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EXISTENCE OF SOLUTIONS FOR RANDOM FUNCTIONAL-
DIFFERENTIAL INCLUSIONS

Carmina GEORGESCU!

In aceastd lucrare studiem existenta solutiilor pentru incluziuni diferentiale
functionale aleatoare definite de multifunctii cu valori convexe in spatii Banach
separabile. Utilizam teoreme de existenta a solutiilor in cazul determinist precum §i
rezultate din analiza multivoca privind existenta selectiilor mdasurabile.

This paper is devoted to the study of functional-differential inclusions with
memory defined on a separable Banach space and depending in a measurable way
on a random parameter. Two existence theorems are obtained through the use of
analogous deterministic results and techniques from the theory of measurable
multifunctions.
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1. Introduction

There are two typical methods in proving the existence of random
solutions of differential inclusions; in the first one, the measurability of solutions
with respect to a random parameter is proved step by step ([7], [8]), in the second
one, random fixed point theorems are used ([10]). For other results on random
differential inclusions we refer to [3].

In the case of random functional-differential inclusions, conditions for the
existence of random viable solutions were obtained by Rybinski in [12]. The
method proposed in this paper is based on a random fixed point principle for
multivalued mappings which has appeared in the proofs of main theorems in
Engl’s paper ([4]). In [12] it is shown how the problem of the existence of a
random solution may be reduced to the related deterministic problem; it is an
indirect approach in which measurable selections are chosen “beyond” the
differential problem.
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The aim of the present paper is to establish the existence of solutions for
random functional-differential inclusions with memory governed by convex
valued orientor fields which take values in a separable Banach space. In
distinction to Rybinski’s approach, our work is based on a direct “measurable
selections approach” which seems to be most natural and powerful in every
concrete situation. In this way our result may be interpreted, on one hand, as an
extension of the results in [7], [8] and [10] to the case of functional-differential
inclusions and, on the other hand, as an extension to the random case of the
corresponding deterministic result in [5] and [11].

The paper is organized as follows: definitions, notations and basic results
are given in the next section and the main results are presented in Section 3.

2. Notations and preliminary results

Throughout this paper X is a separable Banach space whose norm is
denoted by ||| and P (X) will stand for the set of all subsets of X . If 4 .Xx, by

cl(4) and cod we mean the closure and the closed convex hull of 4,
respectively. If x e X, the distance from the point x to the set 4 will be denoted
by d(x,A). For any 4,B eP(X), the Hausdorff distance between 4 and B is

defined as
d, (A, B) = max{supd(a, B),supd (b, 4)}.

acA beB

For ae Ac X, the contingent cone (or Bouligand cone) to 4 at ais

defined by
K;Az{xeX: n_mwzo}

A—0+
It is easy to see that this cone is closed, but in general it is not convex. However
when A is convex, K A is convex too and coincides with another very useful

cone introduced by Clarke ([1]).
If X" is the topological dual of X and 4 < X, by o ,(.) we denote the support

function of 4, ie. o,(x")=sup,_,(x",a).If I isareal interval, let C(Z,X) be
the Banach space consisting of all continuous functions x(.): 7 — X with the
norm |x()|. =sup{|x(:)|:z € 7}. Similarly, 4C(1,X) will denote the space of
absolutely continuous functions from 7 to X . By L'(Z,X) we mean the Banach
space of measurable functions y(.):/ — X which are Lebesgue integrable,

endowed with norm |y(.)[, = L||y(t)||dt.
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Let (Q,%, u) be a o -finite measure space (not necessarily complete) and
L'(Q, X) be the space of integrable functions £(.):Q — X equipped with the
norm ||/ (), = j.Q|| f(0|du(w) . For any topological space S, the script B(S) will
stand for the o -field of Borel subsets of S.

Recall that a function f(.,.):QxX — X is said to be Caratheodory if
o — f(w,x) is measurable for any x € X and x — f(w,x) is continuous for any
w € Q. In what follows we will need the following result.

Theorem 2.1. ([6]) Let (Q2,Z,u) be a o -finite measure space, Y a locally
compact separable metric space and Z a metric space. Then f:QxY —Z isa
Caratheodory function if and only if @ — g(w)(.) = f(®,.) is measurable as a
mapping from Q to the space C(Y,Z) endowed with the compact-open topology.

By a Kamke function we mean a function w(.,.):[¢t,,T]xR, - R, satisfying the
Caratheodory conditions (i.e. # — w(¢,.) measurable and x — w(.,x) continuous),
w(t,x) < op(t) ae.lt,,T] with ¢o()eLl'(I,R,), w(0)=0 ae.[t,,T] and
u(t) = 0is the only solution of the problem

u(f) < [w(s,u(s))ds, u(t,)=0.

fy

Definition 2.2. Let F(.): Q —>P(X) with nonempty, closed values. F(.) is said
to be (weakly) measurable if any of the following equivalent conditions holds:
i) foranyopensubset Uc X, {weQ:F(o)nU #3}eX;
ii) forall xe X, o — d(x, F(w)) is measurable.
If, in addition, « is complete, then the statements i) and ii) above are equivalent
to any of the following ones
iii) Graph(F () ={(w,x) e Qx X : x € F(w)} e Z ® B(X) (graph measurabi-
lity);
iv) for any closed subset C < X, {w € Q: F(w) N C # @} (strong measurabi-
lity).
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For a measurable multifunction F(.):Q —P(X) we denote by S, the set of
Bochner integrable selections of F(.),

S, ={f() e "(Q,X): f(w) e F(w) a.e.on Q}.
As one can easily see, the above set is nonempty and closed if and only if

o—inf_. |z € L'(QR,). Obviously, if F() is integrably bounded in the

sense that there exists r(.) € L'(Q,R,) such that
||z|| <r(w), Vze F(w),VoeQ,

then S, = o@. For other properties of measurable multifunctions we refer to [2]

Definition 2.3. Let Y be a topological space, Z a metric space and
F():Y > P(Z) be a multifunction with nonempty, closed values. F(.) is said to

be Hausdorff continuous at y, € Y if for any ¢ >0 there exists U — X open,
y €U such that

dy(F(»). F(y))<e, VyeU.
We say that F(.) is Hausdorff continuous on Y if itisso atevery y, €Y.

Definition 2.4. Let P,(X) be the family of bounded subsets of X . The
Kuratowski measure of noncompactness « : P, (X) -» R, is defined by

a(B) =inf{r > 0: Badmits a finite cover by sets of diameter < r},
while the Hausdorff (ball) measure of noncompactness S:P,(X) >R, is

defined by
S(B) =inf{r > 0: B admits a finite cover by balls of radius r}.
It is easy to see that these measures are related by
B(B)<a(B)<2p(B) VBeP,(X),
hence they are equivalent.

Let 7 =[¢,,T] be areal interval and 0 < A < T —t,. Consider the
following functional-differential inclusion with nonconvex valued orientor field
F(.,.)

x'(t) e F(t,x,(.) ae.(I), (1)
(), g €M, @)



Existence of solutions for random functional-differential inclusions 31

where F(.,.):IxC([t, —At,], X) > P(X) is a given set-valued map, M is a
nonempty compact subset of C([z,—A¢t],X) and for all tel,
x,:[t, —At,] > X is a continuous function defined by x, (s)=x(t+s-1,).
Hence x,(.) describes the history of the state from time #—A up to the present

time ¢.
A solution of the problem (1)-(2) is a continuous function
x():[t,—AT] > X such that x()|, € AC(/,X), x(ﬂp_ﬁt]ezﬁl and the

inclusion (1) holds a.e.on 1.

Hypothesis 2.5. i) F(.,.):IxC([t, — A, t,], X) > P(X) has nonempty compact
values and is graph measurable;
i) forevery tel, y — F(t,y) is lower semi-continuous (l.s.c.);

iii)  there exist a(),h()eL'(I,R,) such that for almost all e/ and
x(.) € C([ty — A 1,1, X) , ||z < a(@)|x ()|, +b(r) forall ze F(z,x);
iv) there exists a Kamke function w(.,.): /xR ,—R, such that for all

Bc C([t, - A,t,], X) bounded and nonempty we have
2B(F (1, B)) < w(t, B(B)) a.e. (I),

where f(.) is the Hausdorff measure of noncompactness from Defi-
nition 2.4.

An important tool in proving our main results is the following existence
theorem which is due to Papageorgiou.

Theorem 2.6. ([10]) Let M < C([t, —A,t,],X) be a given compact family of
continuous functions and assume that F(..):IxC([t,—A,t],X) - P(X)
satisfies Hypothesis 2.5. Then the problem (1)-(2) admits a solution.

The problem that we will consider in the next theorem is the following
x'(t) e F(t,x,() 3)
x()eU(t), Vtel 4

xOly g =20, ©)
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where F(.,.):IxC([t, —A,t,],X) >P(X), U():1—>P(X) are two given set-
valued maps and y(.) e C([t, — A,¢,], X) satisfies y(¢,) eU(t,).
Set A={(t,¢())eIxC([t,—At,],X):4(z,) €U(z,)} and note that (z,, y(.))eA.
For any (¢, x) € Graph U(.), we define

T, ,Graph(U()) ={y e X : (1 y) e K, ,,Graph(U(.))}.

(t,x

Hypothesis 2.7. i) F(.,.):IxC([t, —A,¢,],X) > P(X) has nonempty compact
convex values and is jointly measurable;
i) for every tel, y— F(t,y) is upper semi-continuous (u.s.c.) from

C([t, - A,1,], X) endowed with the norm |||, to the space X with the
weak topology;

iii)  thereexist a() e L'(/,R,) and a subset J — I with x(7\J)=0 such
that for all (¢,¢(.)) e An(JxC([t, —A,1,], X)) one has

2] < a()@+|g(t,)). V2 e Fe.4()
F(t,¢()N T(tm))Graph U()=9D.

iv) U(.):1— P(X) isupper semi continuous (u.s.c), with nonempty
compact values.

In proving the existence of random viable solutions in the next section, we
need to have the analogous deterministic result obtained by Gavioli and Malaguti
in [5].

Theorem 2.8. ([5]) Assume that F(.,.):A —> P(X) and U(.):1 > P(X) satisfy
Hypothesis 2.6. Then the problem (3)-(5) admits a solution.

The following result will be also useful.

Theorem 2.9. ([9]) Let F(.):Q —P(X) be an integrably bounded set-valued
map with weakly compact (w-compact) and convex values. Then S, is
nonempty, convex, w-compact with respect to the norm |||, of L*(Q, X).



Existence of solutions for random functional-differential inclusions 33

3. Main results

Consider the following Cauchy problem concerning random functional-
differential inclusions of the form

%x(a), 1) e Foyi,x,(.) ae. (1), (6)

x(w, .)|[trA‘to] e G(w), @)

where
F(,.,.):QxIxC([t,—A,t,], X) > P(X) and G(.,.):Q—>P(C([t,—At] X))
are two given set-valued maps and for all fel and weQ,
x, (@) [t, —At,] > X is a continuous function  defined by

x,(w,s) =x(@,t+5—1,).
Before stating and proving our main result we give the definition of a solution to
the above problem.

Definition 3.1. A solution to the random functional-differential inclusions (6)-(7)
is a stochastic process x(.,.):Qx[z, —A,T]— X with continuous paths (i.e., for

all  te[t, —AT], x(,t) is measurable and for all weQ,
x(w,)eC([t, —A,T], X)) such that x(a),.)|1 e AC(I,X) for every weQ and
inclusions (6)-(7) are verified for almost all w € Q.

Hypothesis 3.2. 1) F(.,.,.):QxIxC([t, —At,],X) > P(X) has nonempty,

compact convex values and is jointly measurable;
i) for all (w,t)eQx1, the set-valued map F(w,t,.) is Hausdorff

continuous;

iii) there exist a(.,.), b(.,.):QxI—>R_ such that for all w€Q, a(w,.),
b(w.)eL'(I,R,) and for all zeF(w.tx()), |z<alw0)x()|,
+b(w,t) ae.(I) and VoeQ, x(.)eC([t, - A t,], X);

iv) there exists a Kamke function w(.,.,.):QxIxR,—R, such that

(w,t) > w(w,t,.) is  jointly  measurable and for all
Bc C([t,—A,t,], X) bounded one has
2[(F(w,t,B)) < w(w,t, f(B)) ae. (), VoeQ

where S(.) is the Hausdorff measure of noncompactness;
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V) G():Q— P(C([t, - At,], X)) has nonempty, compact convex values
and is measurable.

Theorem 3.3. Assume that F(.,..):QxIxC([t,—At],X)—>P(X) and
G():Q—>C([t, — A t,], X) fulfill the assumptions of Hypothesis 3.2. Then the
Cauchy problem (6)-(7) admits a solution.

Proof. Consider the set-valued map R(.):Q —P([t, —A,T], X)) defined

by
R(o)={x()eC([t,—At,],X):x'(¢) e F(w,t,x,(.)) ae. (1),

x(.)|[t07A’t0] e G(w)}.

We are going to prove that R(.) has measurable graph. By assumption, F(.,.,.)
has nonempty, compact convex values, so letting

R (@) ={x()eC([t, —A,T],X):x(t) e x(¢') + J: F(w,r,x,(.))dr forall ¢,t'e I},
R,(0)={x()eC([t, -AT], X): x(.)|[t au € G(w)},

we have R(w) = R,(w) N R, (w) . From Theorem 2.6 we obtain that for all w € Q,
R(w) # 2 and with a same reasoning as in the proof of Theorem 3.1 in [9], we

claim that it is closed. By Theorem 2.9, forall w € Q, J‘:IF(a), ryx,(.))dr isaw-

compact and convex subset of X, hence x(¢') + J; [IF(a),r,x,(.))dr is closed and
convex.. Thus we can write
Ry (@) ={x() € C([ty ~ A T1, X) 1 d (x(0), x(¢) + [ F(e,r,x,())dr) =0
forall #,1'e I}.

Set ¢(w,t,t',x(.)) = d(x(t),x(t') + .[tlF(a),r,x,,(.))drj. Forall x* € X" one has
(x*) = (x",x(t)) + o (x")

o ' t'
x(t')+I]F(a),r,x,. ())dr LF(w,r,xr (.))adr

* 1 o *
= (" xX())+ [ O porn o (X)r
Notice that (@,7) = oy, (,(x") is measurable and for all weQ,
Orwny(X)€L(I,R). Hence we deduce that a)—>Jtt O rtor, (X )dr 1S

measurable which in turn implies that ® — o (x7) is measurable.

x(t')+J.;1I'7((u,r,x,_ ())dr
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Applying Theorem 111.37 of Castaing & Valadier ([2]) we deduce that the
set-valued map co—)x(t')+jf'F(a),r,xr(.))dr is 3 -measurable for all ¢,r'e1,

where T is the completion of £ with respect to u(.).
Next we prove that for all w € Q, (¢,#',x(.)) = ¢(w,t,¢',x(.)) is continuous from

IxIxC([t,—A,T],X) to R . For this purpose, let (¢",",x"(.)) —:O(t,t‘,x(.)).
We have
l@," 1" 2" () = g, x())

_ ‘d(x" 0.5 (") + [ Flour.x! (.))dr] - d(x(z), *(@)+ [ Flo.rx, (.))drj

<[ @) - x| + d, [x” ")+ [, Flo.rx! O)dr,x(t)+ [ F(o.r,x, (.))drj
X" () = x(e)] + [ ) - (@)
v dy ([ 2y oy (V@73 O r [ 2,0 (D) F (0,72, () dr )
<[x" @) = x(@) + | ") - x|
+ [dH (;([] (NF(@,7,x] (), 2 (1) F (0,7, x] (-)))
tdy (2 V(@757 (), 2y (VP (@,7,%,()) |
=|x" @) = x| +[x" ") = x| + j,[ X o) = 21 ()] (O} F (0,7, ()
2Py (Fl@,7,37 (), F(@,7,%,()) |dr
But x"(.) c C([t, — A, T1, X ), hence for all » € I there exists M (r) := supjx” (.)||w .
Let us define y(w,r) = a(w,r)M (r)+ b(w,r). From condition_iii) in the
Hypo-thesis 3.2 we obtain for all z € F(w,r,x"(.)):
|| < w(w,r) ae.on Q@x1.
This leads us to the following
Bl 5" () = g1, x()
<[ @) = @] + " ) = @ + |10 0y ) = 2 P, )l
+ 20V (Fl@,r,x7 (). Fl@,r,x, (D

Passing to the limitas » — o« we get
.[1 Z[t",t”’] (r) AT (”)|V/(60, r)dr -0

<
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and, because F(w,t,.) is Hausdorff continuous,

[ 20 @)y (Fl@,r,x7 (). F(@,r,x, (D Hr 0.
Finally, we obtain

limlg(w,1",¢" ,x" () = f(@,1,1',x())| = 0
hence (¢,¢',x(.)) > ¢(w,t,t',x(.)) is continuous. Thus we deduce that #(.,.,.,.) is
S x B(I)x B(I) x B(C([t, —A,T], X)) - measurable. Let D — I be a dense subset
of 7 and let us define 7(.,.): QxC([z, —A,T],X),
S (@,x()) =sUp, .o (@, 1,2', ().

Then (@,x(.)) = f(@,x()) is ixB(C([to —A,T], X))-measurable. Note that

Ry(@) ={x() € C([to ~AT1.X): f (@, x() = O},
which implies that Graph(R, (®)) is s x B(C([t, — A, T], X))-measurable. On the
other hand, it is clear that the function
g(,):QxC([t, —-AT], X) > C([t, - A t,], X)), g(@,x()) = x(.)|[t07A’t0] is conti-
nuous with respect to the topology induced by sup-norm ||| . From Lemma 6 in

[4], it follows that (e, x())) = d(g(@,x(.)),G(w)) is = x B(C([t, — A, T, X))-
measurable and thus R, (.) has also measurable graph. Finally, R(.) has
measurable graph. Apply Aumann’s selection theorem ([6, Theorem 5.2]) to find
a < - measurable selection 7(.):Q—> C([t, —A,T],X) such that forall we Q,
7(w) e R(w) . Let r(.):Q— C([t, —A,T],X) be X-measurable such that
r(w)(.) =r(w)(.) foralmostall w e Q. Set

x(o,t) =r(o)(t), Y(o,t)eQx[t,—AT].
By Theorem 2.1 and from the definition of R(.), we conclude that x(.,.) isa
stochastic process which solves the Cauchy problem (6)-(7).

Remark 3.4. Several remarks are in order.
i) When there is no memory, i.e. A=0 and

F(o,t,x,(®,)) = F(o,t,x(o,t)) Theorem 3.3 above yields Theorem
3.1.in [7] (see also [3] and [10, Theorem 4.1]).

i) If F(.,.,.) and G(.) are constant with respect to the random parameter
o € Q inthe sense that F(a,¢,x,(w,.)) = F(¢,x,(.)) and
G(w)=M c C([t, —A,t,],X), then Theorem 3.3 yields Theorem 2.6
proved by Papageorgiou in [11].
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Next we pass to the study of random functional-differential inclusions with
state constraints of the form

%x(a), t)e F(o,t, x,(w,.)) ae. (1), (8)
x(w,t) eU, V(w,t)eQxI, 9
x(o, .)|[t0_MO] =y(w,.) ae. (Q), (10)

where F(.,.,.):QxIxC([t,—A,t,], X) > P(X), Uc Xis a nonempty set and
y(,.):QxI — X is measurable such that y(w,.)eC([t,—Az], X) and
y(w,t,)elU, YoeQ.

The existence of solutions to the above problem leads us to what is known in
applied mathematics as “viability theory”. More precisely, we are trying to select
trajectories which are “viable”, in the sense that they always satisfy the constraints
in (9).

We define the sets C, ([, —A,z,], X) ={4(.) e C([t, — A, t,], X) : #(¢,) e U} and
C,([#t,—ATLX)={s()eC([t, -AT]. X): ¢()eC,([t, - A t,], X) Vtel}.

Hypothesis 3.5. i) F(.,.,.): QxIxC([t, —A,t,],X) > P(X) has nonempty,
compact convex values and is jointly measurable;

i) for all (w,t1)eQx1, the set-valued map F(w,t,.) is Hausdorff
continuous;

iii) there exists a(.,.):Qx1 — X measurable with a(w,.) e L'(I,R,) for
all weQ and a subset J <1 with x(/\J)=0 such that for all
(0,1,0()) e AxIxCy([t, —A,t,], X) one has

||z|| <a(w, )1+ ||¢(t0)||), Vz e F(w,t,¢(.))

F(o,t,¢g()) K, U =D ae(Q).

Theorem 3.6. Assume that F(.,.,.): QxIxCy([t, —A,z,], X) > P(X) fulfills the

assumptions in Hypothesis 3.5. Then the Cauchy problem (8)-(10) admits a viable
trajectory.

Proof. As in the proof of Theorem 3.3 we consider the set-valued map
R():Q—->P(C,lt, —A,T], X)) defined by
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R(w)={x()eC,([t, —AT],X):x'(¢) e F(w,t,x,(.)) ae. (I),
() = 2@}
We prove that R(.) has measurable graph. Letting
R (o) ={x()eC,([t, - AT], X):x(t) e x(t') + JjF(a), r,x,())dr forall ¢,t'e I},
Ry(@) ={x() € C([t, - A T], X) : x()|, _, ., = ¥(@)},
we have R(w) = R,(w) N R, (w) . From Theorem 2.8 we obtain that for all ® € Q,

R(w) # 2 and with a same reasoning as in the proof of Theorem 3.1 in [9], we
claim that it is closed. As before we can write

R (w)={x()eC,([t, —AT], X):d(x(2),x(t") + .[t'F(a), r,x,(.))dr)=0
forall #,'e I}.
Consider the multifunction ®(w,t,t',x(.)) = x(¢') + J.:IF(a),r,x,, ())dr . Working

with the support function and using similar arguments as in the proof of Theorem
3.3 we can state that @ — ®(w,t,¢',x(.)) is X-measurable. Now we show that
d(w,.,.,.) is Hausdorff continuous. Let (¢",¢",x"(.)) —(¢,¢',x(.)) and

Io=t"t"I\[t.e o[£, e T\[¢",¢™]); Using Hormander’s formula we have the
following estimations

d, (O(a,t",t",x" (), P(w,t,t',x(.)))

<sup

st

< sup[
et

t' t'
+‘J., O ooy X" _.[ Orors oy ()

t" ¢
.[ﬂ Ot X _j, s,y ()| +

X" (") = x(t)|

" * _J~t' *
J.,n TR oo Ll NPT G

|+

X" (") = x(t)

<sup j{ AN CIEA

st

;
" HQL | O b (wra () () = O r(wrx, () (x*) ldr +

X (") = x(t).

Set h(w,r)=sup,., d,, {0}, F(o,r,x"(.))). We note that A(.,.) is measurable and
for all weQ, h(w,.)e L'(I,R,). Hence we get that
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d, (@(@,t",t",x" (), ®(a,t,1', x(.)))

<[, @ r)dr+[ d, (F(o.r.x () F(@,r,x ())dr+

X (") = x(t).
Passing to the limit as n —» o we get that ®(w,.,.,.) is Hausdorff continuous,
VoeQ. We put ¢(w,t,t' x(.))=d(x(),P(w,t,t',x())) and we note that the
function (7,7, x(.)) = é(w,2,¢',x(.)) is continuous. Note that R,(.) may be written
in the form

R(@)= N0 G, 1y -AT1X): (" 1" x() =0},

which implies that R (.) has measurable graph. We note also that R,(.) has

measurable graph. We conclude that Graph(R(.)) is i@B(CU([t0 -AT], X)) -

measurable. Now the existence of the desired random viable trajectory can be
obtained in a same manner as in the proceding theorem.

O
Remark 3.7. Several remarks are in order.
)} If U =X, the existence of random viable solutions reduces to the
problem of existence of solutions to (6)-(7), hence the above theorem
yields Theorem 3.3.

i) When there is no memory, i.e. A=0 and

F(w,t,x,(®,)) = F,(o,t,x(o,t)), Theorem 3.6 yields Theorem 3.3. in
7].

iii) Ef] F(.,.,.) and y(,..) are constant with respect to the random
parameter @ € Q) in the sense that F(w,t,x,(w,.)) = F;(¢,x,(.)) and
y(w,)=y,()eC(lt, —At,] X), then Theorem 3.6 yields Theorem
4.1 proved by Gavioli and Malaguti in [5].

3. Conclusions

In this paper we extended the works of Kandilakis and Papageorgiou ([7],
[10]) concerning random differential inclusions. Namely, it is about two existence
theorems obtained for random functional-differential inclusions with memory on
infinite separable Banach space. Within the family of functional-differential
inclusions, our results may be interpreted as extensions to the random case, of the
deterministic existence theorems of Gavioli, Malaguti ([5]) and Papageorgiou

([11]).
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