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ON APPROXIMATION OF BASKAKOV-DURRMEYER TYPE

OPERATORS OF TWO VARIABLES

İsmet YÜKSEL1, Ülkü DİNLEMEZ2, Birol ALTIN3

In this study, we have constructed a sequence of positive linear opera-
tors with two variables by using Baskakov-Durrmeyer type operators. We study
approximation these operators and give a Voronovskaja type theorem. Further-
more, we study of the linear positive operators in a weighted space of functions
of two variables and find the rate of these convergence using weighted modulus of
continuity.
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1. Introduction

The well known Baskakov-Durrmeyer type operators of one variable are de-
fined as

Mn(f ;x) = (n− 1)

∞∑
k=0

pn,k(x)

∞∫
0

pn,k(t)f (t) dt

and

pn,k(x) =

(
n+ k − 1

k

)
xk

(1 + x)n+k
.

The approximation of these operators were studied in [10, 11, 15]. We gen-
eralize these operators to the operators of two variables. Now we give necessary
notations and definitions. Let

D =
{
(x1, x2) ∈ R2 : 0 ≤ x1, 0 ≤ x2

}
,

C(D) be the set of real valued continuous functions on D and

Da =
{
(x1, x2) ∈ R2 : 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ a

}
.

Let us define two variables of Baskakov-Durrmeyer operators Mn defined on subset
of all continuous functions onD for which the following double integral exists finitely.

Mn(f ; (x1, x2)) = (n− 1)2
∑
k,l∈N

bn,k,l(x1, x2)

∞∫
0

∞∫
0

bn,k,l(y1, y2)f (y1, y2) dy1dy2, (1)
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where

bn,k,l(y1, y2) = pn,k(y1)pn,l(y2).

Approximation functions one or two variables by certain positive linear operators in
weighted spaces can be found in [2, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 18, 19]. We need
Bohman-Korovkin’s Theorem in [1, 3, 12] for giving our Remark 2.1.

Theorem 1.1 (Bohman-Korovkin). Let K be a compact Hausdorff topological space
which contains at least two distinct points and let 2m functions f1, f2, ..., fm, a1, a2, ..., am
in C(K,R) be such that

P (x1, x2) : =

m∑
j=1

fj(x1)aj(x2) ≥ 0, ∀(x1, x2) ∈ K,

P (x1, x2) = 0 if and only if x1 = x2.

If (Hn), Hn : C(K,R) → C(K,R), is a sequence of linear positive operators such
that

Hn(fj) → fj , n→ ∞, j = 1, ...,m,

then we have Hn(f) → f, f ∈ C(K,R).

2. Generalization of Baskakov-Durrmeyer type operators

In this section, we give some classical approximation properties of these oper-
ators. We use the following notations, for brevity,

e00(x1, x2) = 1, e10(x1, x2) = x1, e01(x1, x2) = x2, e11(x1, x2) = x1 + x2,

e20(x1, x2) = x21, e02(x1, x2) = x22, e22(x1, x2) = x21 + x22,

e30(x1, x2) = x31, e03(x1, x2) = x32, e40(x1, x2) = x41, e04(x1, x2) = x42

and Fs(n) =

s∏
i=2

(n− i).

We are ready to give some properties of the Baskakov-Durrmeyer operators
of two variables given in (1) which we apply to the proofs of the main results. By
simple calculations, we get the following lemma;
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Lemma 2.1. The following statements hold;

(i) Mn(e00; (x1, x2)) = 1, (ii) Mn(e10;x) =
n

n− 2
x1 +

1

n− 2
,

(iii) Mn(e01; (x1, x2)) =
n

n− 2
x2 +

1

n− 2
,

(iv) Mn(e20; (x1, x2)) =
1

F3(n)

{
n(n+ 1)x21 + 4nx1 + 2

}
,

(v) Mn(e02; (x1, x2)) =
1

F3(n)

{
n(n+ 1)x22 + 4nx2 + 2

}
,

(vi) Mn(e22; (x1, x2)) =
1

F3(n)

{
n(n+ 1)

(
x21 + x22

)
+ 4n (x1 + x2) + 4

}
,

(vii) Mn(e30; (x1, x2)) =
1

F4(n)

{
n(n+ 1)(n+ 2)x31 + 9n(n+ 1)x21 + 18nx1 + 6

}
,

(viii) Mn(e03; (x1, x2)) =
1

F4(n)

{
n(n+ 1)(n+ 2)x32 + 9n(n+ 1)x22 + 18nx2 + 6

}
,

(ix) Mn(e40; (x1, x2)) =
1

F5(n)

{
n(n+ 1)(n+ 2)(n+ 3)x41 + 16n(n+ 1)(n+ 2)x31

+72n(n+ 1)x21 + 96nx1 + 24
}
,

(x) Mn(e04; (x1, x2)) =
1

F5(n)

{
n(n+ 1)(n+ 2)(n+ 3)x42 + 16n(n+ 1)(n+ 2)x32

+72n(n+ 1)x22 + 96nx2 + 24
}
.

Proof. We obtain the estimate

∞∫
0

pn,k(y1)(e10(y1, y2))
mdy1 =

(k +m)!(n−m− 2)!

k!(n− 1)!
. (2)

Then using (2) we get

Mn(e00; (x1, x2)) = (n− 1)2
∑
k,l∈N

bn,k,l(x1, x2)


∞∫
0

(
n+ k − 1

k

)
yk1

(1 + y1)n+k
dy1

×
∞∫
0

(
n+ l − 1

l

)
yl2

(1 + y2)n+l
dy2

 = 1,

Mn(e10; (x1, x2)) = (n− 1)2
∑
k,l∈N

bn,k,l(x1, x2)


∞∫
0

(
n+ k − 1

k

)
yk+1
1

(1 + y1)n+k
dy1

×
∞∫
0

(
n+ l − 1

l

)
yl2

(1 + y2)n+l
dy2


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= (n− 1)2
∑
k,l∈N

bn,k,l(x1, x2)
k + 1

(n− 1)2(n− 2)

=
1

n− 2

{ ∞∑
k=1

(n+ k − 1)!

(k − 1)!(n− 1)!

xk1
(1 + x1)n+k

+ 1

}

=
n

n− 2
x1 +

1

n− 2
,

Mn(e01; (x1, x2)) = (n− 1)2
∞∑
l=0

bn,k,l(x1, x2)
l + 1

(n− 1)2(n− 2)

=
n

n− 2
x2 +

1

n− 2
,

Mn(e20; (x1, x2)) =
1

F3(n)

∞∑
k=0

bn,k,l(x1, x2)(k + 1)(k + 2)

=
1

F3(n)

{ ∞∑
k=2

(n+ k − 1)!

(k − 2)! (n− 1)!

xk1
(1 + x1)n+k

+4

∞∑
k=1

(n+ k − 1)!

(k − 1)! (n− 1)!

xk1
(1 + x1)n+k

+ 2

}

=
1

F3(n)

{
n(n+ 1)x21 + 4nx1 + 2

}
,

Mn(e02; (x1, x2)) =
1

F3(n)

{
n(n+ 1)x22 + 4nx2 + 2

}
,

summing of (iv) and (v) we get (vi).

Mn(e30; (x1, x2)) =
1

F4(n)

∑
k,l∈N

bn,k,l(x) {k(k − 1)(k − 2)

+9k(k − 1) + 18k + 6}

=
1

F4(n)

{ ∞∑
k=3

(n+ k − 1)!

(k − 3)!(n− 1)!

xk1
(1 + x1)n+k

+9

∞∑
k=2

(n+ k − 1)!

(k − 2)!(n− 1)!

xk1
(1 + x1)n+k

+18

∞∑
k=1

(n+ k − 1)!

(k − 1)!(n− 1)!

xk1
(1 + x1)n+k

+ 6

}

=
1

F4(n)

{
n(n+ 1)(n+ 2)x31 + 9n(n+ 1)x21 + 18nx1 + 6

}
,
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using the same processes we have the equality in (viii).

Mn(e40; (x1, x2)) =
1

F5(n)

∑
k,l∈N

bn,k,l(x) {k(k − 1)(k − 2)(k − 3)

+16k(k − 1)(k − 2) + 72k(k − 1) + 96k + 24}

=
1

F5(n)

{ ∞∑
k=4

(n+ k − 1)!

(k − 4)!(n− 1)!

xk1
(1 + x1)n+k

+16
∞∑
k=3

(n+ k − 1)!

(k − 3)!(n− 1)!

xk1
(1 + x1)n+k

+72

∞∑
k=2

(n+ k − 1)!

(k − 2)!(n− 1)!

xk1
(1 + x1)n+k

+96

∞∑
k=1

(n+ k − 1)!

(k − 1)!(n− 1)!

xk1
(1 + x1)n+k

+ 24

}
,

again using the same processes we obtain the equality in (x).
�

Let’s define the weighted space C∗
ρ (D) consisting of all functions f in Cρ(D)

for which lim
|(y1,y2)|→∞

|f(y1,y2)|
1+|(y1,y2)|2

exists finitely, where |(y1, y2)| =
√
y21 + y22 and

|f(y1, y2)| ≤ Kf (1 + y21 + y22), Kf > 0.
The following theorem gives us the Baskakov type theorem (see [4] ) to get the

uniform approximation to the functions in C∗
ρ (D) by the sequence of the positive

linear operators Mn.

Theorem 2.1. Let f be belong to C∗
ρ (D). Then

lim
n

∥Mn (f)− f∥C∗
ρ (D) = 0

if and only if the following statements are satisfied

(i) lim
n

∥Mn (e00)− e00∥C∗
ρ (D) = 0

(ii) lim
n

∥Mn (e10)− e10∥C∗
ρ (D) = 0

(iii) lim
n

∥Mn (e01)− e01∥C∗
ρ (D) = 0

(iv) lim
n

∥Mn (e20 + e02)− (e20 + e02)∥C∗
ρ (D) = 0.

Proof. The necessity part is trivial. The sufficient part needs proof: Let (x1, x2) ∈
Da and f ∈ C∗

ρ (D). Since for each f ∈ C∗
ρ (D) is uniform continuous on Dr, (r > a),

for each ε > 0 there exists some δ > 0, such that for each (y1, y2) ∈ Dr with√
(x1 − y1)

2 + (x2 − y2)
2 < δ implies |f(x1, x2)− f(y1, y2)| < ε . On the other

hand, if
√
(x1 − y1)

2 + (x2 − y2)
2 ≥ δ, we have

|f(x1, x2)− f(y1, y2)| ≤ 2Kf
(x1 − y1)

2 + (x2 − y2)
2

δ2
, for (y1, y2) ∈ D.

So, we get the following inequality
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|f(x1, x2)− f(y1, y2)| ≤ ε+ 2Kf
(x1 − y1)

2 + (x2 − y2)
2

δ2
. (3)

Using positivity of the operators Mn for each n and the equality

f(y1, y2) = (f − f(x1, x2)e00)(y1, y2) + f(x1, x2),

we obtain the following inequality

|Mn (f ; (x1, x2))− f(x1, x2)|
= |Mn(f − f(x1, x2)e00 + f(x1, x2)e00; (x1, x2))− f(x1, x2)|
= |Mn (f − f(x1, x2)e00; (x1, x2)) + (f(x1, x2)(Mn (e00; (x1, x2))− 1)|
≤ Mn (|f − f(x1, x2)e00| ;x) + |f(x1, x2)| |Mn (e00; (x1, x2))− 1)|
≤ Mn (|f − f(x1, x2)e00| ;x) + ∥f∥C∗

ρ (D) |Mn (e00; (x1, x2))− 1)| . (4)

Now applying the operators Mn to (3) and using (4) we get

|Mn (f ; (x1, x2))− f(x1, x2)| ≤ ε+
2Kf

δ2

{
Mn

(
(y1 − x1)

2 ;x
)

+Mn

(
(y2 − x2)

2 ;x
)}

+ ∥f∥C∗
ρ (D) |Mn (e00; (x1, x2))− e00(x1, x2)|

= ε+
2Kf

δ2

{
1

F3(n)

{
n(n+ 1)

(
x21 + x22

)
+ 4n (x1 + x2) + 4

}
− 2n

n− 2

(
x21 + x22

)
− 2

n− 2
(x1 + x2) + x21 + x22

}
+ ∥f∥C∗

ρ (D) |Mn (e00; (x1, x2))− e00(x1, x2)| ,
hence the proof of Theorem is finished. �
Remark 2.1. If we choose f ∈ C(Da) instead of f ∈ C∗

ρ (D) in the above theorem,
then we obtain alternative proof of the Theorem 2.1 by means of Bohman-Korovkin’s
result, Indeed, take K = Da, f1 = e00, f2 = e10, f3 = e01, f4 = e22, a1 = e22, a2 =
−2e10, a3 = −2e01 and a4 = e00, then P ((x1, x2), (y1, y2)) = (x1 − y1)

2 + (x2 − y2)
2.

Full modulus of continuity of f ∈ C(Da) is denoted by w(f ; δ) and defined as
follows :

w(f ; δ) := max
{∣∣f(b1)− f(b2)

∣∣ : b1, b2 ∈ Da and
∥∥b1 − b2

∥∥ ≤ δ
}
.

Partial modulus of continuity with respect to x1 and x2 are given by

w1(f ; δ) := max
0≤x2≤a

max
|x1−x3|≤δ

|f(x1, x2)− f(x3, x2)|

and
w2(f ; δ) := max

0≤y1≤a
max

|y2−y3|≤δ
|f(y1, y2)− f(y1, y3)| ,

respectively. We shall need some well known properties of full and partial modulus
of continuity :

w(f ;λδ) ≤ (1 + λ)w(f ; δ)

for any λ ≥ 0 and lim
δ→0

w(f ; δ) = 0.

The following theorem gives the rate of convergence of the sequence of linear
positive operators (Mn) to f, by means of partial and full modulus of continuity.
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Theorem 2.2. For f ∈ C(Da) the following inequalities are satisfied

∥Mn(f)− f∥C(Da)
≤ 4

2∑
i=1

wi(f ; δn,i)

and

∥Mn (f)− f∥C(Da)
≤ 4w(f ; δn)

where δn,i =
√

2n+6
(n−2)(n−3) (a+ 1) , i = 1, 2, δn =

√
2(2n+6)

(n−2)(n−3) (a+ 1) .

Proof. For (x1, x2) ∈ Da

|Mnf ; (x1, x2)− f(x1, x2)|

≤ (n− 1)2
∑
k,l∈N

bn,k,l(x1, x2)

∞∫
0

∞∫
0

bn,k,l(y1, y2) |f(y1, y2)− f(x1, y2)| dy1dy2

≤ (n− 1)2
∑
k,l∈N

bn,k,l(x1, x2)

∞∫
0

∞∫
0

bn,k,l(y1, y2)

∣∣∣∣1 + |y1 − x1|
δn,1

∣∣∣∣w (f, δn,1) dy1dy2.

Using the inequality (a+ b)p ≤ 2p−1 (ap + bp) by Cauchy-Schwarz inequality,

|Mnf ; (x1, x2)− f(x1, x2)|

≤ 2

1 +
(n− 1)2

δ2n,1

∑
k,l∈N

bn,k,l(x1, x2)

∞∫
0

∞∫
0

bn,k,l(y)
(
y21 − 2y1x1 + x21

)
dy1dy2


×w(f, δn,1)

≤ 2

{
1 +

1

δ2n,1

(2n+ 6)

F3(n)
(x1 + 1)2

}
w(f, δn,1), for the sufficiently large n ∈ N we get

≤ 4w(f, δn,1).

By using the same processes above we get the following inequality

|Mn (f ; (x1, x2))− f(x1, x2)| ≤ 4w(f, δn,2).

Using above inequalities and full modulus of continuity

|Mn (f ; (x1, x2))− f(x1, x2)|
≤ (n− 1)2

∑
k,l∈N

bn,k,l(x1, x2)

×


∞∫
0

∞∫
0

bn,k,l(y)

∣∣∣∣∣∣1 +
√

(y1 − x1)
2 + (y2 − x2)

2

δn

∣∣∣∣∣∣w (f, δn) dy1dy2


≤ 2

{
1 +

1

δ2
(2n+ 6)

F3(n)

{
(x1 + 1)2 + (x2 + 1)2

}}
w (f, δn)

and then we take supremum on last inequality we get the desired result. �
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For M > 0 and 0 < α ≤ 1, the class of the functions f ∈ C(Da) satisfying the
following relation

w(f ; δ) ≤Mδα, for all δ ≥ 0,

is called a Lipschitz class and denoted by LipM (α) . The following Corollary is
routine and its proof is omitted.

Corollary 2.1. Let f ∈ C(Da). If f ∈ LipM (α), for 0 < α ≤ 1, then the following
inequality

∥Mn(f)− f∥C(Da)
≤ 4Mδαn

holds, where M > 0 and δn is given in the above theorem.

3. Voronovskaja-Type Theorem

Let us define the moment functions Vi,j by

Vi,j(y1, y2) = (y1 − x1)
i (y2 − x2)

j , i, j ∈ N0.

By simple calculations, the following lemma can be obtained easily.

Lemma 3.1. For each (x, y) ∈ D and n ∈ N the following equations are hold

(i) Mn(V2,0; (x1, x2)) =
2n+ 6

F3(n)
x21 +

2n+ 6

F3(n)
x1 +

2

F3(n)
,

(ii) Mn(V0,2; (x1, x2)) =
2n+ 6

F3(n)
x22 +

2n+ 6

F3(n)
x2 +

2

F3(n)
,

(iii) Mn(V1,1; (x1, x2)) =
(nx1 + 1)(nx2 + 1)

(n− 2)2
− (nx1 + 1)

(n− 2)
x2

−(nx2 + 1)

(n− 2)
x1 + x1x2,
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(iv) Mn(V2,2; (x1, x2)) =
n(n+ 1)

(
x21 + x22

)
+ 4n (x1 + x2) + 4

(F3(n))
2

−
2
(
n(n+ 1)x21 + 4nx1 + 2

) (
nx22 + x2

)
(n− 2)F3(n)

+

(
n(n+ 1)x21 + 4nx1 + 2

)
x22

F3(n)

−
2
(
nx21 + x1

) (
n(n+ 1)x22 + 4nx2 + 2

)
(n− 2)F3(n)

+
4(nx21 + x1)(nx

2
2 + x2)

(n− 2)2
− 2(nx21 + x1)x

2
2

(n− 2)

+

(
n(n+ 1)x22 + 4nx2 + 2

)
x21

F3(n)
− 2x21(nx

2
2 + x2)

(n− 2)
+ x21x

2
2,

(v) Mn(V4,0; (x1, x2)) =
12n2 + 252n+ 120

F5(n)
x41 +

24n2 + 504n+ 240

F5(n)
x31

+
12n2 + 324n+ 240

F5(n)
x21 +

72n+ 120

F5(n)
x1 +

24

F5(n)
,

(vi) Mn(V0,4; (x1, x2)) =
12n2 + 252n+ 120

F5(n)
x42 +

24n2 + 504n+ 240

F5(n)
x32

+
12n2 + 324n+ 240

F5(n)
x22 +

72n+ 120

F5(n)
x2 +

24

F5(n)
.

The following corollary is clear and its proof is omitted.

Corollary 3.1. If (x1, x2) ∈ D, then we have

lim
n→∞

n2Mn(V4,0 + V0,4; (x1, x2)) = 12x21 (x1 + 1)2 + 12x22 (x2 + 1)2 .

We now give a Voronovskaja type theorem for Mn operators.

Theorem 3.1. Suppose that f ∈ C2(D). Then for each (x1, x2) in D, we have

lim
n→∞

n(Mn (f ; (x1, x2))− f(x1, x2)) = (2x1 + 1)fx1(x1, x2) + (2x2 + 1)fx2(x1, x2)

+x1(x1 + 1)fx1x1(x1, x2)

+x2(x2 + 1)fx2x2(x1, x2).

Proof. Let (x1, x2) be a fixed point in D and f ∈ C2(D). By Taylor formula for f
we get

f(y1, y2) = f(x1, x2) + fx1(x1, x2)(y1 − x1)

+fx2(x1, x2)(y2 − x2) +
1

2
fx1x2(x1, x2) (y1 − x1)

2

+fx1x2(x1, x2)(y1 − x1)(y2 − x2) +
1

2
fx2x2(x1, x2)(y2 − x2)

2

+ψ((y1, y2); (x1, x2))
√

(y1 − x1)4 + (y2 − x2)4. (5)

Now applying the operators Mn to the equation (5) we obtain

Mn (f ; (x1, x2))− f(x1, x2)
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= fx1(x1, x2)Mn ((y1 − x1); (x1, x2)) + fx2(x1, x2)Mn ((y2 − x2); (x1, x2))

+
1

2
fx1x1(x1, x2)Mn

(
(y1 − x1)

2 ; (x1, x2)
)

+fx1x2(x1, x2)Mn ((y1 − x1)(y2 − x2); (x1, x2))

+
1

2
fx2x2(x1, x2)Mn

(
(y2 − x2)

2; (x1, x2)
)

+Mn

(
ψ((y1, y2); (x1, x2))

√
(y1 − x1)4 + (y2 − x2)4

)
= fx1(x1, x2)

{
nx1
n− 2

+
1

n− 2
− x1

}
+ fx2(x1, x2)

{
nx2
n− 2

+
1

n− 2
− x2

}

+
1

2
fx1x2(x1, x2)

{
2n+ 6

F3(n)
x21 +

2n+ 6

F3(n)
x2 +

2

F3(n)

}

+fx1x2(x1, x2)

{
(nx2 + 1)(nx1 + 1)

(n− 2)2
− (nx1 + 1)

(n− 2)
x2 −

(nx2 + 1)

(n− 2)
x1 + x1x2

}

+
1

2
fx1x2(x1, x2)

{
2n+ 6

F3(n)
x22 +

2n+ 6

F3(n)
x2 +

2

F3(n)

}
+Mn

(
ψ
√
V4,0 + V0,4; (x1, x2)

)
. (6)

From Theorem 2.2 we have

lim
n→∞

Mn

(
ψ2; (x1, x2)

)
= 0. (7)

Combining Corollary 3.1 and (7) yield

lim
n→∞

nMn

(
ψ
√
V4,0 + V0,4; (x1, x2)

)
= 0. (8)

The proof of the Theorem is completed by using (6) and (8). �

Let’s define the operators Ln and Tn for preliminary to the following Theorem.

Ln(f ; (x1, x2)) = n(n− 1)

∞∑
k=0

Pn,k(x1)

∞∑
l=0

Pn+1,l (x2)

×
∞∫
0

∞∫
0

Pn,k (y1)Pn−1,l+1 (y2) f (y1, y2) dy1dy2,

Tn(f ; (x1, x2)) = n(n− 1)

∞∑
k=0

pn+1,k(x1)

∞∑
l=0

pn,l(x2)

×
∞∫
0

∞∫
0

pn−1,k+1 (y1) pn,l (y2) f (y1, y2) dy1dy2.

The following Theorem gives us derivative of the operator Mn with respect to x1
and x2.



On approximation of Baskakov-Durrmeyer type operators of two variables 133

Theorem 3.2. Let f ∈ C1 (D) and f(y1, y2) = O(yn−2
2 ),then the following equalities

are satisfied for each (x1, x2) ∈ D

(i)
∂

∂x2
Mn (f ; (x1, x2)) = Ln(fy2 ; (x1, x2)).

(ii)
∂

∂x1
Mn (f ; (x1, x2)) = Tn(fy1 ; (x1, x2))

Proof. Now we only prove the part (i) and the proof of the part (ii) is similar and
omitted.

Mn(f ; (x1, x2))

= (n− 1)2
∞∑
k=0

pn,k (x1)

∞∑
l=0

pn,l (x2)

∞∫
0

∞∫
0

pn,k (y1) pn,l (y2) f (y1, y2) dy1dy2

= (n− 1)2
∞∑
k=0

pn,k (x1)

pn,0 (x2)
∞∫
0

∞∫
0

pn,k (y1) pn,0 (y2) f (y1, y2) dy1dy2

+

∞∑
l=1

pn,l (x2)

∞∫
0

∞∫
0

pn,k (y1) pn,l (y2) f (y1, y2) dy1dy2

 . (9)

Differentiating both sides of the equality (9) with respect to x2 and using the equality
p′n,l (x2) = n (pn+1,l−1 (x2)− pn+1,l (x2)) we get

∂

∂x2
Mn(f ; (x1, x2)

= (n− 1)2
∞∑
k=0

pn,k (x1)

− n

(1 + x2)n+1

∞∫
0

∞∫
0

pn,k (y1) pn,0 (y2) f (y1, y2) dy1dy2

+
∞∑
l=1

n (pn+1,l−1 (x2)− pn+1,l (x2))

∞∫
0

∞∫
0

pn,k (y1) pn,l (y2) f (y1, y2) dy1dy2


= n (n− 1)

∞∑
k=0

pn,k (x1)

∞∑
l=0

pn+1,l (x2)

×
∞∫
0

∞∫
0

pn,k (y1)
(
−p′n−1,l+1 (y2)

)
f (y1, y2) dy1dy2.

Using integration by parts we obtain

∂

∂x2
Mn(f ; (x1, x2))

= n (n− 1)

∞∑
k=0

pn,k (x1)

∞∑
l=0

pn+1,l (x2)

∞∫
0

∞∫
0

pn,k (y1) pn−1,l+1 (y2) fy2 (y1, y2) dy1dy2,

as desired. �
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