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EXACT SOLUTIONS FOR FRACTIONAL PARTIAL DIFFERENTIAL

EQUATIONS BY PROJECTIVE RICCATI EQUATION METHOD

Bin Zheng1

In this paper, the projective Riccati equation method is applied to find exact

solutions for fractional partial differential equations in the sense of modified Riemann-

Liouville derivative. Based on a nonlinear fractional complex transformation, a certain

fractional partial differential equation can be turned into another ordinary differential

equation of integer order. For illustrating the validity of this method, we apply it to solve

the space-time fractional Whitham-Broer-Kaup (WBK) equations and the time fractional

Sharma-Tasso-Olever (STO) equation, and as a result, some new exact solutions for

them are established.
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1. Introduction

Recently, fractional differential equations have gained much attention as they are

widely used to describe various complex phenomena in many fields such as the fluid flow,

signal processing, control theory, systems identification, biology and other areas. Among the

investigations for fractional differential equations, research for seeking exact solutions and

numerical solutions of fractional differential equations is an important topic, which can also

provide valuable reference for other related research. Many powerful and efficient methods

have been proposed to obtain numerical solutions and exact solutions of fractional differential

equations so far. For example, these methods include the Adomian decomposition method

[1,2], the variational iterative method [3-5], the homotopy perturbation method [6,7], the

differential transformation method [8], the finite difference method [9], the finite element

method [10], the fractional Riccati sub-equation method [11-13] and so on. Based on these

methods, a variety of fractional differential equations have been investigated and solved.

In this paper, we apply the projective Riccati equation method [14,15] for solving

fractional partial differential equations in the sense of modified Riemann-Liouville derivative

by Jumarie [16]. In Section 2, we give some definitions and properties of Jumarie’s modified

Riemann-Liouville derivative and the description of the projective Riccati equation method

for solving fractional partial differential equations. Then in Section 3 we apply the method

to solve the space-time fractional Whitham-Broer-Kaup (WBK) equations and the time

fractional Sharma-Tasso-Olever (STO) equation. Some conclusions are presented at the end

of the paper.
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2. Jumarie’s modified Riemann-Liouville derivative and description of the

fractional projective Riccati equation method

The Jumarie’s modified Riemann-Liouville derivative of order α is defined by the

following expression [16]:

Dα
t f(t) =

{
1

Γ(1− α)
d
dt

∫ t

0
(t− ξ)−α(f(ξ)− f(0))dξ, 0 < α < 1,

(f (n)(t))(α−n), n ≤ α < n+ 1, n ≥ 1.

For the modified Riemann-Liouville derivative, we have the following important properties

(see [11-13,17,19]):

Dα
t t

r =
Γ(1 + r)

Γ(1 + r − α)
tr−α, (1)

Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t), (2)

Dα
t f [g(t)] = f ′

g[g(t)]D
α
t g(t) = Dα

g f [g(t)](g
′(t))α. (3)

Suppose that a fractional partial differential equation, say in the independent variables

t, x1, x2, ..., xn, is given by

P (u1, ...uk, D
α
t u1, ..., D

α
t uk,

∂u1

∂x1
, ...,

∂uk

∂x1
, D2α

x2
u1, ...D

2α
x2
u1, ...,

u1
∂u1

∂xn−1
, ..., uk

∂uk

∂xn−1
, D3α

xn
u1, ..., D

3α
xn
uk, ...) = 0, (4)

where ui = ui(t, x1, x2, ..., xn), i = 1, ..., k are unknown functions, P is a polynomial in ui

and their various partial derivatives including fractional derivatives.

Step 1. For Eq. (4), suppose that

ui(t, x1, x2, ..., xn) = Ui(ξ),

ξ =
ctα

Γ(1 + α)
+ k1x1 +

k2x
α
2

Γ(1 + α)
+ ...k1xn−1 +

knx
α
n

Γ(1 + α)
+ ξ0, (5)

where c, k1, k2, ξ0 are all nonzero constants. Based on the transformation above, for the

terms in (5) containing fractional derivative, such as Dα
t u1, using the first equality in (3)

one can obtain

Dα
t u1 = Dα

t U1(ξ) = U ′
1(ξ)D

α
t ξ = cU ′

1(ξ).

for the terms in (5) containing derivative of integer order, such as ∂u1
∂x1

, using the first

equality in (3) one can obtain

∂u1

∂x1
=

∂U1

∂ξ
ξ
′

x1
= k1U

′
1(ξ).

So by this transformation for ξ, Eq. (4) can be turned into the following ordinary differential

equation of integer order with respect to the variable ξ:

P̃ (U1, ..., Uk, U ′
1, ..., U

′
k, U1U

′
1, ..., UkU

′
k, U ′′

1 , ..., U
′′
k , ...) = 0. (6)

Step 2. Suppose that the solution of (6) can be expressed by

Ui(ξ) =

m∑
i=0

aif
i +

m∑
j=1

bjf
j−1g, (7)

where ai, bj are all constants to be determined later, and f = f(ξ), g = g(ξ) satisfy the

following fractional projective Riccati equations:
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
f ′(ξ) = −f(ξ)g(ξ),

g′(ξ) = 1− g2(ξ)− rf(ξ),

g2(ξ) = 1− 2rf(ξ) + (r2 + ε)f2(ξ).

(8)

From the assumption one can see that the degree of Ui is m, while the degree of U ′
i

is m+ 1, and analogously, the degree of U
(k)
i is m+ k.

Based on (7) and (8), one polynomial in f igj can be constructed, where i, j are

integers. On one hand, the generation of the highest degree for f igj is due to the value of m,

and is possibly due to other two factors, that is, the highest order derivative and the nonlinear

term appearing in (6). On the other hand, in order to solve the undetermined constants

ai, bj in (7), one need to solve a set of algebraic equations for ai, bj , k1, k2, , ..., kn, c

after equating each coefficient of this polynomial to zero. For the consideration of avoiding

generating trivial solution, that is, ai, bj , k1, k2, , ..., kn, c are solved by zero, one need

to generate more than one terms which contain the highest degree for f igj so as to be

combined as terms in the same degree. Therefore, the positive integer m can be determined

by considering the homogeneous balance between the highest order derivative and nonlinear

term appearing in (6).

Step 3. Substituting (7) into (6) and using (8), the left-hand side of (6) is converted

to a polynomial in f igj . Equating each coefficient of this polynomial to zero, yields a set of

algebraic equations for ai, bj .

Step 4. Solving the equations in Step 3, and by using the solutions of Eqs. (8), we

can construct a variety of exact solutions for Eq. (4).

According to [14, Eqs. (7)-(9)], Eqs. (8) admits the following solutions:

When ε = −1:

f1(ξ) =
4

5 cosh(ξ) + 3 sinh(ξ) + 4r
, g1(ξ) =

5 sinh(ξ) + 3 cosh(ξ)

5 cosh(ξ) + 3 sinh(ξ) + 4r
, (9)

f2(ξ) =
1

cosh(ξ) + r
, g2(ξ) =

sinh(ξ)

cosh(ξ) + r
. (10)

When ε = 1:

f3(ξ) =
1

sinh(ξ) + r
, g3(ξ) =

cosh(ξ)

sinh(ξ) + r
. (11)

3. Applications of the method

In this section, we will apply the described method in Section 2 to some fractional

partial differential equations.

3.1. Space-time fractional Whitham-Broer-Kaup (WBK) equations

We consider the space-time fractional Whitham-Broer-Kaup (WBK) equations [12]:{
Dα

t u+ uDα
xu+Dα

xv + βD2α
x u = 0,

Dα
t v +Dα

x (uv)− βD2α
x v + γD3α

x u = 0,
0 < α ≤ 1. (12)

In [12], the authors solved Eqs. (12) by a proposed fractional sub-equation method based

on the fractional Riccati equation, and established some exact solutions for them. Now we

will apply the described method above to Eqs. (12). To begin with, we suppose u(x, t) =

U(ξ), v(x, t) = V (ξ), where ξ = kxα

Γ(1 + α)
+ ctα

Γ(1 + α)
+ ξ0, k, c, ξ0 are all constants with

k, c ̸= 0. Then by use of (1) we have Dα
x ξ = k, Dα

t ξ = c. Furthermore, by use of the first

equality in (3), we obtain
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{
Dα

xu = Dα
xU(ξ) = U ′(ξ)Dα

x ξ = kU ′(ξ),

Dα
t u = Dα

t U(ξ) = U ′(ξ)Dα
t ξ = cU ′(ξ).

Similarly we have {
Dα

xv = Dα
xV (ξ) = V ′(ξ)Dα

x ξ = kV ′(ξ),

Dα
t v = Dα

t V (ξ) = V ′(ξ)Dα
t ξ = cV ′(ξ),

So Eqs. (12) can be turned into{
cU ′ + kUU ′ + kV ′ + βk2U ′′ = 0,

cV ′ + k(UV )′ − βk2V ′′ + γk3U ′′′ = 0.
(13)

Suppose that the solutions of Eqs. (13) can be expressed by
U(ξ) =

m∑
i=0

aif
i +

m∑
j=1

bjf
j−1g,

V (ξ) =
n∑

i=0

cif
i +

n∑
j=1

djf
j−1g.

(14)

where f = f(ξ), g = g(ξ) satisfy Eqs. (8).

Balancing the order between the highest order derivative term and nonlinear term in

Eqs. (13), we can obtain m = 1, n = 2. So we have{
U(ξ) = a0 + a1f + b1g,

V (ξ) = c0 + c1f + c2f
2 + d1g + d2fg.

(15)

Substituting (15) along with (8) into (13) and collecting all the terms with the same

power of f igj together, equating each coefficient to zero, yields a set of algebraic equations.

Solving these equations, yields:

Case 1:

a0 =
−k−1c

√
β2k4r2 + β2k4ε+ γk4r2 + γk4ε∓ k3β2r ∓ k3γr√

β2k4r2 + β2k4ε+ γk4r2 + γk4ε
,

a1 = ±2
√
β2k4r2 + β2k4ε+ γk4αr2 + γk4εk−1, b1 = 0, c0 = −εk2(γ + β2)

(r2 + ε)
,

c1 = 2rk2(γ + β2), c2 = −2k2(γr2 + β2r2 + γε+ β2ε), d1 = 0,

d2 = ±2
√

β2k4r2 + β2k4ε+ γk4r2 + γk4εβ.

Case 2:

a0 = −k−1c, a1 = ±
√
β2k4r2 + β2k4ε+ γk4αr2 + γk4εk−1,

b1 = ±
√
β2k4 + γk4k−1, c0 = 0, c1 = r(∓β

√
β2k4 + γk4 + k2β2 + k2αγ),

c2 = ±β
√
β2k4α + γk4r2 ± β

√
β2k4 + γk4αε− k2γr2 − k2β2r2 − k2αγε− k2β2ε,

d1 = 0, d2 = ±
√

β2k4r2 + β2k4ε+ γk4r2 + γk4ε(∓k−2
√
β2k4 + γk4α + β).

Substituting the results above into Eqs. (15), and combining with the solutions of

Eqs. (8) as denoted in (9)-(11) we can obtain the following six families of exact solutions to

the space-time fractional Whitham-Broer-Kaup (WBK) equations.

From Case 1 and Eqs. (9)-(11) we obtain:

Family 1:
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

u1 =
−k−1c

√
β2k4r2 − β2k4 + γk4r2 − γk4 ∓ k3β2r ∓ k3γr√

β2k4r2 − β2k4 + γk4r2 − γk4

±8
√
β2k4r2 − β2k4 + γk4r2 − γk4k−1

5 cosh(ξ) + 3 sinh(ξ) + 4r
,

v1 =
k2(γ + β2)
(r2 − 1)

+
8rk2(γ + β2)

5 cosh(ξ) + 3 sinh(ξ) + 4r
− 32k2(γr2 + β2r2 − γ − β2)

[5 cosh(ξ) + 3 sinh(ξ) + 4r]2

±40
√
β2k4r2 − β2k4 + γk4r2 − γk4β[sinh(ξ) + 3 cosh(ξ)]

[5 cosh(ξ) + 3 sinh(ξ) + 4r]2
,

(16)

where ξ = kxα

Γ(1 + α)
+ ctα

Γ(1 + α)
+ ξ0.

Family 2:

u2 =
−k−1c

√
β2k4r2 − β2k4 + γk4r2 − γk4 ∓ k3β2r ∓ k3γr√

β2k4r2 − β2k4 + γk4r2 − γk4

±2
√
β2k4r2 − β2k4 + γk4r2 − γk4k−1

cosh(ξ) + r
,

v2 =
k2(γ + β2)
(r2 − 1)

+
2rk2(γ + β2)
cosh(ξ) + r

− 2k2(γr2 + β2r2 − γ − β2)
cosh(ξ) + r]2

±2
√
β2k4r2 − β2k4 + γk4r2 − γk4β sinh(ξ)

[cosh(ξ) + r]2
,

(17)

where ξ = kxα

Γ(1 + α)
+ ctα

Γ(1 + α)
+ ξ0.

Family 3:

u3 =
−k−1c

√
β2k4r2 + β2k4 + γk4r2 + γk4 ∓ k3β2r ∓ k3γr√

β2k4r2 + β2k4 + γk4r2 + γk4

±2
√
β2k4r2 + β2k4 + γk4r2 + γk4k−1

sinh(ξ) + r
,

v3 = −k2(γ + β2)
(r2 + 1)

+
2rk2(γ + β2)
sinh(ξ) + r

− 2k2(γr2 + β2r2 + γ + β2)
[sinh(ξ) + r]2

±2
√
β2k4r2 − β2k4 + γk4r2 − γk4β cosh(ξ)

[sinh(ξ) + r]2
,

(18)

where ξ = kxα

Γ(1 + α)
+ ctα

Γ(1 + α)
+ ξ0.

From Case 2 and Eqs. (9)-(11) we obtain:

Family 4:



u4 = −k−1c± 4
√

β2k4r2 − β2k4 + γk4r2 − γk4k−1

5 cosh(ξ) + 3 sinh(
ξ

Γ(1+)
) + 4r

±
√

β2k4 + γk4k−1[5 sinh(ξ) + 3 cosh(ξ)]
5 cosh(ξ) + 3 sinh(ξ) + 4r

,

v4 =
4r(∓β

√
β2k4 + γk4 + k2β2 + k2γ)

5 cosh(ξ) + 3 sinh(ξ) + 4r
+

16(±β
√

β2k4 + γk4r2 ± β
√

β2k4 − γk4 − k2γr2 − k2β2r2 + k2γ + k2β2)

[5 cosh(ξ) + 3 sinh(ξ) + 4r]2

+
4[±

√
β2k4r2 − β2k4 + γk4r2 − γk4(∓k−2

√
β2k4 + γk4 + β)]

[5 cosh(ξ) + 3 sinh(ξ) + 4r]2
×

[5 sinh(ξ) + 3 cosh(ξ)],

(19)
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where ξ = kxα

Γ(1 + α)
+ ctα

Γ(1 + α)
+ ξ0.

Family 5:



u5 = −k−1c±
√

β2k4r2 − β2k4 + γk4r2 − γk4k−1

cosh(ξ) + r

±
√
β2k4 + γk4k−1 sinh(ξ)

cosh(ξ) + r
,

v5 =
r(∓β

√
β2k4 + γk4 + k2β2 + k2γ)

cosh(ξ) + r
+

(±β
√
β2k4 + γk4r2 ± β

√
β2k4 − γk4 − k2γr2 − k2β2r2 + k2γ + k2β2)

[cosh(ξ) + r]2

+
[±

√
β2k4r2 − β2k4 + γk4r2 − γk4(∓k−2

√
β2k4 + γk4 + β)] sinh(ξ)

[cosh(ξ) + r]2
,

(20)

where ξ = kxα

Γ(1 + α)
+ ctα

Γ(1 + α)
+ ξ0.

Family 6:



u6 = −k−1c±
√

β2k4r2 − β2k4 + γk4r2 − γk4k−1

sinh(ξ) + r

±
√
β2k4 + γk4k−1 cosh(ξ)

sinh(ξ) + r
,

v6 =
r(∓β

√
β2k4 + γk4 + k2β2 + k2γ)

sinh(ξ) + r
+

(±β
√
β2k4 + γk4r2 ± β

√
β2k4 − γk4 − k2γr2 − k2β2r2 + k2γ + k2β2)

[sinh(ξ) + r]2

+
[±

√
β2k4r2 − β2k4 + γk4r2 − γk4(∓k−2

√
β2k4 + γk4 + β)] cosh(ξ)

[sinh(ξ) + r]2
,

(21)

where ξ = kxα

Γ(1 + α)
+ ctα

Γ(1 + α)
+ ξ0.

Remark 1. Compared with the results in [12], the established solutions in Eqs. (16)-

(21) are new exact solutions for the space-time fractional Whitham-Broer-Kaup (WBK)

equations, and have not been reported by other authors in the literature.

3.2. Time-fractional Sharma-Tasso-Olever (STO) equation

We consider the time-fractional Sharma-Tasso-Olever (STO) equation [18,19] of the fol-

lowing form

Dα
t u+ 3au2

x + 3au2ux + 3auuxx + auxxx = 0. (22)

To begin with, we suppose u(x, t) = U(ξ), where ξ = kx + ctα

Γ(1 + α)
+ ξ0, k, c, ξ0 are all

constants with k, c ̸= 0. Then by use of (1) and the first equality in (3), Eq. (22) can be

turned into

cU ′ + 3ak2(U ′)2 + 3akU2U ′ + 3ak2UU ′′ + ak3U ′′′ = 0. (23)

Suppose that the solution of Eq. (23) can be expressed by

U(ξ) =
m∑
i=0

aif
i +

m∑
j=1

bjf
j−1g, (24)
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where f = f(ξ) satisfies Eqs. (8).

Balancing the order between the highest order derivative term and nonlinear term in

Eq. (23), we can obtain m = 1. So we have

U(ξ) = a0 + a1f + b1g, (25)

Substituting (25) along with (8) into (23) and collecting all the terms with the same

power of f igj together, equating each coefficient to zero, yields a set of algebraic equations.

Solving these equations, yields:

Case 1:

a0 = 0, a1 = a1, b1 = ±
√

1

r2 + ε
a1, k = ±

√
1

r2 + ε
a1, c = ∓

√
1

(r2 + ε)3
a31a.

Case 2:

a0 = 0, a1 = a1, b1 = ±
√

1

r2 + ε
a1, k = ±2

√
1

r2 + ε
a1, c = ∓2

√
1

(r2 + ε)3
a31a.

Case 3:

a0 = a0, a1 = ±1

2

√
r2 + εk, b1 =

1

2
k, k = k, c = −1

4
ka(k2 + 12a20).

Substituting the results above into Eq. (25), and combining with Eqs. (9)-(11) we

can obtain a rich variety of exact solutions to the nonlinear fractional Sharma-Tasso-Olever

(STO) equation with space- and time-fractional derivatives.

From Cases 1-2 and Eqs. (9)-(11) we obtain:

Family 1:

u1 =
4a1

5 cosh(ξ) + 3 sinh(ξ) + 4r
±
√

1

r2 − 1
a1[

5 sinh(ξ) + 3 cosh(ξ)

5 cosh(ξ) + 3 sinh(ξ) + 4r
], (26)

where ξ = ±
√

1
r2 − 1

a1x∓
√

1
(r2 − 1)3

a31at
α

Γ(1 + α)
+ξ0 or ξ = ±2

√
1

r2 − 1
a1x∓2

√
1

(r2 − 1)3
a31at

α

Γ(1 + α)
+

ξ0.

Family 2:

u2 =
a1

cosh(ξ) + r
±
√

1

r2 − 1
a1[

sinh(ξ)

cosh(ξ) + r
], (27)

where ξ = ±
√

1
r2 − 1

a1x∓
√

1
(r2 − 1)3

a31at
α

Γ(1 + α)
+ξ0 or ξ = ±2

√
1

r2 − 1
a1x∓2

√
1

(r2 − 1)3
a31at

α

Γ(1 + α)
+

ξ0.

Family 3:

u3 =
a1

sinh(ξ) + r
±
√

1

r2 + 1
a1[

1

sinh(ξ) + r
], (28)

where ξ = ±
√

1
r2 − 1

a1x∓
√

1
(r2 − 1)3

a31at
α

Γ(1 + α)
+ξ0 or ξ = ±2

√
1

r2 − 1
a1x∓2

√
1

(r2 − 1)3
a31at

α

Γ(1 + α)
+

ξ0.

From Case 3 and Eqs. (9)-(11) we obtain:

Family 4:
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u4 = a0 ±
2
√
r2 − 1k

5 cosh(ξ) + 3 sinh(ξ) + 4r
+

1

2
k[

5 sinh(ξ) + 3 cosh(ξ)

5 cosh(ξ) + 3 sinh(ξ) + 4r
], (29)

where ξ = kx− ka(k2 + 12a20)t
α

4Γ(1 + α)
+ ξ0.

Family 5:

u5 = a0 ±
√
r2 − 1k

2[cosh(ξ) + r]
+

1

2
k[

sinh(ξ)

cosh(ξ) + r
], (30)

where ξ = kx− ka(k2 + 12a20)t
α

4Γ(1 + α)
+ ξ0.

Family 6:

u6 = a0 ±
√
r2 + 1k

2[sinh(ξ) + r]
+

1

2
k[

cosh(ξ)

sinh(ξ) + r
], (31)

where ξ = kx− ka(k2 + 12a20)t
α

4Γ(1 + α)
+ ξ0.

Remark 2. In [18], Song et al. obtained a rational approximation solution as denoted

in Eqs. (6.10), (6.11), (6.17), (6.18), (6.24), (6.25) in [18] for Eq. (22) by use of the

variational iteration method, the Adomian decomposition method and the homotopy per-

turbation method respectively, while in [19], Lu obtained some exact solutions as denoted

in Eqs. (53)-(56), (58) in [19] for Eq. (22) by use of the first integral method. We note

first that our results are different from those in [18], since the solution obtained in [18] is

an approximation solution, while our results are direct exact solutions. Furthermore, as

a substantial different method was used here, the solutions established in Eqs. (26)-(31)

here are of different forms from those in [19], and are new exact solutions for the nonlinear

fractional Sharma-Tasso-Olever equation so far in the literature.

Remark 3. The method used above can also be used to obtain solutions to some certain

initial or boundary value problems, that is, solutions to initial or boundary value problems

are particular cases of the solutions obtained above. For example, in Eq. (22), if we add the

initial value condition

u(x, 0) = coth(x+ 1).

Then after substituting this initial value condition to the hyperbolic solutions obtained in

Eq. (31) and fulfilling some basic comparison and computation, one can see that k = 2, r =

0, a0 = 0, ξ0 = 2. So we obtain the solution to initial value problem as

u(x, t) =
1

sinh(2x− 2atα

Γ(1 + α)
+ 2)

+ coth(2x− 2atα

Γ(1 + α)
+ 2).

4. Conclusions

We have applied the projective Riccati equation method for solving fractional par-

tial differential equations, and applied it to find exact solutions of the space-time frac-

tional Whitham-Broer-Kaup (WBK) equations and the time fractional Sharma-Tasso-Olever

(STO) equation. The most important point of this approach lies in that a nonlinear frac-

tional complex transformation from x, t to ξ is used here, which ensures that a certain
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fractional partial differential equation can be turned into another ordinary differential equa-

tion of integer order, whose solutions can be expressed by a polynomial in the solutions of

the projective Riccati equations. Finally, we note this method can also be applied to solve

other fractional differential equations.
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