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APPLYING CUBIC B-SPLINE QUASI-INTERPOLATION TO 
SOLVE HYPERBOLIC CONSERVATION LAWS 

Chun-Gang ZHU1, Wen-Sheng KANG2 

Numerical Solution of hyperbolic conservation laws is important in 
computational fluid dynamics. In this paper, we present a new numerical method to 
solve the hyperbolic conservation laws, which is constructed by using the derivative 
of the cubic B-spline quasi-interpolation to approximate the spatial derivative of the 
dependent variable and first order forward difference to approximate the time 
derivative of the dependent variable. Moreover, the method for advection equation 
and one-dimensional Burgers’ equation (without viscosity) is verified with some 
numerical examples. The advantage of the resulting scheme is that the algorithm is 
very simple, so it is very easy to implement.  
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1. Introduction 

The study of hyperbolic conservation laws, as described by  
                               ( ( )) 0t xu f u+ =                                                         (1) 

with initial condition 0( ,0) ( )u x u x=  is a classical topic in Computational Fluid 
Dynamics (CFD). Hyperbolic conservation laws arise as diverse as compressible 
gas dynamics, shallow water prediction, plasma modeling, rarefied gas dynamics 
and many others [1]. As is known, the solutions of hyperbolic equation laws may 
develop discontinuities in finite time even when the initial condition is smooth. A 
successful method should compute such discontinuities with the correct position 
and without spurious oscillations and retain high order of accuracy in smooth 
regions. 

   We know that high order linear schemes will generate spurious 
oscillations like standard finite-difference schemes (Lax and Wendroff [2] or 
MacCormack [3]) near discontinuities or sharp gradients of the solution from the 
theorem of Godunov [4, 5, 6]. These solutions can mask the physical solutions, 
even leading to code crashing. These deviations do not diminish with solution, in 
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analogy with Gibbs phenomenon found in the Fourier series development of 
discontinuous functions. To avoid generating spurious oscillations, many 
researchers developed a lot of numerical schemes to solve the problem. Harten et. 
al [7, 8] presented the TVD and ENO methods. Balsara, Jiang and Shu [9, 10] 
introduced the WENO methods. More recently, Takakura, Titarev and Toro [11-
17] gave ADER schemes for hyperbolic conservation laws and studied many 
different equations by ADER.  

   As the piecewise polynomial, spline, especially B-spline, has become a 
fundamental tool for numerical methods to get the solution of the differential 
equations. B-splines of various degrees in the collocation and Galerkin methods 
are introduced for the numerical solutions of the Burgers’ equation in [18-25]. 
Chen and Wu [26, 27] studied the hyperbolic conservation laws by Multiquadric 
(MQ) quasi-interpolation.  

   From previous researches, we find both spline and quasi-interpolation 
are simple and effective for differential equations. In [25], Zhu and Wang 
presented a numerical scheme of the Burgers’ equation based on cubic B-spline 
quasi-interpolation. In this paper, we provide a numerical scheme to solve 
hyperbolic conservation laws using the derivative of the cubic B-spline quasi-
interpolation to approximate the spatial derivative of the differential equations and 
employ the first order accuracy forward difference for the approach of the 
temporal derivative as [25, 27]. Then we do not require solving any linear system 
of equation so that we do not meet the question of the ill-condition of the matrix. 
Therefore, we can save the computational time and decrease the numerical error. 

   The paper is organized as follows: In Sect. 2, we introduce the univariate 
B-spline quasi-interpolants. The numerical scheme using cubic B-spline quasi-
interpolation to solve hyperbolic conservation laws is presented in Sect. 3. In Sect. 
4, we perform a battery of standard tests in one space dimension, covering 
advection equation and Burgers equation (without viscosity). The numerical 
results are presented and compared with the exact solutions. 

2. Univariate B-spline quasi-interpolants 

For [ , ]I a b= , we denote by ( )d nS X  the univariate spline space of degree 
d  and 1dC −  on the uniform partition { }, 0, ,n iX x a ih i n= = + =  with the 
meshlength h=(b-a)/n, where nb x= . Let the B-spline basis of ( )d nS X  be 

{ },jB j J∈  with { }1, 2, ,J n d= + , which can be computed by the de Boor-Cox 

formula [28, 29]. With these notations, the support of jB  is 1( ) [ , ]j j j dsupp B x x + += . 
As usual, we add multiple knots at the endpoints: 1 0d da x x x− − += = = =  and 

1n n n db x x x+ += = = = .  
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In [30], the univariate B-spline quasi-interpolant (abbr. QI) can be defined 
as an operator of the form 

                                              ( )d j j
j J

Q f f Bμ
∈

=∑                                                (2) 

We denote by dΠ  the space of polynomials of total degree at most d. In 
general, we impose that dQ  is exact on the space dΠ , i.e. dQ p p=  for all dp∈Π . 
As a consequence of this property, the approximation order of dQ  is 1( )dO h +  on 
smooth functions. In this paper, the coefficient jμ  is a linear combination of 
discrete values of f  at some points in the neighborhood of ( )jsupp B  as 
introduced in [30]. 

   The main advantage of QIs is that they have a direct construction 
without solving any system of linear equations. Moreover, they are local, in the 
sense that the value of ( )dQ f x  depends only on values of f  in a neighborhood 
of x . Finally, they have a rather small infinity norm, so they are nearly optimal 
approximants [30]. The quasi-interpolation operators are also studied in the book 
of Schumaker [29]. In this paper, we use cubic B-spline quasi-interpolation since 
the cubic spline is used widely in numerical analysis. 

Using the de Boor-Cox formula [28, 29], for j J∈ , the cubic B-spline 
basis jB  can be computed. Let ( ), 0,1, , .i if f x i n= =  For the cubic B-spline QI 
defined as 

                                     
3

3
1

( )
n

j j
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Q f f Bμ
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=

=∑ ,                                              (3) 
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For 4 ( )f C I∈ , we have the error estimate [30] as 
4

3 , 3 3,

8 ( , ) for 1 ( )
3 kk

II
f Q f d f k n f Q f O h∞∞ ∞
− ≤ Π ≤ ≤ ⇒ − = ,         (5) 

where 1[ , ], 0,1, , 1.k k kI x x k n+= = −  
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Differentiating interpolation polynomials leads to classical finite 
differences for the approximate computation of derivatives. Therefore, it seems 
natural to approximate derivatives of f  by derivatives of ( )dQ f x  as long as it is 
possible, i.e. up to the order 1d − . The general theory is developed elsewhere.  

For j J∈ , we can compute jB ′  by the formula of cubic B-spine’s 
derivatives as shown in [28]. Then we obtain the differential formulas for cubic B-
spline QI as  

3

3
1

( ) ( )
n

j j
j

f Q f f Bμ
+

=

′ ′′≈ =∑ .                                        (6) 

3. Numerical scheme using cubic B-spline quasi-interpolation 

In this paper, we solve mainly the one-dimensional scalar hyperbolic 
conservation laws  

( ( )) 0t xu f u+ =                                                 (7) 
with initial condition                 u(x,0)=u0(x)                                                     (8) 

by using the cubic B-spline quasi-interpolation. 
We can rewrite (7) as  
                                            ut + a(u)ux=0                                                  (9) 

and discretize Equation (9) in time as   
1 ( ( )) ( )n n n n

j j j x ju u a u uτ+ = − ⋅ ⋅  ,                            (10) 

where, ( ) ( ( ))ua u f u= , n
ju  is the approximation of the value of ( , )u x t  at point 

( , )j nx t , nt nτ= ; τ  is the length of time step; ( ( ))n
ja u  is the value of the function 

( )a u  at n
ju u= ; and the ( )n

x ju  is computed by Equation (6). 
   Since the scheme may be dispersed as discussed in [25, 26, 27], we 

define the switch function ( , )g x t  to dump it as follows: 
max{0,1 min{0, (( ) ( ) }},n n n

j x j x kg sign u u= + ⋅              (11) 

where (( ( )) )n
jk j sign a u= − . Thus the resulting numerical scheme is  

1 ( ( )) ( )n n n n n
j j j x j ju u a u u gτ+ = − ⋅ ⋅ ⋅                           (12) 

From the initial condition (7) and (8), we can compute the numerical 
solution of the hyperbolic conservation laws step by step using scheme (6) and 
(12). 
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4. Numerical experiments and accuracy tests 

In this section, we test the proposed numerical scheme by means of some 
standard numerical experiments in one space dimension. We denote the present 
scheme by BSQI. The versatility and the accuracy of the proposed method are 
measured using the L∞  error norms. The error norm is defined as  

max max exact num
i i iL i i

e e u u
∞
= = −  .                                 (13) 

4.1. Advection equation  
Scalar advection equation is the simplest linear case, but it allows testing the 

propagation of arbitrary initial profiles, containing jump discontinuities and corner 
points, departing from smoothness in many different ways. This is the case of the 
Balsara-Shu profile [9], which will be evolved with periodic boundary conditions 
as 

                                           ut + ux=0, -1<x<1                                               (14) 

subject to the initial data ( ,0) sin( )u x xπ= . The accuracy of BSQI is computed at 
1t = , 0.0001τ = , and numerical results are presented in Table 1 and Fig. 1 versus 

the exact solution. In Table 1, the BSQI method is compared to different WENO 
methods which are presented in [9].  

Table 1 
The L∞  error of the solution at 1t =  with 1/ , 0.0001h N τ= =  

N  BSQI   WENO (r=5) MPWENO (r=5) MPWENO (r=3) 
5 2.3128e-2 5.5930e-4 8.6886e-4 3.0224e-2 

10 1.5460e-3 1.1927e-6 1.1927e-6 1.4569e-3 
20 5.1867e-4 2.2653e-9 2.2653e-9 4.5939e-5 
40 4.9439e-4 4.1460e-12 4.4160e-12 1.4783e-6 

Table 2 shows the convergence studies for the advection equation (14) 
with initial condition 4( ,0) sin ( )u x xπ= . The results are computed at 1t = , 

1/h N= , 0.0001τ = . The BSQI method is also compared to different WENO 
methods which are introduced in [9]. 

From Table 1 and Table 2, we found that the presented method is not 
accurate than WENO methods, but we do not require solving any linear system of 
equation, so that we do not meet the question of the ill-condition of the matrix. 

Table 2 
The L∞  error of the solution at 1t =  with 1/ , 0.0001h N τ= =  

N  BSQI   WENO (r=5) MPWENO (r=5) MPWENO (r=3) 
20 9.1127e-3 1.0711e-4 2.4370e-4 8.9043e-3 
40 2.1422e-3 7.4607e-6 1.7941e-4 1.8086e-3 
80 1.9788e-3 2. 8738e-8 2.1792e-5 1.7678e-4 
100 1.9786e-3 1.2815e-10 1.8768e-6 1.6388e-5 
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Fig. 1 Compute solutions of advection equation at t=1 ( 1/ 32, 0.0001h τ= = ). 

 
4.2. Burgers’ equation (without viscosity) 

Burgers equation  

                              21 0
2t

x

u u⎛ ⎞+ =⎜ ⎟
⎝ ⎠

,                                                        (15) 

with the initial condition ( ,0) 1 1/ 2sin( )u x xπ= + provides a simple example of 
genuinely non-linear scalar equation. A true shock develops from smooth initial 
data. The accuracy of the computations was checked at t=0.33 with the accurate 
solution [8] and NT method which is presented by [1], that is, before the shock 
develops and the results are presented in Table 3. Fig. 2 shows the numerical 
solution at t=0.5. Moreover, the results at 0.636 / 5t π= ≈ , which is the time of 
the formation of the shock, are shown in Fig. 3, where 1/ 32, 0.0001h τ= = . 

Another example corresponds to initial condition ( ,0) sin( ( 1))u x xπ= + . The 
numerical results of BSQI algorithm, for 0.1,0.2,0.3,0.4t = , with initial data are 
given in Fig. 4, where 1/ 32, 0.0001h τ= = . Table 3 and Figs 2-4 show that the 
presented method for solving Burgers’ equation (without viscosity) is effective. 

Table 3 
The L∞  error of the solution at 0.33t =  with 1/ , 0.0001h N τ= =  

N  MNT1 MNT3  NT BSQI MQQI (t=0.3, τ=0.3h2) 
32 2.6644e-2 1.2722e-2 4.8091e-3 4.4431e-4 0.0046 
64 8.4934e-3 3.4765e-3 1.8998e-3 2.6491e-4 0.0011 
128 2.3333e-3 8.7231e-4 6.3009e-4 2.5634e-4 --- 
256 6.0026e-4 2.1341e-4 2.0354e-4 2.5575e-4 --- 
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Fig. 2 Compute solutions of Burgers’ equation at t=0.5 ( 1/ 32, 0.0001h τ= = ). 

 
Fig. 3 Compute solutions of Burgers’ equation at t=0.636 ( 1/ 32, 0.0001h τ= = ). 
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Fig. 4 Compute solutions of Burgers’ equation at t=0.1, 0.2, 0.3, 0.4 ( 1/ 32, 0.0001h τ= = ). 

5. Conclusions and future work 

   In this article, we present a numerical scheme (BSQI) using cubic B-
spline quasi-interpolation using switch function to deal with hyperbolic 
conservation laws. The numerical results illustrate the algorithm is more effective 
than Chen and Wu’s MQ method [27]. Although it is not accurate than WENO 
methods in [9], it is simpler than WENO method. The WENO methods are perfect 
in theory, but they are difficult to implement. From the numerical experiments, we 
can say that the presented algorithm is feasible and the error is acceptable.  

   The algorithm can be generalized to other ordinary or partial differential 
equations and it is easy to implement. Unfortunately, the stability of BSQI scheme 
is unsolved. It is future work for the authors. 
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