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APPLYING CUBIC B-SPLINE QUASI-INTERPOLATION TO
SOLVE HYPERBOLIC CONSERVATION LAWS

Chun-Gang ZHU*, Wen-Sheng KANG?

Numerical Solution of hyperbolic conservation laws is important in
computational fluid dynamics. In this paper, we present a new numerical method to
solve the hyperbolic conservation laws, which is constructed by using the derivative
of the cubic B-spline quasi-interpolation to approximate the spatial derivative of the
dependent variable and first order forward difference to approximate the time
derivative of the dependent variable. Moreover, the method for advection equation
and one-dimensional Burgers’ equation (without viscosity) is verified with some
numerical examples. The advantage of the resulting scheme is that the algorithm is
very simple, so it is very easy to implement.
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1. Introduction

The study of hyperbolic conservation laws, as described by
u,+(f (), =0 1)
with initial condition u(x,0) =u,(x) is a classical topic in Computational Fluid

Dynamics (CFD). Hyperbolic conservation laws arise as diverse as compressible
gas dynamics, shallow water prediction, plasma modeling, rarefied gas dynamics
and many others [1]. As is known, the solutions of hyperbolic equation laws may
develop discontinuities in finite time even when the initial condition is smooth. A
successful method should compute such discontinuities with the correct position
and without spurious oscillations and retain high order of accuracy in smooth
regions.

We know that high order linear schemes will generate spurious
oscillations like standard finite-difference schemes (Lax and Wendroff [2] or
MacCormack [3]) near discontinuities or sharp gradients of the solution from the
theorem of Godunov [4, 5, 6]. These solutions can mask the physical solutions,
even leading to code crashing. These deviations do not diminish with solution, in
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analogy with Gibbs phenomenon found in the Fourier series development of
discontinuous functions. To avoid generating spurious oscillations, many
researchers developed a lot of numerical schemes to solve the problem. Harten et.
al [7, 8] presented the TVD and ENO methods. Balsara, Jiang and Shu [9, 10]
introduced the WENO methods. More recently, Takakura, Titarev and Toro [11-
17] gave ADER schemes for hyperbolic conservation laws and studied many
different equations by ADER.

As the piecewise polynomial, spline, especially B-spline, has become a
fundamental tool for numerical methods to get the solution of the differential
equations. B-splines of various degrees in the collocation and Galerkin methods
are introduced for the numerical solutions of the Burgers’ equation in [18-25].
Chen and Wu [26, 27] studied the hyperbolic conservation laws by Multiquadric
(MQ) quasi-interpolation.

From previous researches, we find both spline and quasi-interpolation
are simple and effective for differential equations. In [25], Zhu and Wang
presented a numerical scheme of the Burgers’ equation based on cubic B-spline
quasi-interpolation. In this paper, we provide a numerical scheme to solve
hyperbolic conservation laws using the derivative of the cubic B-spline quasi-
interpolation to approximate the spatial derivative of the differential equations and
employ the first order accuracy forward difference for the approach of the
temporal derivative as [25, 27]. Then we do not require solving any linear system
of equation so that we do not meet the question of the ill-condition of the matrix.
Therefore, we can save the computational time and decrease the numerical error.

The paper is organized as follows: In Sect. 2, we introduce the univariate
B-spline quasi-interpolants. The numerical scheme using cubic B-spline quasi-
interpolation to solve hyperbolic conservation laws is presented in Sect. 3. In Sect.
4, we perform a battery of standard tests in one space dimension, covering
advection equation and Burgers equation (without viscosity). The numerical
results are presented and compared with the exact solutions.

2. Univariate B-spline quasi-interpolants

For I =[a,b], we denote by S,(X,) the univariate spline space of degree
d and C** on the uniform partition X, ={x, =a+ih,i=0,---,n} with the
meshlength A=(b-a)/n, where b=x, . Let the B-spline basis of S,(X,) be
{B;,jeJ} with J ={1,2,---,n+d}, which can be computed by the de Boor-Cox
formula [28, 29]. With these notations, the support of B, is supp(B,) =[x;,x;.,.]-

As usual, we add multiple knots at the endpoints: a=x ,=x ,,=---=x, and

b:xn :xz-#:l.:“._')C

(7 T ntd
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In [30], the univariate B-spline quasi-interpolant (abbr. QI) can be defined
as an operator of the form

0./ =2 1,(/)B, )

jeJ
We denote by I1, the space of polynomials of total degree at most d. In
general, we impose that Q, is exact on the spaceIl,, i.e. Q,p=p forallpeIl,.
As a consequence of this property, the approximation order of Q, is O(h*"*) on
smooth functions. In this paper, the coefficient , is a linear combination of
discrete values of f at some points in the neighborhood of supp(B;) as

introduced in [30].
The main advantage of QIs is that they have a direct construction
without solving any system of linear equations. Moreover, they are local, in the

sense that the value of O, f'(x) depends only on values of / in a neighborhood

of X. Finally, they have a rather small infinity norm, so they are nearly optimal
approximants [30]. The quasi-interpolation operators are also studied in the book
of Schumaker [29]. In this paper, we use cubic B-spline quasi-interpolation since
the cubic spline is used widely in numerical analysis.

Using the de Boor-Cox formula [28, 29], for j e J, the cubic B-spline

basis B, can be computed. Let f, = f(x,),i=0,1---,n. For the cubic B-spline QI
defined as

n+3

O,f ZZIU_/ (f)BJ ) 3)
j=1
where the coefficients are listed as follows:
/u1(f) = fo'

1) =11, +18 -9 £, + 21,),
/Ul,-(f)=%(—f,-,3+8fj72—fjfl),j:3,...,n+1, 4)

o) = 1 @190, +18S,, 4T ),
,un+3(f) = fn!

For f e C*(I), we have the error estimate [30] as

l7-0l,,, <3d., (f ) fori<k<n=|r-0uf], =00, )

where 7, =[x,,x,,],£k=0,1,---,n-1.
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Differentiating interpolation polynomials leads to classical finite
differences for the approximate computation of derivatives. Therefore, it seems

natural to approximate derivatives of f by derivatives of Q, f (x) as long as it is
possible, i.e. up to the orderd —1. The general theory is developed elsewhere.
For jeJ , we can compute Bj' by the formula of cubic B-spine’s

derivatives as shown in [28]. Then we obtain the differential formulas for cubic B-
spline QI as

n+3

Af'=(£%f)“=zgﬁg(f73f- (6)

3. Numerical scheme using cubic B-spline quasi-interpolation

In this paper, we solve mainly the one-dimensional scalar hyperbolic
conservation laws
u,+(f(u), =0 (7)
with initial condition u(x,0)=uo(x) (8)
by using the cubic B-spline guasi-interpolation.
We can rewrite (7) as

ur+ a(u)u,=0 9)
and discretize Equation (9) in time as
Wt =l 7 (a())) - (u,)! | (10)

where, a(u)=(f(u)),, u} is the approximation of the value of u(x,s) at point
(x;,2,), t,=nt; 7 is the length of time step; (a(u))’ is the value of the function
a(u) at u=uj;andthe (u,)’ is computed by Equation (6).

Since the scheme may be dispersed as discussed in [25, 26, 27], we
define the switch function g(x,7) to dump it as follows:

g’ =max{0,1+ min{0, sign((v,)’ - (u,); }}, (11)
where k = j —sign((a(u))?) . Thus the resulting numerical scheme is
Wt =ul— (W) ()" (12)

From the initial condition (7) and (8), we can compute the numerical
solution of the hyperbolic conservation laws step by step using scheme (6) and
(12).
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4. Numerical experiments and accuracy tests

In this section, we test the proposed numerical scheme by means of some
standard numerical experiments in one space dimension. We denote the present
scheme by BSQI. The versatility and the accuracy of the proposed method are
measured using the L_ error norms. The error norm is defined as

uexact _ u(lunl . (13)

i i

el =max]e,|= max
4.1. Advection equation

Scalar advection equation is the simplest linear case, but it allows testing the
propagation of arbitrary initial profiles, containing jump discontinuities and corner
points, departing from smoothness in many different ways. This is the case of the
Balsara-Shu profile [9], which will be evolved with periodic boundary conditions
as

u; + u,=0, -1<x<1 (14)

subject to the initial data u(x,0) =sin(zx). The accuracy of BSQI is computed at
t=1,7=0.0001, and numerical results are presented in Table 1 and Fig. 1 versus
the exact solution. In Table 1, the BSQI method is compared to different WENO
methods which are presented in [9].

Table 1
The Loo error of the solution at s =1 with =1/ N,z =0.0001
N BSQI WENO (r=5) MPWENO (r=5) MPWENO (r=3)
5 2.3128e-2 5.5930e-4 8.6886e-4 3.0224e-2
10 1.5460e-3 1.1927e-6 1.1927e-6 1.4569¢-3
20 5.1867e-4 2.2653e-9 2.2653e-9 4.5939%-5
40 4.9439%e-4 4.1460e-12 4.4160e-12 1.4783e-6

Table 2 shows the convergence studies for the advection equation (14)
with initial condition u(x,0) =sin*(zx) . The results are computed at =1,
h=1/ N, r=0.0001. The BSQI method is also compared to different WENO
methods which are introduced in [9].

From Table 1 and Table 2, we found that the presented method is not
accurate than WENO methods, but we do not require solving any linear system of
equation, so that we do not meet the question of the ill-condition of the matrix.

Table 2
The Loo error of the solution at s =1 with 4 =1/ N, 7 =0.0001
N BSQI WENO (r=5) MPWENO (r=5) MPWENO (r=3)
20 9.1127e-3 1.0711e-4 2.4370e-4 8.9043e-3
40 2.1422¢-3 7.4607e-6 1.7941e-4 1.8086e-3
80 1.9788e-3 2.8738e-8 2.1792e-5 1.7678e-4

100 1.9786e-3 1.2815e-10 1.8768e-6 1.6388e-5
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Fig. 1 Compute solutions of advection equation at t=1 (4 =1/32, 7 =0.0001).

4.2. Burgers’ equation (without viscosity)

Burgers equation
uﬂ{%uzj =0, (15)

with the initial condition u(x,0)=1+1/2sin(zx) provides a simple example of
genuinely non-linear scalar equation. A true shock develops from smooth initial
data. The accuracy of the computations was checked at /=0.33 with the accurate
solution [8] and NT method which is presented by [1], that is, before the shock
develops and the results are presented in Table 3. Fig. 2 shows the numerical
solution at =0.5. Moreover, the results at 1 =0.636 ~ 7 /5, which is the time of
the formation of the shock, are shown in Fig. 3, where #=1/32,7 =0.0001.
Another example corresponds to initial conditionu(x,0) =sin(z(x+1)). The
numerical results of BSQI algorithm, for #=0.1,0.2,0.3,0.4, with initial data are
given in Fig. 4, where 41 =1/32,7=0.0001. Table 3 and Figs 2-4 show that the
presented method for solving Burgers’ equation (without viscosity) is effective.

Table 3
The Loo error of the solution at 1 =0.33 with 4 =1/ N, 7 =0.0001
N MNT1 MNT3 NT BSQI MQQI (¢=0.3, z=0.34%)
32 2.6644e-2 1.2722e-2 4.8091e-3 4.4431e-4 0.0046
64 8.4934e-3 3.4765e-3 1.8998e-3 2.6491e-4 0.0011
128 2.3333e-3 8.7231e-4 6.3009e-4 2.5634e-4

256 6.0026e-4 2.1341e-4 2.0354e-4 2.5575¢e-4
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Fig. 3 Compute solutions of Burgers’ equation at t=0.636 (4 =1/32,7 =0.0001).
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Fig. 4 Compute solutions of Burgers’ equation at #=0.1, 0.2, 0.3, 0.4 (1 =1/32,7 =0.0001).

5. Conclusions and future work

In this article, we present a numerical scheme (BSQI) using cubic B-
spline quasi-interpolation using switch function to deal with hyperbolic
conservation laws. The numerical results illustrate the algorithm is more effective
than Chen and Wu’s MQ method [27]. Although it is not accurate than WENO
methods in [9], it is simpler than WENO method. The WENO methods are perfect
in theory, but they are difficult to implement. From the numerical experiments, we
can say that the presented algorithm is feasible and the error is acceptable.

The algorithm can be generalized to other ordinary or partial differential
equations and it is easy to implement. Unfortunately, the stability of BSQI scheme
is unsolved. It is future work for the authors.
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