
U.P.B. Sci. Bull., Series C, Vol. 82, Iss. 4, 2020 ISSN 2286-3540

IMPLEMENTATION OF A HOME APPLIANCE MOBILE

PLATFORM BASED ON COMPUTER VISION: SYSTEM

CONFIGURATION AND CALIBRATION

Florin-Dan SECUIANU
1
, Ciprian LUPU

2

This paper is a continuation of our previous studies on the implementation of

a mobile platform based on computer vision and Raspberry Pi hardware, precise

indoor navigation. Thus, we implemented a prototype version of a robot that can

recognize targets using machine learning and computer vision based algorithms.

Further, the platform was improved to achieve complete autonomy, indoor mapping
and navigation, and self-charging. We showed that it is possible to create an

affordable, completely autonomous robot that can navigate and detect targets. The

present study has two main objectives. The first one is to build a platform that uses

computer vision algorithms to detect objects, processes and aggregates the

information acquired from various sensors, shares it with other devices, and has

capabilities of remote and automated reconfiguration of the main program loop and

logging results. The second objective is to improve the precision of the localization

and navigation by adjusting the data received from the digital compass to the

specifics of the environment and the hardware setup of the mobile unit.

Keywords: Raspbian, Raspberry Pi, Python, Wi-Fi, debugging, self-charging,

digital compass calibration

1. Introduction

Lately, the interest in obtaining fully autonomous robots able to map,

localize targets, self-charge with energy and perform various tasks indoors has

increased. The use of autonomous and highly cooperative robots that are able to

perform predefined tasks without human supervision is going to transform the

future of almost all activities such as agriculture, mining, services and so on.

 Such applications include search and find systems indoors, assisting

humans with various tasks [1], inspecting areas and reading meters [2], delivery of

products inside cafes, hotels, and even fully automated outdoor robots [3-8]. Other

applications include collaboration between heterogeneous robots to perform

coordinated search and rescue missions over a given area [9]. Many applications

use Digital Magnetic Compass (DMC) as part of the Simultaneous Localization

and Mapping (SLAM) functionality of the systems [10-14].

1 PhD student, Dept. of Automatic Control and Systems Engineering, University POLITEHNICA

of Bucharest, Romania, e-mail: dan.secuianu@gmail.com
2 Prof., Dept. of Automatic Control and Systems Engineering, University POLITEHNICA of

Bucharest, Romania, e-mail: ciprian.lupu@acse.pub.ro

mailto:dan.secuianu@gmail.com
mailto:ciprian.lupu@acse.pub.ro

42 Florin-Dan Secuianu, Ciprian Lupu

 Although there are numerous papers in the literature treating different

topics on robots, our careful literature search revealed that currently our platform

is the only one combining Raspberry Pi, digital compass, video camera, and

ultrasonic sensors to map and navigate indoors using custom built navigation

algorithms, as well as self-recharging using wireless charging technology. In

addition, it should be stressed that not only the hardware configuration is original,

being designed and assembled using various hardware components, but also the

software procedures that achieve the described functions are custom built, and the

machine learning models for object recognition were trained in-house. This paper

is a continuation of our previous studies [15,16] where we presented the

implementation of an autonomous robot that uses computer vision software and

affordable Internet of Things (IoT) Raspberry Pi hardware and sensors to map an

indoor area and navigate, as well as implementing energetic autonomy via self-

charging configuration and software. The first version of the platform was built on

a simple 3 wheels robot, based on a Raspberry Pi mini-computer. The software

program that was written using the Python language was able to recognize

specific targets (signs) using our own trained “Haar feature based cascade

classifiers” and the functions provided by the OpenCV computer vision library

(see Fig. 1). Thanks to one ultrasonic sensor, the robot was also able to detect

physical boundaries and navigate pseudo-randomly in the environment, moving

between several targets [15]. The prototype proved that it was possible to build an

affordable robot with a lot of processing power that can use the recent advances in

terms of hardware and software to intelligently navigate without much human

supervision.

Fig. 1. Object detected using Haar Classifier [15]

The second version of the platform that was built [16] brought new

software modules that were written to create, store, and update the map of the

environment and to calculate the optimal paths between locations. Some other

new software modules were implemented to perform the self-recharging

Implementation of a home appliance mobile platform based on computer vision: system (...) 43

procedure. The platform built at this stage provides all the necessary functions

required for complete autonomy: self-recharging with energy (wirelessly),

improved navigation capabilities that combine the information provided by

multiple sensors (see the evolution of the mobile robot platforms, Fig. 2).

Fig. 2. Mobile robot versions. From left to right: 1 [14], 2 [15], and 3 [last version].

The software written makes use of the data from the camera and computer vision

to detect targets, data from ultrasonic sensors to detect the boundaries of the

environment, and the data from the newly added digital compass to save, load,

and update the map (see Fig. 3) and to achieve precise localization. The objective

was to build an affordable, mobile platform that is fully-autonomous that can

operate and perform various tasks in an indoor environment.

Fig. 3. Example of maps: initial (left side) and updated scan (right side)

The cost of the hardware for both versions combined was around EUR

400-500. The software algorithms were designed and implemented by the authors,

and used available platforms and open-source libraries: Linux OS, Python,

OpenCV. The platform does not carry maintenance costs, moreover constant

upgrades of the connected software modules are available so that the platform can

make use of performance improvements or bug fixes. Thanks to the modular

architecture of the software that we implemented, the platform can be easily

44 Florin-Dan Secuianu, Ciprian Lupu

adapted to perform as designed and described using other hardware components:

different chassis, control boards, sensors, digital compass.

Here we present the results of our exhaustive study on building the

complete platform of the autonomous robot, including the software configuration

and the operating system, communication and control of the robot via Wi-Fi from

the software developer point of view, configuration of the camera and computer

vision software, the software tools and modules, information on the hardware

used such as the extension board, sensors and motion, the self-charging feature,

the calibration and use of the digital compass. We studied the calibration of the

digital compass to the specific conditions of the testing environment and we

propose an original solution for accurate positioning and movement irrespective

of the observed distortion factors.

The calibration of the compass and the proposed algorithms resulted in a

higher precision of pose and navigation. We studied and implemented a procedure

that can adjust the readings of the digital compass to be as close as possible to the

real orientation. Most importantly, our original method, which aggregates data

from multiple sources, digital compass, video camera, ultrasonic distance sensors,

is efficient in correcting the position on map and orientation of the mobile robot.

Secondly, configuring the platform to allow remote transfer of executable code

and data sharing at any time opens infinite possibilities, such as adding new

software sub-routines on-the-fly, adding the capability to detect new objects via

machine-learning algorithms trained on live images transmitted by the mobile

robot, updating the live map with information added automatically by other

devices or even human operators.

2. Software configuration

2.1. Operating system

The software programs that enable the functionality of our robot on the

Raspberry Pi (R-Pi) board use high-level programming languages. The programs

need the functionalities provided by an operating system that include access to

hardware resources such as storage, memory, and CPU, and access via

communication ports/interfaces to hardware components that can be attached to

the board: video cameras, analog and digital sensors, Wi-Fi and Bluetooth enabled

devices.We used the documentation provided by the manufacturer for the

“Raspberry Pi 3 Model B Rev 1.2” board and installed "Raspbian GNU/Linux 8

(Jessie) 4.9.35-v7+" operating system, the minimum version to support R-Pi 3

[17]. We used a laptop with Windows OS and SD card writer capability to install

the OS on a 6GB SD card via the R-Pi imager utility also provided by the

manufacturer. Once the card was inserted in the R-Pi, we attached it to a TV via a

HDMI cable, to a router via an Ethernet cable, to wireless keyboard and mouse

Implementation of a home appliance mobile platform based on computer vision: system (...) 45

via a wireless receiver connected to the one of the USB ports and powered up the

R-PI by connecting a USB power supply.

2.2. Wireless connection and control of the R-Pi

The next steps included changing the default password for user ‘pi’ and

configuring access to Wi-Fi networks, so that the board can connect to the local

Wi-Fi and other wireless access points (AP) that we used later on, e.g. AP enabled

on mobile devices (smartphones) to allow wireless connections between our R-Pi

and the development devices (laptop) without the need of a standard wireless

router.

Fig. 4. VNC viewer connection between laptop and R-Pi

In order to be able to connect wirelessly to our R-Pi from a laptop, we

enabled Secure Shell (SSH) and Virtual Network computing (VNC) interfaces via

the R-Pi configuration utility and set-up a specific value for the private IP address

the device requests when connecting to Wi-Fi networks. We used this

documentation to configure the remote access via VNC [18].

The next step was to install a VNC viewer software on our development

laptop, connect to R-Pi and continue with the next steps without the need of the

monitor/TV, keyboard or mouse attached to it (Fig. 4).

46 Florin-Dan Secuianu, Ciprian Lupu

Securely transferring files between computers can be done with the ‘scp’

command in terminal, e.g.

‘scp<path1>/<filename1> pi@<ip_address_rpi>:/home/pi/<path2>/<filename2>’.

Fig. 5. Python 3 software development framework

2.3. Connecting the camera and installing the computer vision

software

One of the main strengths of our robot is the use of computer vision for

detection of objects. We use an original R-Pi camera module V2. There is an

option in the R-Pi configuration panel to enable the module. Note that image can

be also acquired by attaching to R-Pi any type of camera via the USB interface.

2.4. Software tools and modules

The choice for high-level programming languages was Python. This is an

interpreted, general purpose language, very popular in the scientific community.

The decision was based on the fact that we could easily use open-source software

libraries for reading data from sensors and for running computer vision

algorithms. We used Python 2.7 in the early phase of development and then

upgraded to version 3.7.2. Writing, running and troubleshooting our own software

package was straightforward (Fig. 5). Data from sensors is read via open source

Python libraries.

Implementation of a home appliance mobile platform based on computer vision: system (...) 47

3. Hardware configuration

3.1. Extension board

The robot that we built was created by combining hardware parts from

various manufacturers, some open source software (OS - Raspbian, computer

vision libraries, libraries for serial port access), and our in-house software code

that controls the robot and enables the required functionalities.

Fig. 6. Hardware configuration of GPG-2 board [19]

The R-Pi on our robot does not allow by itself to transfer power to

electrical motors. This is done with the help of an extension board connected to R-

Pi via the serial port. The extension board we used is GoPiGo 2 (GPG-2) and is

produced by Dexter Industries. The board is based on an ATMEGA328

microcontroller which handles the communication between the board and the R-

Pi. [19], as can be seen in Fig. 6. The documentation provided by the

manufacturer contains information about the hardware and high-level

programming code language e.g. Python to help communication with the ports.

3.2 Sensors

The GPG-2 board contains one Inter-Integrated Circuit (I2C) port, which

we used to connect a digital compass, one digital, and one analog port to which

we attached two ultrasonic distance measuring sensors. The manufacturer

provided the scripts necessary to install all the necessary dependencies for the

libraries provided, as well as tests for troubleshooting and debugging. Using the

48 Florin-Dan Secuianu, Ciprian Lupu

software modules with Python is straightforward by importing them into our

software.

3.3 Motion

Controlling the electrical motors is possible via two power outputs of the

extension board.

Fig. 7. Robot chassis by PiBorg [20]

The motors and the chassis of the robot were provided by another

manufacturer, PiBorg. The model used is a rugged, aluminum based, with the

most powerful motor version available at the time [20], as can be seen in Fig. 7.

We used only the chassis, the four electric motors and the custom location to

insert the R-Pi video camera.

3.4. Self-recharging feature

To solve the problem of energetic autonomy, we took the approach of

wireless charging. We used a rechargeable battery pack (RBP) manufactured by

Romoss, with one input (mini-USB) and two outputs (USB). The input is

connected to a wireless power receiver. When the receiver coil on the robot is

connected or in the proximity of the transmitter coil placed on the fixed base

charging station, the battery pack is charging. One of the outputs is connected to

the R-Pi board via a USB to mini USB cable, and the other output is connected to

the GPG-2 board via a DC booster cable (USB to 2.1mm). The cable contains an

integrated boost converter from 5V to 12V, thus providing constant voltage to the

board that controls the electrical motors. When the RBP’s input is connected to an

energy source, because of the internal switch, there is a short drop in power output

to R-Pi. Due to the fact that R-Pi is sensible to voltage fluctuation, this will cause

a restart of the operating system. In order to resume the operation, the script that

contains the main loop of the program executed by our robot is added as one of

the programs to be run automatically by the OS on restart, using crontab and

@reboot. The main program script saves the current state and time in a file. On

start, data is loaded from the file so that the program can switch from ‘locking to

charger’ state to ‘charging’. Since we use a booster to provide constant voltage to

the GPG-2 board and there is no information about the current charging

percentage of the battery, a constant of 8 hours is used to decide when the robot is

Implementation of a home appliance mobile platform based on computer vision: system (...) 49

fully charged and can resume other activities. The electrical scheme of the power

flow is represented in Fig. 8.

Fig. 8. Electrical scheme of the power flow

3.5. Digital compass calibration.

The digital compass we used is model HM5883L.

In the following section we describe the calibration process, the data and

the results. The values of the magnetic field on the three axes x, y, and z can be

read from the registers of the digital compass, via the serial bus. The heading is

calculated using the values for x and y axes, and a correction is applied to take

into account the local declination where the measurement takes place. The source

code for calculating the heading is:

headingRad = math.atan2(value_y, value_x)

headingRad += self.declination

if (headingRad < 0):

headingRad += 2*math.pi

if (headingRad > 2*math.pi):

 headingRad -= 2*math.pi

Consequently we created an experiment and the robot was programmed to

measure and store the calculated heading in steps of 5 degrees, between 0 and

360, in triplicates and also stored the corresponding measurements taken with a

compass.
Table 1

Sample of calculated heading – C(x), real heading – R(x), and difference (error) – D(x)

C(x) [deg] R(x) [deg] D(x) [deg]

70 60 10
73 65 8

76 70 6

80 75 5

83 80 3

87 85 2

90 90 0

94 95 -1

96 100 -4

100 105 -5

103 110 -7

105 115 -10
109 120 -11

112 125 -13

50 Florin-Dan Secuianu, Ciprian Lupu

We were particularly interested in orthogonal movements in the ‘xy’ plane

so that the robot keeps its heading precisely on two orthogonal axes and their four

directions: front, back, left, and right. For each entry in the table (C(x) – the

calculated value of the angle for every x degrees; R(x) – the real value

corresponding to calculated C(x); D(x) – the difference between C(x) and R(x)),

we calculated the deviation from the real values and observed the sum of

deviation squares in steps of 90 degrees:

 (1)

Fig. 9. The error between the calculated and real value of the heading

Sample of calculated data (72 data measurements repeated three times) are

presented in Table 1 and plotted in Fig. 9 (red line). We then placed the robot on

the initial starting position, which is the origin of the map, aligned it perpendicular

to the base, and rotated the digital compass with 5 degrees, so that Dev will be

kept to the minimum value while the robot is moving along the orthogonal

directions. This allows the robot to measure correctly its orientation in the four

interesting directions (Fig. 10).

Fig. 10. Dev function

-25

-20

-15

-10

-5

0

5

10

15

20

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

D
(x

),
 d

e
g

re
e

s

C(x), degrees

D(x) (0 - 360 degrees)

D(x) (70 - 112 degrees)

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

D
e
v
,
d

e
g

re
e
s

C(x), degrees

Implementation of a home appliance mobile platform based on computer vision: system (...) 51

We observed there are multiple positions where the deviation calculated

above is minimum, at 5, 100, 202, and 282 degrees. The software program that we

wrote to enable precise positioning and navigation contains a procedure that

rotates the robot until a desired heading is reached. Because of the time difference

between the moment when the robot reads the heading and the moment it actually

stops rotating, there is an inherent difference between the desired heading and the

real one. In order to minimize this error of alignment, we control the rotation

speed based on the difference between the current and the desired heading. When

the difference is higher than a threshold, the robot rotates at maximum speed.

When the difference is lower than the threshold, we decrease the speed so that the

program can stop the rotation as close as possible to the desired heading. In order

to have a more precise measurement at any given angle, we measured and

eliminated the soft-iron errors.

Fig. 11. Absolute error deviation after soft-iron correction

Fig. 12. Dev function after soft-iron correction

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

D
(x

)
c

o
rr

e
c

te
d

,
d

e
g

re
e

s

C(x), degrees

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

D
e
v
 c

o
rr

e
c
te

d
,
d

e
g

re
e
s

C(x), degrees

52 Florin-Dan Secuianu, Ciprian Lupu

As described in [10], the soft iron distortion arises from the interaction of

the earth's magnetic field and any magnetically soft material surrounding the

compass. We applied a correction to the calculated heading and reduced the

heading errors, as seen in Figs. 11 and 12 above.

Algorithm of automatic correction of digital compass data. We studied and

implemented a solution to calibrate the digital compass of the robot in order to

minimize the positioning errors. The algorithm uses data from multiple sources:

the digital compass, the video camera, and the ultrasonic sensor. Here we describe

the procedure that runs when the robot is positioned at the charging base, or in any

location that is labelled with one of the known images that the computer vision

subroutine can recognize. The digital compass is attached in a fixed position on

the top side of the robot, at the height empirically determined to reduce the

electromagnetic influence of the battery pack, motors and chassis. The robot is

rotated in small steps, with consecutive commands, around his vertical axis, and

the number of rotation commands is counted. Since the friction coefficient

between the surface and the robot’s wheels is not known, and in this step the

algorithm does not control the value of the rotation angle in one rotation step, this

is a value that can vary and has to be determined. With the help of the subroutine

that is also used for determining if a target image is in the center of the snapshot

acquired from the video camera, we can identify the approximate moment when

the robot has performed a complete 360 rotation. In step 1, the algorithm stores

the number of rotation commands per 360 degrees and repeats the cycle a few

times, e.g. 72 steps will result in a 5 degree rotation per step. In step two, the robot

performs several rotation cycles, storing the data from the digital compass,

mapping the rotation angle and the data from the digital compass. In step three,

the read data is converted accordingly by adding or subtracting the offset, so that

the direction of the base becomes the new ‘North’ and data for all the other angles

will be adjusted accordingly to match the real orientation of the robot. As

described earlier, the robot will navigate in the environment using 90 degree

rotations, straight forward and backward movements so we need these to be

precise. In step four of the calibration, the robot performs a few cycles of 90

degree rotations, analyzing the position of the target with respect to the center of

the image. If it is not centered, the calibration loop returns to step 1 to acquire new

data, and saves the average values. The calibration process ends when the robot

can perfectly align with the ‘North’ after a few 360 rotation cycles.

4. Conclusions

This paper presents how we achieved full autonomy of a mobile robot

platform using affordable materials and in-house built software. A detailed

description of the software and hardware modules of the proposed and

implemented mobile platform was provided. It proposes solutions to completely

Implementation of a home appliance mobile platform based on computer vision: system (...) 53

configure and build an autonomous mobile robot. A novel procedure for very

precise indoor positioning and navigating was designed and implemented, using

the DMC technology. The platform advanced from the stage where the robot was

able to move and locate targets using a pseudo-random search algorithm, to the

current stage where the platform has the memory of the previously acquired

sensor data stored as a map, and is able to calculate optimal paths for moving

around between objectives. One of the key factors is the calibration of the digital

compass to reduce the reading errors for any direction, so the precision of

positioning and navigation is dramatically improved. This opens the possibility of

various applications such as substitution of humans in hazardous environments,

active monitoring and surveillance of indoor and outdoor spaces, guidance of

humans in offices, museums or storage areas, delivery of goods, vacuum cleaning,

lawn mowing, farming. Due to the versatility of the platform supported by high

processing power and advanced connectivity, the main program loop can be

upgraded on the fly to include artificial intelligence based functionalities such as

scene, object, and face recognition. It is also independent of the hardware used for

navigation, so it can be easily transferred to bigger and more powerful hardware.

Future research lines will be along description of the current navigation

algorithms that were implemented, analyzing and improving the navigation in

terms of complexity, execution speed and scalability, ‘live’ collaboration between

multiple devices in achieving fast mapping and optimal navigation solutions,

calculating the paths for devices in a swarm of e.g. vacuum cleaners in order to

cover every ‘square’ of a shared map in the most optimal way. We will study and

implement a novel precise and orthogonal positioning on target waypoints by

comparing multiple solutions. We will add new functionalities based on machine

learning algorithms and artificial intelligence e.g. automatic labelling of scanned

areas on the map, automatic generation of waypoints and the corresponding ML

detection algorithms, and correction of position based on waypoints.

R E F E R E N C E S

[1]. J. Mišeikis, P. Caroni, P. Duchamp, A. Gasser, R. Marko, N. Mišeikiene, F. Zwilling, C. de

Castelbajac, L. Eicher, M. Früh, H. Früh, “Lio-A Personal Robot Assistant for Human-Robot
Interaction and Care Applications”, IEEE Robot. Autom. Lett. 5, 2020, pp. 5339–5346.

[2]. C. Wang, L. Yin, Q. Zhao, W. Wang, C. Li, B. Luo, “An intelligent robot for indoor substation
inspection”, Ind. Robot: Int. J. Robot. Res. Appl. 47, 2020, pp. 705–712.

[3]. A. Barnawi, “An Advanced Search and Find System (ASAFS) on IoT-Based Mobile Autonomous
Unmanned Vehicle Testbed (MAUVE)”, Arabian J. Sci. Eng. 45, 2020, pp. 3273–3287.

[4]. M. Shen, Y. Wang, Y. Jiang, H. Ji, B. Wang, Z. Huang, “A New Positioning Method Based on
Multiple Ultrasonic Sensors for Autonomous Mobile Robot”, Sensors 20, 17, 2020, pp. 1–15,

doi: 10.3390/s20010017.
[5]. Ł. Białek, J. Szklarski, M. M. Borkowska, M. Gnatowski, “Reasoning with four-valued logic in

multi-robotic search-and-rescue problem,” in Challenges in Automation, Robotics and

Measurement Techniques, vol. 440, no. 1. Cham, Switzerland: Springer, 2016, pp. 483–499.

54 Florin-Dan Secuianu, Ciprian Lupu

[6]. J. J. Acevedo, B. C. Arrue, I. Maza, A. Ollero, “Cooperative large area surveillance with a team of

aerial mobile robots for long endurance missions,” J. Intell. Robotic Syst., vol. 70, nos. 1–4,
2013, pp. 329–345.

[7]. M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L. Cooper, M. Quigley, J. A. Adams, C. Humphrey,
“Supporting wilderness search and rescue using a camera-equipped mini UAV,” J. Field Robot.,

vol. 25, no. 1, 2008, pp. 89–110.
[8]. E. Zalama, J. G. Garcia-Bermejo, S. Marcos, S. Dominguez, R. Feliz, R. Pinillos, J. Lopez,

“Sacarino, a service robot in a hotel environment,” in Proc. 1st Iberian Robot. Conf. (ROBOT),
2014, pp. 3–14.

[9]. S. C. Mohamed, S. Rajaratnam, S. Tae Hong, G. Nejat, “Person Finding: An Autonomous Robot
Search Method for Finding Multiple Dynamic Users in Human-Centered Environments”, IEEE

Trans. Automat. Sci. Eng. 17 (1), 2020, pp. 433–449.
[10]. M. J. Caruso, “Applications of Magnetic Sensors for Low Cost Compass Systems”, in

Proceedings of the IEEE Position, Location and Navigation Symposium, San Diego, CA, USA,
13–16 March 2000, pp. 177–184.

[11]. Y.-Y. Jung, D.-Y. Lim, Y.-J. Ryoo, Y.-H. Chang, J. Lee, “Position Sensing System for Magnet
Based Autonomous Vehicle and Robot Using 1-Dimensional Magnetic Field Sensor Array”, in

SICE-ICASE International Joint Conference 2006, Oct. 18-2 1, 2006 in Bexco, Busan, Korea,

pp. 187–192.
[12]. J. M. Yun, J.-P. Ko, J. M. Lee, “An Inexpensive and Accurate Absolute Position Sensor for

Driving Assistance”, IEEE Trans. Instrum. Meas. vol. 57, no. 4, April 2008, pp. 864–873.
[13]. I. Boniolo, S. M. Savaresi, M. Prandini, G. Borghi, B. Garavelli, S. Bittanti, “Performance

analysis of a digital compass for the heading estimation in nautical application”, in Proceedings
of the 15

th
 IFAC Symposium on System Identification Saint-Malo, France, July 6-8, 2009, pp.

1399–1404.
[14]. B. Livada, S. Vujic, D. Radic, T. Unkaševic, Z. Banjac, “Digital Magnetic Compass Integration

with Stationary, Land-Based Electro-Optical Multi-Sensor Surveillance System”, Sensors, 19,
4331, 2019, pp. 1–18, doi:10.3390/s19194331.

[15]. F. Secuianu, C. Mihai, A. Vulpe, C. Lupu, “Implementation of an Autonomous Mobile Platform
Based on Computer Vision”, in 18

th
 International Carpathian Control Conference (ICCC), 2017,

pp. 246–251.
[16]. F.-D. Secuianu, C. Lupu, “Implementation of a home appliance mobile platform based on

computer vision: self-charging and mapping”, in 22
nd

 International Conference on System
Theory, Control and Computing (ICSTCC), 2018, pp. 464–468.

[17]. https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up, accessed on 2020-06-28.
[18]. https://www.raspberrypi.org/documentation/remote-access/vnc/, accessed on 2020-06-28.

[19]. https://www.dexterindustries.com/GoPiGo/learning/hardware-port-description/, accessed on 2020-
06-28.

[20]. https://www.piborg.org/robots-1/monsterborg, accessed on 2020-06-28.

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up
https://www.raspberrypi.org/documentation/remote-access/vnc/
https://www.dexterindustries.com/GoPiGo/learning/hardware-port-description/
https://www.piborg.org/robots-1/monsterborg

