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This paper is a continuation of our previous studies on the implementation of 

a mobile platform based on computer vision and Raspberry Pi hardware, precise 

indoor navigation. Thus, we implemented a prototype version of a robot that can 

recognize targets using machine learning and computer vision based algorithms. 

Further, the platform was improved to achieve complete autonomy, indoor mapping 
and navigation, and self-charging. We showed that it is possible to create an 

affordable, completely autonomous robot that can navigate and detect targets. The 

present study has two main objectives. The first one is to build a platform that uses 

computer vision algorithms to detect objects, processes and aggregates the 

information acquired from various sensors, shares it with other devices, and has 

capabilities of remote and automated reconfiguration of the main program loop and 

logging results. The second objective is to improve the precision of the localization 

and navigation by adjusting the data received from the digital compass to the 

specifics of the environment and the hardware setup of the mobile unit.  

Keywords: Raspbian, Raspberry Pi, Python, Wi-Fi, debugging, self-charging, 

digital compass calibration 

1. Introduction 

Lately, the interest in obtaining fully autonomous robots able to map, 

localize targets, self-charge with energy and perform various tasks indoors has 

increased. The use of autonomous and highly cooperative robots that are able to 

perform predefined tasks without human supervision is going to transform the 

future of almost all activities such as agriculture, mining, services and so on. 

 Such applications include search and find systems indoors, assisting 

humans with various tasks [1], inspecting areas and reading meters [2], delivery of 

products inside cafes, hotels, and even fully automated outdoor robots [3-8]. Other 

applications include collaboration between heterogeneous robots to perform 

coordinated search and rescue missions over a given area [9]. Many applications 

use Digital Magnetic Compass (DMC) as part of the Simultaneous Localization 

and Mapping (SLAM) functionality of the systems [10-14].  
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 Although there are numerous papers in the literature treating different 

topics on robots, our careful literature search revealed that currently our platform 

is the only one combining Raspberry Pi, digital compass, video camera, and 

ultrasonic sensors to map and navigate indoors using custom built navigation 

algorithms, as well as self-recharging using wireless charging technology. In 

addition, it should be stressed that not only the hardware configuration is original, 

being designed and assembled using various hardware components, but also the 

software procedures that achieve the described functions are custom built, and the 

machine learning models for object recognition were trained in-house. This paper 

is a continuation of our previous studies [15,16] where we presented the 

implementation of an autonomous robot that uses computer vision software and 

affordable Internet of Things (IoT) Raspberry Pi hardware and sensors to map an 

indoor area and navigate, as well as implementing energetic autonomy via self-

charging configuration and software. The first version of the platform was built on 

a simple 3 wheels robot, based on a Raspberry Pi mini-computer. The software 

program that was written using the Python language was able to recognize 

specific targets (signs) using our own trained “Haar feature based cascade 

classifiers” and the functions provided by the OpenCV computer vision library 

(see Fig. 1). Thanks to one ultrasonic sensor, the robot was also able to detect 

physical boundaries and navigate pseudo-randomly in the environment, moving 

between several targets [15]. The prototype proved that it was possible to build an 

affordable robot with a lot of processing power that can use the recent advances in 

terms of hardware and software to intelligently navigate without much human 

supervision.  
 

 
 

Fig. 1. Object detected using Haar Classifier [15] 
 

The second version of the platform that was built [16] brought new 

software modules that were written to create, store, and update the map of the 

environment and to calculate the optimal paths between locations. Some other 

new software modules were implemented to perform the self-recharging 
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procedure. The platform built at this stage provides all the necessary functions 

required for complete autonomy: self-recharging with energy (wirelessly), 

improved navigation capabilities that combine the information provided by 

multiple sensors (see the evolution of the mobile robot platforms, Fig. 2).  
 

   
Fig. 2. Mobile robot versions. From left to right: 1 [14], 2 [15], and 3 [last version]. 

 

The software written makes use of the data from the camera and computer vision 

to detect targets, data from ultrasonic sensors to detect the boundaries of the 

environment, and the data from the newly added digital compass to save, load, 

and update the map (see Fig. 3) and to achieve precise localization. The objective 

was to build an affordable, mobile platform that is fully-autonomous that can 

operate and perform various tasks in an indoor environment. 
 

  

Fig. 3. Example of maps: initial (left side) and updated scan (right side) 
 

The cost of the hardware for both versions combined was around EUR 

400-500. The software algorithms were designed and implemented by the authors, 

and used available platforms and open-source libraries: Linux OS, Python, 

OpenCV. The platform does not carry maintenance costs, moreover constant 

upgrades of the connected software modules are available so that the platform can 

make use of performance improvements or bug fixes. Thanks to the modular 

architecture of the software that we implemented, the platform can be easily 
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adapted to perform as designed and described using other hardware components: 

different chassis, control boards, sensors, digital compass.  

Here we present the results of our exhaustive study on building the 

complete platform of the autonomous robot, including the software configuration 

and the operating system, communication and control of the robot via Wi-Fi from 

the software developer point of view, configuration of the camera and computer 

vision software, the software tools and modules, information on the hardware 

used such as the extension board, sensors and motion, the self-charging feature, 

the calibration and use of the digital compass. We studied the calibration of the 

digital compass to the specific conditions of the testing environment and we 

propose an original solution for accurate positioning and movement irrespective 

of the observed distortion factors.  

The calibration of the compass and the proposed algorithms resulted in a 

higher precision of pose and navigation. We studied and implemented a procedure 

that can adjust the readings of the digital compass to be as close as possible to the 

real orientation. Most importantly, our original method, which aggregates data 

from multiple sources, digital compass, video camera, ultrasonic distance sensors, 

is efficient in correcting the position on map and orientation of the mobile robot. 

Secondly, configuring the platform to allow remote transfer of executable code 

and data sharing at any time opens infinite possibilities, such as adding new 

software sub-routines on-the-fly, adding the capability to detect new objects via 

machine-learning algorithms trained on live images transmitted by the mobile 

robot, updating the live map with information added automatically by other 

devices or even human operators. 

2. Software configuration 

2.1. Operating system 

The software programs that enable the functionality of our robot on the 

Raspberry Pi (R-Pi) board use high-level programming languages. The programs 

need the functionalities provided by an operating system that include access to 

hardware resources such as storage, memory, and CPU, and access via 

communication ports/interfaces to hardware components that can be attached to 

the board: video cameras, analog and digital sensors, Wi-Fi and Bluetooth enabled 

devices.We used the documentation provided by the manufacturer for the 

“Raspberry Pi 3 Model B Rev 1.2” board and installed "Raspbian GNU/Linux 8 

(Jessie) 4.9.35-v7+" operating system, the minimum version to support R-Pi 3 

[17]. We used a laptop with Windows OS and SD card writer capability to install 

the OS on a 6GB SD card via the R-Pi imager utility also provided by the 

manufacturer. Once the card was inserted in the R-Pi, we attached it to a TV via a 

HDMI cable, to a router via an Ethernet cable, to wireless keyboard and mouse 
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via a wireless receiver connected to the one of the USB ports and powered up the 

R-PI by connecting a USB power supply. 

2.2. Wireless connection and control of the R-Pi 

The next steps included changing the default password for user ‘pi’ and 

configuring access to Wi-Fi networks, so that the board can connect to the local 

Wi-Fi and other wireless access points (AP) that we used later on, e.g. AP enabled 

on mobile devices (smartphones) to allow wireless connections between our R-Pi 

and the development devices (laptop) without the need of a standard wireless 

router. 

 
Fig. 4. VNC viewer connection between laptop and R-Pi 

 

In order to be able to connect wirelessly to our R-Pi from a laptop, we 

enabled Secure Shell (SSH) and Virtual Network computing (VNC) interfaces via 

the R-Pi configuration utility and set-up a specific value for the private IP address 

the device requests when connecting to Wi-Fi networks. We used this 

documentation to configure the remote access via VNC [18]. 

The next step was to install a VNC viewer software on our development 

laptop, connect to R-Pi and continue with the next steps without the need of the 

monitor/TV, keyboard or mouse attached to it (Fig. 4). 
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Securely transferring files between computers can be done with the ‘scp’ 

command in terminal, e.g.  
 

‘scp<path1>/<filename1> pi@<ip_address_rpi>:/home/pi/<path2>/<filename2>’. 
 

 
Fig. 5. Python 3 software development framework 

2.3. Connecting the camera and installing the computer vision 

software 

One of the main strengths of our robot is the use of computer vision for 

detection of objects. We use an original R-Pi camera module V2. There is an 

option in the R-Pi configuration panel to enable the module. Note that image can 

be also acquired by attaching to R-Pi any type of camera via the USB interface. 

2.4. Software tools and modules 

The choice for high-level programming languages was Python. This is an 

interpreted, general purpose language, very popular in the scientific community. 

The decision was based on the fact that we could easily use open-source software 

libraries for reading data from sensors and for running computer vision 

algorithms. We used Python 2.7 in the early phase of development and then 

upgraded to version 3.7.2. Writing, running and troubleshooting our own software 

package was straightforward (Fig. 5). Data from sensors is read via open source 

Python libraries. 
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3. Hardware configuration 

3.1. Extension board 

The robot that we built was created by combining hardware parts from 

various manufacturers, some open source software (OS - Raspbian, computer 

vision libraries, libraries for serial port access), and our in-house software code 

that controls the robot and enables the required functionalities. 
 

 
Fig. 6. Hardware configuration of GPG-2 board [19] 

 

The R-Pi on our robot does not allow by itself to transfer power to 

electrical motors. This is done with the help of an extension board connected to R-

Pi via the serial port. The extension board we used is GoPiGo 2 (GPG-2) and is 

produced by Dexter Industries. The board is based on an ATMEGA328 

microcontroller which handles the communication between the board and the R-

Pi. [19], as can be seen in Fig. 6. The documentation provided by the 

manufacturer contains information about the hardware and high-level 

programming code language e.g. Python to help communication with the ports. 

3.2 Sensors 

The GPG-2 board contains one Inter-Integrated Circuit (I2C) port, which 

we used to connect a digital compass, one digital, and one analog port to which 

we attached two ultrasonic distance measuring sensors. The manufacturer 

provided the scripts necessary to install all the necessary dependencies for the 

libraries provided, as well as tests for troubleshooting and debugging. Using the 
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software modules with Python is straightforward by importing them into our 

software. 

3.3 Motion  

Controlling the electrical motors is possible via two power outputs of the 

extension board. 

 
Fig. 7. Robot chassis by PiBorg [20] 

 

The motors and the chassis of the robot were provided by another 

manufacturer, PiBorg. The model used is a rugged, aluminum based, with the 

most powerful motor version available at the time [20], as can be seen in Fig. 7. 

We used only the chassis, the four electric motors and the custom location to 

insert the R-Pi video camera. 

3.4. Self-recharging feature 

To solve the problem of energetic autonomy, we took the approach of 

wireless charging. We used a rechargeable battery pack (RBP) manufactured by 

Romoss, with one input (mini-USB) and two outputs (USB). The input is 

connected to a wireless power receiver. When the receiver coil on the robot is 

connected or in the proximity of the transmitter coil placed on the fixed base 

charging station, the battery pack is charging. One of the outputs is connected to 

the R-Pi board via a USB to mini USB cable, and the other output is connected to 

the GPG-2 board via a DC booster cable (USB to 2.1mm). The cable contains an 

integrated boost converter from 5V to 12V, thus providing constant voltage to the 

board that controls the electrical motors. When the RBP’s input is connected to an 

energy source, because of the internal switch, there is a short drop in power output 

to R-Pi. Due to the fact that R-Pi is sensible to voltage fluctuation, this will cause 

a restart of the operating system. In order to resume the operation, the script that 

contains the main loop of the program executed by our robot is added as one of 

the programs to be run automatically by the OS on restart, using crontab and 

@reboot. The main program script saves the current state and time in a file. On 

start, data is loaded from the file so that the program can switch from ‘locking to 

charger’ state to ‘charging’. Since we use a booster to provide constant voltage to 

the GPG-2 board and there is no information about the current charging 

percentage of the battery, a constant of 8 hours is used to decide when the robot is 
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fully charged and can resume other activities. The electrical scheme of the power 

flow is represented in Fig. 8. 

 
Fig. 8. Electrical scheme of the power flow 

3.5. Digital compass calibration. 

The digital compass we used is model HM5883L.  

In the following section we describe the calibration process, the data and 

the results. The values of the magnetic field on the three axes x, y, and z can be 

read from the registers of the digital compass, via the serial bus. The heading is 

calculated using the values for x and y axes, and a correction is applied to take 

into account the local declination where the measurement takes place. The source 

code for calculating the heading is: 
 

headingRad = math.atan2(value_y, value_x) 

headingRad += self.declination 

if (headingRad < 0): 

headingRad += 2*math.pi   

if (headingRad > 2*math.pi): 

 headingRad -= 2*math.pi 
 

Consequently we created an experiment and the robot was programmed to 

measure and store the calculated heading in steps of 5 degrees, between 0 and 

360, in triplicates and also stored the corresponding measurements taken with a 

compass. 
Table 1 

Sample of calculated heading – C(x), real heading – R(x), and difference (error) – D(x) 

C(x) [deg] R(x) [deg] D(x) [deg] 

70 60 10 
73 65 8 

76 70 6 

80 75 5 

83 80 3 

87 85 2 

90 90 0 

94 95 -1 

96 100 -4 

100 105 -5 

103 110 -7 

105 115 -10 
109 120 -11 

112 125 -13 
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We were particularly interested in orthogonal movements in the ‘xy’ plane 

so that the robot keeps its heading precisely on two orthogonal axes and their four 

directions: front, back, left, and right. For each entry in the table (C(x) – the 

calculated value of the angle for every x degrees; R(x) – the real value 

corresponding to calculated C(x); D(x) – the difference between C(x) and R(x)), 

we calculated the deviation from the real values and observed the sum of 

deviation squares in steps of 90 degrees: 
 

                                                    (1) 

 

Fig. 9. The error between the calculated and real value of the heading 
 

Sample of calculated data (72 data measurements repeated three times) are 

presented in Table 1 and plotted in Fig. 9 (red line). We then placed the robot on 

the initial starting position, which is the origin of the map, aligned it perpendicular 

to the base, and rotated the digital compass with 5 degrees, so that Dev will be 

kept to the minimum value while the robot is moving along the orthogonal 

directions. This allows the robot to measure correctly its orientation in the four 

interesting directions (Fig. 10).  

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. Dev function 

-25

-20

-15

-10

-5

0

5

10

15

20

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

D
(x

),
 d

e
g

re
e

s

C(x), degrees

D(x) (0 - 360 degrees)

D(x) (70 - 112 degrees)

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

D
e
v
, 
d

e
g

re
e
s

C(x), degrees



Implementation of a home appliance mobile platform based on computer vision: system (...)  51 

We observed there are multiple positions where the deviation calculated 

above is minimum, at 5, 100, 202, and 282 degrees. The software program that we 

wrote to enable precise positioning and navigation contains a procedure that 

rotates the robot until a desired heading is reached. Because of the time difference 

between the moment when the robot reads the heading and the moment it actually 

stops rotating, there is an inherent difference between the desired heading and the 

real one. In order to minimize this error of alignment, we control the rotation 

speed based on the difference between the current and the desired heading. When 

the difference is higher than a threshold, the robot rotates at maximum speed. 

When the difference is lower than the threshold, we decrease the speed so that the 

program can stop the rotation as close as possible to the desired heading. In order 

to have a more precise measurement at any given angle, we measured and 

eliminated the soft-iron errors.  
 

 
Fig. 11. Absolute error deviation after soft-iron correction 

 
Fig. 12. Dev function after soft-iron correction 
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As described in [10], the soft iron distortion arises from the interaction of 

the earth's magnetic field and any magnetically soft material surrounding the 

compass. We applied a correction to the calculated heading and reduced the 

heading errors, as seen in Figs. 11 and 12 above. 

Algorithm of automatic correction of digital compass data. We studied and 

implemented a solution to calibrate the digital compass of the robot in order to 

minimize the positioning errors. The algorithm uses data from multiple sources: 

the digital compass, the video camera, and the ultrasonic sensor. Here we describe 

the procedure that runs when the robot is positioned at the charging base, or in any 

location that is labelled with one of the known images that the computer vision 

subroutine can recognize. The digital compass is attached in a fixed position on 

the top side of the robot, at the height empirically determined to reduce the 

electromagnetic influence of the battery pack, motors and chassis. The robot is 

rotated in small steps, with consecutive commands, around his vertical axis, and 

the number of rotation commands is counted. Since the friction coefficient 

between the surface and the robot’s wheels is not known, and in this step the 

algorithm does not control the value of the rotation angle in one rotation step, this 

is a value that can vary and has to be determined. With the help of the subroutine 

that is also used for determining if a target image is in the center of the snapshot 

acquired from the video camera, we can identify the approximate moment when 

the robot has performed a complete 360 rotation. In step 1, the algorithm stores 

the number of rotation commands per 360 degrees and repeats the cycle a few 

times, e.g. 72 steps will result in a 5 degree rotation per step. In step two, the robot 

performs several rotation cycles, storing the data from the digital compass, 

mapping the rotation angle and the data from the digital compass. In step three, 

the read data is converted accordingly by adding or subtracting the offset, so that 

the direction of the base becomes the new ‘North’ and data for all the other angles 

will be adjusted accordingly to match the real orientation of the robot. As 

described earlier, the robot will navigate in the environment using 90 degree 

rotations, straight forward and backward movements so we need these to be 

precise. In step four of the calibration, the robot performs a few cycles of 90 

degree rotations, analyzing the position of the target with respect to the center of 

the image. If it is not centered, the calibration loop returns to step 1 to acquire new 

data, and saves the average values. The calibration process ends when the robot 

can perfectly align with the ‘North’ after a few 360 rotation cycles. 

4. Conclusions 

This paper presents how we achieved full autonomy of a mobile robot 

platform using affordable materials and in-house built software. A detailed 

description of the software and hardware modules of the proposed and 

implemented mobile platform was provided. It proposes solutions to completely 
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configure and build an autonomous mobile robot. A novel procedure for very 

precise indoor positioning and navigating was designed and implemented, using 

the DMC technology. The platform advanced from the stage where the robot was 

able to move and locate targets using a pseudo-random search algorithm, to the 

current stage where the platform has the memory of the previously acquired 

sensor data stored as a map, and is able to calculate optimal paths for moving 

around between objectives. One of the key factors is the calibration of the digital 

compass to reduce the reading errors for any direction, so the precision of 

positioning and navigation is dramatically improved. This opens the possibility of 

various applications such as substitution of humans in hazardous environments, 

active monitoring and surveillance of indoor and outdoor spaces, guidance of 

humans in offices, museums or storage areas, delivery of goods, vacuum cleaning, 

lawn mowing, farming. Due to the versatility of the platform supported by high 

processing power and advanced connectivity, the main program loop can be 

upgraded on the fly to include artificial intelligence based functionalities such as 

scene, object, and face recognition. It is also independent of the hardware used for 

navigation, so it can be easily transferred to bigger and more powerful hardware. 

Future research lines will be along description of the current navigation 

algorithms that were implemented, analyzing and improving the navigation in 

terms of complexity, execution speed and scalability, ‘live’ collaboration between 

multiple devices in achieving fast mapping and optimal navigation solutions, 

calculating the paths for devices in a swarm of e.g. vacuum cleaners in order to 

cover every ‘square’ of a shared map in the most optimal way. We will study and 

implement a novel precise and orthogonal positioning on target waypoints by 

comparing multiple solutions. We will add new functionalities based on machine 

learning algorithms and artificial intelligence e.g. automatic labelling of scanned 

areas on the map, automatic generation of waypoints and the corresponding ML 

detection algorithms, and correction of position based on waypoints. 
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