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MULTIFRACTAL CROSS-CORRELATION OF
ATMOSPHERIC POLLUTANTS AND TEMPERATURE IN
DIFFERENT ENVIRONMENTS

Cristina MARIN', Cristina STAN? and Constantin P. CRISTESCU?

This paper presents a multifractal detrended correlation and cross-
correlation analysis between PM;y, CO and temperature. Data have been collected
for 11 months in three types of sites: urban background, urban- traffic and regional.
For the analyzed time-series multifractal characteristics with persistent cross-
correlations are observed. The source of the multifractality is found to be the long-
range type correlations.
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1. Introduction

The atmosphere is a complex system, composed from aerosols and gases
which are continuously interacting which each other [1]. The study of atmospheric
constituents is an important task because they have a direct and an indirect effect
(acting as cloud condensation nuclei) on the Earth radiative budget, by scattering
and absorbing radiation. Thus, on a long term, they can influence the climate, and
on a shorter time scale they can have an impact on air quality and on human
health [2].

Experimental investigations on atmospheric aerosols can be performed
using high precision mass measurements for micro and nanoparticles [3]. New
techniques are continuously reported to improve the accuracy of detection of the
atmospheric particles and aerosols, and to facilitate on-site and on-line detections
and monitoring [3,4]. Multipole Paul traps could represent versatile tools for
environment monitoring working independently or coupled to Aerosol Mass
Spectrometers [5-7].

The physical and chemical properties of the aerosols are strongly
influenced by the meteorological and ambient conditions. The correlations
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between the aerosol, gases concentrations and the meteorological parameters
determined by the highly-nonlinear dynamics involved in their interactions are
reflected in the apparent erratic recorded time-series. A complete and relevant
analysis, cannot be achieved by the classical (conventional) statistics mainly due
to the non-stationary behavior of the atmospheric data. In the case of a stationary
data set, the statistical properties do not change over time and a sliding widow
with the same number of points has the same characteristic distribution. That is
one reason why conventional statistics cannot depict the nonlinear characteristics
of non-stationary data series.

Over the last few decades an increasing interest in the development of new
methods for analysis of complex, non-stationary data is manifested. Contrary to
the traditional descriptive analysis with all the limitations involved, new statistical
theories and mathematical formalism such as those based on fractal and
multifractal analysis, complex network and visibility graphs, etc., have a strong
applicability in the investigation of atmospheric data [8-10].

Multifractal method assesses data over a wider range of temporal scales
and spectrum of fluctuation exponents and are based on fragmentation of the time
series in self-similar segments and on the investigation of the scaling capacity
derived from a power law behavior. A first important step in the evaluation of the
cross-correlation between two non-stationary time series was reported by
Podobnik and Stanley [11].

Several studies have investigated the link between the atmospheric
constituents and meteorological parameters. For example, the multifractal cross-
correlation between PM>s and four meteorological parameters (temperature, wind
speed, relative humidity, pressure) were proven to have multifractal characteristics
[12]. Also, the correlation between global CH4 and temperature showed wide
multifractality due to long term correlations on long and short scales [13].

In the present work we investigate the multifractal multiscale detrended
correlation and cross-correlation (MM-DCCA) between each pair of combination
of PM1o, CO and temperature in three different types of natural environments.

The structure of the paper is as follows: the methodology for site selection,
data analysis and MM-DCCA are presented in subsections of section 2. The
results obtained for different environments and the source of multifractality are
presented in section 3, while the main conclusions of the article are summarized in
section 4.

2. Methodology

2.1 Sites and data

The multifractal multiscale analysis presented in this paper is based on the
environmental data provided by the National Air Quality Monitoring Network
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(NAQMN, www.calitateaer.ro). Three types of sites were chosen for the analysis,
depending on their location and characteristics:
1. BI1 station - an urban background station placed in the Western part
of Bucharest (44.45; 26.04) next to Morii Lake.
2. BG6 station - a traffic station placed in the center of the city (44.44,
26.10, 5 km away from B1) with a high density of cars (more than
10000/day [14])
3. E3 station (47.32; 25.13) - situated at Poiana Stampei, in the
Northern part of Romania, at an altitude of 912 m.
Bucharest and its surrounding area are one of the most polluted sites in Romania
[15]. The major pollution sources have been previously investigated: traffic,
industry, residential heating, waste and landfill management, dust intrusions,
pollen [16-22]. For a final comparison with the urban stations, a regional EMEP
E3 station - was chosen.

Meteorological data (temperature, pressure, relative humidity RH) are
provided by the NAQMN for sites Bl and EMEP, while for B6, measurements
reported at the Filaret meteorological station (situated at 2 km distance) and
provided by Weather Graphics [23] were used.

The analysis was performed for PMio and CO hourly measurements from
01 January 2018 to 21 November 2018. In this study we have used only the
measurements that passed the quality check criteria and that are validated by the
NAQMN. The missing points have been replaced by the average of the neighbor
points, resulting in a total number of points of 6500 for each atmospheric
parameter.

2.2 Multifractal Multiscale Detrended Cross-Correlation Analysis (MM-
DCCA)

The multifractal formalism consists in the evaluation of Hurst exponent for
different scales (frequencies) and different order of fluctuations. Taken a time
series with N data points, the main steps are [24]:

e a profile is created by subtracting the mean (X) from each data point (x;)
and integrating the time series

j
X() = Z(xi —%):j=12...,N
i=1 (1)

e X(j) is divided into N; = Int(N/s) non-overlapping intervals, where s is
the number of points (window length) in the time interval. If N is not
exactly divided by s, in order not to exclude some points, the deviation of
X(j) 1s performed twice, from beginning to end and reverse.

e for each interval, the local trend (obtained as a second order fit, X, (k)) is
subtracted from the profile and then the variance is computed, F2 (s, v):
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1w N
F2(s,v) = ;Z[Xv(k) %M v=12..N,
k=1

(2)
1. a g-order fluctuation function is defined as:
1 s q/2 g
F(q.s) = ZFXZ(s, v)] ,v=12,...N,.
2N,
- 3)

2. for self-afine series, the ¢ order fluctuation function is described by
a power law dependence on s as:

F.(q,s) ~ stx@, (4)

where the generalized Hurst exponent, Hy(q), is computed as the slope of the
fluctuation function versus s, in log-log scale.

If Hy(q) does not depend on ¢, the time series is monofractal and
conversely, if Hy(q) depends on ¢, then the time series is multifractal. The
scaling behavior of the data can differ on different ranges of fluctuations: for ¢ <
0, the Hx(q) is specific for small fluctuations, while for ¢g>0 the Hyx(q) is
characteristic for large fluctuations.

Also, depending on the Hy(q) value, the time series can be characterized
as long range correlated (persistent behavior) for a value greater than 0.5; non-
correlated for a value of 0.5 (specific for Gaussian white noise); and anti-
correlated (anti-persistent) for Hy (q) less than 0.5. The persistent behavior means
that a large (small) rise in the concentration of the data series is more likely to be
followed by a large (small) value. For the anti-persistent behavior, a decreasing in
the data series is more likely to be followed by an increment, and vice-versa.

In the case of two time series (X and Y) with the same number of points, a
generalized Hurst exponent can be defined similarly, the only difference
consisting in the computation of the variance function:

S
1 " "
F3,(s,) = ) 6,00 = £,00] [%,00 = %,00)|
=1 )
where ¥, (k) is the local trend for the second time series.

It was proved that a single scaling exponent does not describe the whole
properties of the time series and it possibly not reveals the internal dynamics of
signals. Gieraltowski [25] proposed a multiscale multifractal analysis for the
computing Hx (q) dependence versus the range of the scale s, without any initial
time-scale assumptions. An extension of this formalism was proposed by Shi et al.
[26] to the analysis of cross-correlation properties between two time series. Such
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investigation of the cross-correlation can be visualized as a Hurst surface, each
point representing the generalized dependence Hxy (g, s). If there is a dependence
of Hxy on the fluctuation parameter g for a fixed s, the two time-series are
multifractal cross-correlated, otherwise, if no dependence is observed, the two
time series are mono-fractal.

In order to better quantify the fractal characteristics of the time series, we
proposed two parameters: the strength of multifractality (A;H(q)) and variation of
cross-correlation (A, H(s)) [9]

AsH(q) = |H (Gmax>S) -H(Gmin, )| (6)
A H(s) = |H(q, Smax) -H(q, Smin) |- (7

The strength of multifractality is a measure of the change in multifractality, while
the second parameter is used to identify the multifractality variation across the
different scales analyzed.

3. Results

3.1 Correlations in the atmospheric parameters (PMio, CO,
temperature)

The analysis of the correlation in the time-series of the investigated
atmospheric parameters was performed for two types of urban environments.

After preliminary tests similar as in [9], we choose as the starting width of
the window scales s € (30, 150), corresponding to (1.25 days, 6.25 days), with a
slide length of 1 point. Then the window is moved and expanded until reaching
the final width s € (40, 200) corresponding to the time interval of around (1.6
days, 8.33 days).

The individual Hurst surfaces for PMio, CO and temperatures
corresponding for the two environments are shown in Fig. 1.

As observed, all the parameters present specific dependence of Hurst
exponent, demonstrating the multifractal characteristics. The values of the Hurst
exponent greater than 0.5 suggest that the fluctuations are persistent.

Looking on each column, a significant modification of characteristics the
Hurst surfaces can be seen, with an increasing departure from horizontality in the
specific order PMjo, CO and temperature. This is equivalent with an increasing in
multifractality, which in turn is an indicator of the stability of the dynamics of the
time-series at different scale and order of fluctuations. Consequently, the most
active dynamics dependent by the fluctuations are those involved in temperature
variation. It follows by CO data-set and by PMio - that seems to have a more
stable behavior.
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Looking on each line, the Hurst surfaces in the two environments are
similar, but for the traffic station, the Hurst values at all the scales are smaller at
large fluctuations. The Hurst surfaces for CO are different in the urban
background and traffic region: for small fluctuations, the urban site has higher
values than in the traffic station, while in the large fluctuations zone, the values of
the Hurst exponent decrease to approximately the same value (0.7).

For temperature time-series, Hurst surfaces in the two environments have
different characteristics compared to the Hurst surfaces for PMio and CO.
However, the similarities between their characteristics for the two location are
obvious, as expected. For the temperature measured at the two city sites, the lower
values (~0.5) of H are obtained when ¢ is 0 and the highest values (1.5) are
obtained when g=-5.
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Fig. 1 Hurst surfaces for PM10 (first row), CO (second row) and temperature (third row)
in suburban (B1 station, left) and traffic (B6 station, right) environment
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Table 1 shows the values of the strength of multifractality (A;H(g)) and of
the variation of correlation (A, H(s)). The highest strength of multifractality is for

temperature and the lowest for PMio. Also, for these two data sets, A;H(q) is
higher for all the parameters in the traffic conditions, which could be explained by
the more complex processes that take place in such locations. For example, in the
traffic environments there are more sources that produce different aerosols and
gases, thus the chemical and physical reactions between the aerosols and gases are
more complex. This is not the case for CO, whose dynamics seems to be strongly
biased and quite similar at large and small fluctuation order (q), consequently less
multifractal.

For all data set investigated, A;H(q) decreases while s increases, different
from parameter A H(s) that have two distinct behavior: increases with the
increasing of ¢ for the suburban environment, while, conversely, for the traffic
station, decreases when ¢ increases. Consequently, as expected, at traffic station
the dynamics at small fluctuations is more dominant than at large fluctuations.

Table 1
Strengths of multifractality and variation of correlation

Single- AH(q) A H(s)
Correlation | s min | s max gq_min gq_max
PMo Bl 0.22 0.09 0.02 0.11
PM;o B6 0.42 0.24 0.13 0.05

CO B1 0.56 0.45 0.04 0.07

CO B6 0.21 0.14 0.00 0.07
TEMP Bl 0.71 0.38 0.14 0.18
TEMP B6 0.88 0.50 0.19 0.18

3.2 Cross-correlations of pairs PMio, CO and temperature

We search now for the multifractal characteristics of the cross-correlated
pairs PMio, CO and temperature, and investigate if there are new information that
can be revealed.

Figure 2 illustrates the Hurst surfaces of the cross-correlation PMio-
temperature and PMo-CO at the two stations. As observed, for all the analyzed
cases, the correlations are long range persistent and the Hurst values are almost
similar in both environments.

However, specific differences can be noted. The range of the Hurst values
is small for the cross-correlation PMjo-temperature (between 0.6 and 1.1) across
all the fluctuations interval, while for the cross-correlation PMo-CO, the range of
Hurst values is different on the ¢ scale: lower for high fluctuations and higher for
small fluctuations.
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Fig. 2 Hurst surfaces for cross-correlation PMo-temperature (first row), PM;o-CO (second row) in
suburban (B1 station, left) and traffic (B6 station, right) environment

Hurst exponents for the cross-correlation PMio-CO pair correlation
decreases, at large fluctuations, towards 0.5. We can assume that, at short term,

pollution can accumulate while at a larger scale of time a quasi-stationary state is
reached.

Table 2
Strengths of multifractality and variation of cross- correlation
Cross- AH(Q) A H(s)
correlation s min S max gq_min gq_max
PMo-temp B1 0.24 0.03 0.13 0.14
PM;o-temp B6 0.35 0.06 0.15 0.14
PM;0-CO B1 0.33 0.25 0.02 0.10
PM;,-CO B6 0.29 0.26 0.04 0.07

From the data of Table 2, it is observed that A;H(q) is higher for the
smallest scale of investigation (around 1 day) for all cross-correlated time-series
and decreases at the maximum scale (around 8 days). Consequently, the strongest
interactions manifest at low time-scale.

The strength of multifractality is higher for the cross-correlation PM1o-CO
than PMo-temperature only at B1 station, while the variation of cross-correlation
is high for the PMo-temperature at both stations.
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3.3 Cross-correlations of atmospheric parameters in remote
environments

The Hurst surfaces for the cross-correlation between the CO from the
different city environments (urban background and traffic) and the CO measured
at the regional station (EMEP) are illustrated in Fig. 3. Both show multifractal
characteristics and persistent correlations. This means that an increasing in one
data series will be followed by also an increasing of concentrations in the second
data series, or if the values in one data set is decreasing, a decrease will be
observed also in the second data set.

The Hurst surfaces for the comparison of the city station with the regional
station are similar, with higher values at small fluctuations, while at the large
fluctuation regime, a decrease is observed. By comparing the two analyzed cases,
the Hurst values are higher for the cross-correlation between urban background
and regional station than for the cross-correlation between traffic and the regional
station.

CO B1-CO EMEP CO B6-CO EMEP

CO B1- COEMEP COB6 - COEMEP

Fig. 3 Hurst surfaces for cross-correlation CO from the suburban station (left) and traffic station
(right) with the CO measured at the regional station

3.4 Source of long-range correlations

There are two sources of multifractality: long range correlations (at small
or large fluctuations) and broad probability mass distribution. A shuffling
procedure, which involves the reordering of the values in the time series, destroys
the long-range correlations and does not affect probability mass distribution. So, if
the source of the multifractality is the long-range correlation, the shuffled data
will have a H value close to 0.5, specific for uncorrelated gaussian noise [26,27].
If the multifractality is derived from the fat-tailed distribution, the shuffling
procedure will not affect the Hurst surfaces, and another procedure is required,
which involves the calculation of surrogate data from the original data by
randomizing the phase in the Fourier space.
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We evaluated the source of multifractality for the cross-correlated data and
illustrate the case between the CO from the urban background station and the one
from the traffic station in order to find hidden influences in the data sets.

In Fig. 4 are shown the Hurst surfaces for this cross-correlation and the
Hurst surface after the shuffling procedure. Before the shuffling procedure, the
surface shows multifractality characteristics and long-range correlations. After the
shuffling, the H values for each independent time-series (Hx, Hy) and for the
correlated one (Hxy) are close to 0.5, which indicates that the source of
multifractality is of long-range type for small and large fluctuations at all the scale
analyzed.

CO B1-COB6

Shuffle time series of CO B1 and CO B6

Fig. 4 The cross-correlation between CO measured at the suburban station and CO measured at
the traffic station (left) and the Hurst surfaces after the shuffling procedure

4. Conclusions

In this paper, correlation, and cross-correlation for PMjo, CO and
temperature have been investigated. The data analyzed were collected for almost
one year in three different types of environments: city- background, city-traffic
and regional.

The time series exhibit multifractal and nonlinear features for single and
cross-correlated data and the fluctuations are long range correlated for all the
analyzed cases. The highest multifractal strength is for the temperature at the
traffic station, followed by CO and the most stable dynamics is characteristic for
PMio. The cross-correlated analysis of pair PMio-temperature at the traffic station
shows a more sensitive variation at small temporal scale (around 1 day). After the
shuffling procedure of the data for CO measured at the background station and at
the traffic station and for their correlated set, the Hurst surfaces approaches close
to 0.5, which demonstrates the long-range correlations as the source of
multifractality for the whole range of small and large fluctuations.

Analysis of the long-term correlations offers new important information
related to the complexity of air pollutants dynamics, useful for improving the
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investigation and forecasting the air quality, mainly in how the future might be
affected by the present and past values of specific atmospheric
parameters/pollutants, at different temporal scales.

Further studies are planned for the analysis of the data from a network of
stations in different environmental locations in order to map the results of MM-
DCCA methods and to define new quantitative descriptors that can signal sudden
changes in the dynamics of atmospheric processes and providing a better
forecasting of air pollutant time-series.
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