{k_1}}\phi(p(x_1, x_2), p(x_1, Tx_1), p(x_2, Tx_2), \frac{1}{2}[p(x_1, Tx_2) + p(x_2, Tx_1)]) \\ &\leq \frac{1}{\sqrt{k_1}}\phi(p(x_1, x_2), p(x_1, x_2), p(x_2, x_3), \frac{1}{2}[p(x_1, x_3) + p(x_2, x_2)]) \\ &\leq \frac{1}{\sqrt{k_1}}\phi(p(x_1, x_2), p(x_1, x_2), p(x_2, x_3), \frac{1}{2}[p(x_1, x_2) + p(x_2, x_3)]). \end{aligned}$$

If $p(x_1, x_2) \leq p(x_2, x_3)$, then by (ϕ_1) and (ϕ_2) , we get

$$\begin{aligned} p(x_2, x_3) &< \frac{1}{\sqrt{k_1}}\phi(p(x_1, x_2), p(x_1, x_2), p(x_2, x_3), \frac{1}{2}[p(x_1, x_2) + p(x_2, x_3)]) \\ &\leq \frac{1}{\sqrt{k_1}}\phi(p(x_2, x_3), p(x_2, x_3), p(x_2, x_3), p(x_2, x_3)) \\ &\leq \frac{1}{\sqrt{k_1}}\psi(p(x_2, x_3)) < p(x_2, x_3), \end{aligned}$$

a contradiction. Thus, $p(x_2, x_3) < p(x_1, x_2)$ and hence, we have

$$\begin{aligned} p(x_2, x_3) &< \frac{1}{\sqrt{k_1}}\phi(p(x_1, x_2), p(x_1, x_2), p(x_2, x_3), \frac{1}{2}[p(x_1, x_2) + p(x_2, x_3)]) \\ &\leq \frac{1}{\sqrt{k_1}}\phi(p(x_1, x_2), p(x_1, x_2), p(x_1, x_2), p(x_1, x_2)) \\ &\leq \frac{1}{\sqrt{k_1}}\psi(p(x_1, x_2)) \leq \psi(p(x_1, x_2)) \\ &\leq \psi^2(p(x_0, x_1)) < p(x_0, x_1). \end{aligned} \tag{2.8}$$

Recursively, we obtain an iterative sequence $\{x_n\} \in X$ as follows:

$$x_n \in Tx_{n-1} \text{ for all } n \in \mathbb{N}.$$

Moreover, we put

$$\alpha(x_n, x_{n+1}) = k_n > 1, \text{ for all } n \in \mathbb{N}_0. \tag{2.9}$$

Since $T : X \rightarrow CB^p(X)$ is a $(\alpha - \phi)$ -Meir-Keeler contraction with respect to the associated partial Hausdorff metric \mathcal{H}_p , again by Remark 2.1, we have

$$\begin{aligned} & \alpha(x_n, x_{n+1})\mathcal{H}_p(Tx_n, Tx_{n+1}) \\ & \leq \phi(p(x_n, x_{n+1}), p(x_n, Tx_n), p(x_{n+1}, Tx_{n+1}), \frac{1}{2}[p(x_n, Tx_{n+1}) + p(x_{n+1}, Tx_n)]) \end{aligned} \quad (2.10)$$

for all $n \in \mathbb{N}_0$. From Lemma 1.2 with $h = \sqrt{k_n}$, we obtain $x_{n+2} \in Tx_{n+1}$ such that

$$p(x_{n+1}, x_{n+2}) \leq \sqrt{k_n}\mathcal{H}_p(Tx_n, Tx_{n+1}), \quad n \in \mathbb{N}_0. \quad (2.11)$$

Using (2.10) and (2.11), we observe that

$$\begin{aligned} & p(x_{n+1}, x_{n+2}) \\ & \leq \frac{1}{\sqrt{k_n}}\phi(p(x_n, x_{n+1}), p(x_n, Tx_n), p(x_{n+1}, Tx_{n+1}), \frac{1}{2}[p(x_n, Tx_{n+1}) + p(x_{n+1}, Tx_n)]) \\ & \leq \frac{1}{\sqrt{k_n}}\phi(p(x_n, x_{n+1}), p(x_n, x_{n+1}), p(x_{n+1}, x_{n+2}), \frac{1}{2}[p(x_n, x_{n+2}) + p(x_{n+1}, x_{n+1})]) \\ & \leq \frac{1}{\sqrt{k_n}}\phi(p(x_n, x_{n+1}), p(x_n, x_{n+1}), p(x_{n+1}, x_{n+2}), \frac{1}{2}[p(x_n, x_{n+1}) + p(x_{n+1}, x_{n+2})]). \end{aligned}$$

If $p(x_n, x_{n+1}) \leq p(x_{n+1}, x_{n+2})$, then

$$\begin{aligned} p(x_{n+1}, x_{n+2}) & < \frac{1}{\sqrt{k_n}}\phi(p(x_{n+1}, x_{n+2}), p(x_{n+1}, x_{n+2}), p(x_{n+1}, x_{n+2}), p(x_{n+1}, x_{n+2})) \\ & \leq \psi(p(x_{n+1}, x_{n+2})) < p(x_{n+1}, x_{n+2}), \end{aligned}$$

a contradiction. Hence, we conclude that $p(x_n, x_{n+1}) > p(x_{n+1}, x_{n+2})$. Therefore, we have

$$p(x_{n+1}, x_{n+2}) \leq \frac{1}{\sqrt{k_n}}\psi(p(x_n, x_{n+1})) \leq \psi(p(x_n, x_{n+1})) < p(x_n, x_{n+1}). \quad (2.12)$$

Keeping the expression (2.6), (2.8) and (2.12) in mind, we obtain

$$\begin{aligned} p(x_{n+1}, x_{n+2}) & \leq \frac{1}{\sqrt{k_n}}\psi(p(x_n, x_{n+1})) \\ & \leq \psi(p(x_n, x_{n+1})) \\ & \leq \psi^2(p(x_{n-1}, x_n)) \\ & \leq \dots \\ & \leq \psi^n(p(x_0, x_1)). \end{aligned} \quad (2.13)$$

Taking Lemma 2.1(i) into account and by letting $n \rightarrow \infty$ in the inequality above we find that

$$\lim_{n \rightarrow \infty} p(x_n, x_{n+1}) = 0. \quad (2.16)$$

From the property (p_2) of a partial metric and using (2.16), we have

$$\lim_{n \rightarrow \infty} p(x_n, x_n) = 0. \quad (2.17)$$

Now (2.15) together with the property (p_4) of a partial metric, for any $m \in \mathbb{N}$, we have

$$\begin{aligned} p(x_n, x_{n+m}) &\leq \sum_{i=1}^m p(x_{n+i-1}, x_{n+i}) - \sum_{i=1}^{m-1} p(x_{n+i}, x_{n+i}) \\ &\leq \sum_{p=n}^{n+m-1} \psi^n(p(x_1, x_0)) - \sum_{i=1}^{m-1} p(x_{n+i}, x_{n+i}) \\ &\leq \sum_{p=n}^{n+m-1} \psi^n(p(x_1, x_0)) \\ &\leq \sum_{p=n}^{+\infty} \psi^n(p(x_1, x_0)) \rightarrow 0 \text{ as } n \rightarrow \infty. \end{aligned}$$

Thus,

$$\lim_{n \rightarrow \infty} p(x_n, x_{n+m}) = 0.$$

From the definition of d_p , we obtain that for any $m \in \mathbb{N}$,

$$\lim_{n \rightarrow \infty} d_p(x_n, x_{n+m}) \leq \lim_{n \rightarrow \infty} 2p(x_n, x_{n+m}) = 0. \quad (2.19)$$

Hence, we conclude that $\{x_n\}$ is a Cauchy sequence in (X, d_p) . Since (X, p) is complete, from Lemma 1.1, (X, d_p) is a complete metric space. Therefore, $\{x_n\}$ converges to some $x^* \in X$ with respect to the associated partial metric, and, hence,

$$p(x^*, x^*) = \lim_{n \rightarrow \infty} p(x_n, x^*) = \lim_{n \rightarrow \infty} p(x_n, x_m) = 0. \quad (2.20)$$

Now we claim $p(x^*, Tx^*) = 0$. Suppose, on the contrary, that $p(x^*, Tx^*) > 0$. Since $T : X \rightarrow CB^p(X)$ is a $(\alpha - \phi)$ -Meir-Keeler contraction with respect to associated the partial Hausdorff metric \mathcal{H}_p , by Remark 2.1, we have

$$\begin{aligned} \alpha(x_n, x^*) \mathcal{H}_p(Tx_n, Tx^*) &< \phi(p(x_n, x^*), p(x_n, Tx_n), p(x^*, Tx^*), \frac{1}{2}[p(x_n, Tx^*) + p(x^*, Tx_n)]) \\ &\leq \phi(p(x_n, x^*), p(x_n, x_{n+1}), p(x^*, Tx^*), \frac{1}{2}[p(x_n, Tx^*) + p(x^*, x_{n+1})]). \end{aligned}$$

Letting $n \rightarrow \infty$ in the inequality above (note (iii) in the statement of Theorem 2.1 and (2.20)), we have

$$\begin{aligned} \lim_{n \rightarrow \infty} \mathcal{H}_p(Tx_n, Tx^*) &\leq \lim_{n \rightarrow \infty} \alpha(x_n, x^*) \mathcal{H}_p(Tx_n, Tx^*) \\ &\leq \lim_{n \rightarrow \infty} \phi(p(x_n, x^*), p(x_n, x_{n+1}), p(x^*, Tx^*), \frac{1}{2}[p(x_n, Tx^*) + p(x^*, x_{n+1})]) \\ &= \phi(0, 0, p(x^*, Tx^*), \frac{1}{2}p(x^*, Tx^*)) \\ &\leq \phi(p(x^*, Tx^*), p(x^*, Tx^*), p(x^*, Tx^*), p(x^*, Tx^*)) \\ &= \psi(p(x^*, Tx^*)) \\ &< p(x^*, Tx^*); \end{aligned} \quad (2.21)$$

Hence,

$$\lim_{n \rightarrow \infty} \mathcal{H}_p(Tx_n, Tx^*) < p(x^*, Tx^*). \quad (2.23)$$

Now $x_{n+1} \in Tx_n$, so

$$p(x_{n+1}, Tx^*) \leq \delta_p(Tx_n, Tx^*) \leq \mathcal{H}_p(Tx_n, Tx^*). \quad (2.24)$$

From the weakened triangle inequality, together with the inequality (2.24) we have

$$\begin{aligned} p(x^*, Tx^*) &\leq p(x^*, x_{n+1}) + p(x_{n+1}, Tx^*) - p(x_{n+1}, x_{n+1}) \\ &\leq p(x^*, x_{n+1}) + p(x_{n+1}, Tx^*) \\ &\leq p(x^*, x_{n+1}) + \mathcal{H}_p(Tx_n, Tx^*). \end{aligned}$$

Keeping the inequality (2.23) in mind and letting $n \rightarrow \infty$ in the inequality above, we derive that

$$p(x^*, Tx^*) \leq \lim_{n \rightarrow \infty} p(x^*, x_{n+1}) + \lim_{n \rightarrow \infty} \mathcal{H}_p(Tx_n, Tx^*) < p(x^*, Tx^*),$$

which is a contradiction. As a result we have

$$p(x^*, Tx^*) = 0.$$

Now from (2.20), $p(x^*, x^*) = 0$, so we have

$$p(x^*, x^*) = 0 = p(x^*, Tx^*).$$

This implies $x^* \in Tx^*$ from Remark 1.3. \square

Example 2.3. Let $X = \{0, 1, 2\}$ be endowed with the partial metric $p : X \times X \rightarrow \mathbb{R}^+$ defined by

$$p(x, y) = \frac{1}{2}|x - y| + \max\{x, y\} \text{ for all } x, y \in X.$$

Then (X, p) is a complete partial metric space, and we have

$$p(0, 0) = 0; \quad p(1, 1) = 1; \quad p(2, 2) = 2;$$

$$p(0, 1) = p(1, 0) = \frac{3}{2}; \quad p(0, 2) = p(2, 0) = 3; \quad p(1, 2) = \frac{5}{2}.$$

We next define $T : X \rightarrow CB(X)$ by

$$T(0) = T(1) = \{0\} \text{ and } T(2) = \{0, 1\}.$$

Then we have

- (1) if $x, y \in \{0, 1\}$, then $\mathcal{H}_p(T(x), T(y)) = \mathcal{H}_p(\{0\}, \{0\}) = 0$;
- (2) if $x \in \{0, 1\}$ and $y = 2$; then $\mathcal{H}_p(T(0), T(2)) = \mathcal{H}_p(T(1), T(2)) = \mathcal{H}_p(\{0\}, \{0, 1\}) = \frac{3}{2}$;
- (3) if $x = y = 2$; then $\mathcal{H}_p(T(2), T(2)) = \mathcal{H}_p(\{0, 1\}, \{0, 1\}) = \sup\{p(x, x) : x \in \{0, 1\}\} = 1$;
- (4) $p(0, T(0)) = 0$, $p(1, T(1)) = p(1, \{0\}) = \frac{3}{2}$, $p(2, T(2)) = p(2, \{0, 1\}) = \frac{5}{2}$;
- (5) $p(0, T(1)) = 0$, $p(1, T(0)) = \frac{3}{2}$, $p(0, T(2)) = 0$, $p(2, T(0)) = 3$, $p(1, T(2)) = 1$, $p(2, T(1)) = 3$.

Now, we put $\phi(t_1, t_2, t_3, t_4) = \frac{2}{3} \max\{t_1, t_2, t_3, t_4\}$. Then all of the hypotheses of Theorem 2.1 are satisfied. Note $x = 0$ is the unique fixed point of T .

3. Conclusion

One could list several corollaries using Example 2.1. In addition choosing α in a suitable way (see for example [17]) one can list several corollaries. Finally since each metric space is a partial metric space, we see that the analog of Theorem 2.1 in a metric space is new.

Competing interests

The authors declare that they have no competing interests.

Authors contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Acknowledgements

The authors are grateful to the reviewers for their careful reviews and useful comments.

REFERENCES

- [1] T. Abdeljawad, E. Karapinar and K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, *Appl. Math. Lett.* 24 (11),1894–1899 (2011).
- [2] R.P. Agarwal, M.A. Alghamdi, N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces, *Fixed Point Theory and Appl.*, (2012), 2012:40.
- [3] T. Abdeljawad, E. Karapinar and K. Tas, A generalized contraction principle with control functions on partial metric spaces, *Comput. Math. Appl.*, 63 (2012),no:3, 716-719.
- [4] H. Aydi, Fixed point results for weakly contractive mappings in ordered partial metric spaces, *Journal of Advanced Mathematical Studies*, 4(2011), no. 2, pp. 1–12.
- [5] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, *Topology and Applications*, 159(2012), 3234–3242.
- [6] C.-M.Chen and E.Karapinar, Fixed point results for the α -Meir-Keeler contraction on partial Hausdorff metric spaces, *Journal of Inequalities and Applications* 2013, 2013:410
- [7] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, *Fund. Math.* 3 (1922) 133–181.
- [8] K. P. Chi, E. Karapinar, T. D. Thanh, A generalized contraction principle in partial metric spaces, *Mathematical and Computer Modelling*, 55(2012), 1673–1681.
- [9] R.H. Haghi, Sh. Rezapour, N. Shahzad, Be careful on partial metric fixed point results, *Topology and its Applications*, 160(2013),no:3, 450–454.
- [10] E. Karapinar, Weak ϕ -contraction on partial metric spaces, *Journal of Computational Analysis and Applications*, 16(6),(2012) vol. 14, no. 2, pp. 206–210.
- [11] E. Karapinar, Generalizations of Caristi Kirk's theorem on partial metric spaces, *Fixed Point Theory and Applications*, vol. 2011, article 4, 2011.
- [12] E. Karapinar, I.M. Erhan, Fixed point theorem for cyclic maps on partial metric spaces, *Appl. Math. Inf. Sci.*, 6 (2012), 239–244.
- [13] S.G. Matthews, Partial metric topology, Proc. 8th Summer of Conference on General Topology and Applications, *Ann. New York Acad. Sci.*, 728 (1994) 183–197.
- [14] Meir, A, Keeler, E: A theorem on contraction mappings, *J. Math. Anal. Appl.*, 28 (1969), 326–329
- [15] S. B. Nadler Multi-valued contraction mappings, *Pacific J. Math.*, 30 (1969), 475–488.
- [16] S. Oltra, O. Valero, Banach's fixed point theorem for partial metric spaces, *Rend. Istid Math. Univ. Trieste*, 36 (2004) 17–26.
- [17] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α - ψ -contractive type mappings, *Nonlinear Analysis*, 75 (2012) 2154–2165.
- [18] H. Aydi, C.Vetro, E. Karapinar, On Ekeland's variational principle in partial metric spaces, *Appl. Math. Inf. Sci.*,
- [19] M.Jleli, E. Karapinar, B. Samet, Further remarks on fixed point theorems in the context of partial metric spaces, *Abstract and Applied Analysis*, (2013) Article Id: 715456
- [20] A. Roldan, J. Martinez-Moreno, C. Roldan, and E. Karapinar, Multidimensional fixed point theorems in partially ordered complete partial metric spaces under (ψ, φ) -contractivity conditions, *Abstract and Applied Analysis*, 2013 Article Id: 634371
- [21] S. Gulyaz, E. Karapinar, Coupled fixed point result in partially ordered partial metric spaces through implicit function, *Hacet. J. Math. Stat.*, 42 (2013), no: 4, 347 - 357 .
- [22] E. Karapinar, S. Romaguera, Nonunique fixed point theorems in partial metric spaces, *Filomat*, Filomat 27:7 (2013), 1305-1314
- [23] E. Karapinar, I. Erhan, A. Ozturk, Fixed point theorems on quasi-partial metric spaces, *Mathematical and Computer Modelling*, Volume 57, Issues 9-10, May 2013, Pages 2442-2448.
- [24] H. Aydi, E. Karapinar, A Meir-Keeler common type fixed point theorem on partial metric spaces, *Fixed Point Theory Appl.*, (2012), 2012:26.
- [25] I. A. Rus, *Generalized contractions and applications*, Cluj University Press, Cluj-Napoca, 2001.
- [26] V. Berinde, Sequences of operators and fixed points in quasimetric spaces, *Mathematica*, 41(4), (1996), 23–27.
- [27] V. Berinde, Generalized contractions in quasimetric spaces, In "Seminar on Fixed Point Theory", Vol. 93 of Preprint 3, pp.3–9, Babeş-Bolyai University, Cluj Napoca, Romania, 1993.
- [28] Bianchini R.M., Grandolfi, M.: Transformazioni di tipo contrattivo generalizzato in uno spazio metrico, *Atti Acad. Naz. Lincei*, VII. Ser., Rend., Cl. Sci. Fis. Mat. Natur. 45 (1968), 212-216.
- [29] Proinov, P.D. : A generalization of the Banach contraction principle with high order of convergence of successive approximations *Nonlinear Analysis (TMA)* 67 (2007), 2361-2369.
- [30] Proinov, P.D. : New general convergence theory for iterative processes and its applications to Newton Kantorovich type theorems, *J. Complexity* 26 (2010), 3-42.