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DYNAMIC ANALYSIS OF THE 3-3 STEWART PLATFORM 

Ştefan STAICU1 

Lucrarea prezentă stabileşte relaţii matriceale recursive pentru platforma 
Stewart cu şase actuatori prismatici. Controlat de şase forţe, prototipul 
manipulatorului este un sistem mecanic spaţial cu şase grade de libertate şi cu şase 
lanţuri cinematice ce conectează platforma mobilă. Cunoscând poziţia şi mişcarea 
generală a platformei, se dezvoltă mai întâi cinematica inversă şi se determină 
poziţia, viteza şi acceleraţia fiecărui element al manipulatorului. În continuare, 
problema dinamică inversă este rezolvată cu principiul lucrului mecanic virtual. În 
finalul lucrării sunt obţinute ecuaţii matriceale compacte şi grafice de simulare 
pentru forţele active. 

Recursive matrix relations in kinematics and dynamics of the 3-3 Stewart 
platform having six prismatic actuators are established in this paper. Controlled by 
six forces, the parallel manipulator prototype is a spatial six-degrees-of-freedom 
mechanical system with six parallel legs connecting to the moving platform. 
Knowing the position and the general motion of the platform, we first develop the 
inverse kinematics problem and determine the position, velocity and acceleration of 
each manipulator’s link. Further, the inverse dynamic problem is solved using an 
approach based on the principle of virtual work. Finally, compact matrix equations 
and graphs of simulation for the active forces are obtained 
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1. Introduction 

 
Parallel manipulators are closed-loop mechanisms presenting very good 

potential in terms of accuracy, rigidity and ability to manipulate large loads. In 
general, these manipulators consist of two main bodies coupled via numerous legs 
acting in parallel. One body is arbitrarily designated as fixed and is called the 
base, while the other is regarded as movable and hence is called the the moving 
platform of the manipulator. Several mobile legs or limbs, made up as serial 
robots, connect the movable platform to the fixed frame. The links of the robot are 
connected one to the other by spherical joints, universal joints, revolute joints or 
prismatic joints. Typically, the number of actuators is equal to the number of 
degrees of freedom such that every link is controlled at or near the fixed base [1]. 
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Compared with serial mechanisms, parallel manipulator is a complex 
mechanical structure, presenting some the special characteristics such as: greater 
rigidity, potentially higher kinematical precision, stabile capacity and suitable 
position of arrangement of actuators.  However, they suffer the problems of 
relatively small useful workspace and design difficulties. 

Parallel robots can be equipped with hydraulic or prismatic actuators. They 
have a robust construction and can move bodies of large dimensions with high 
speeds. That is the reason why the devices which produce translation or spherical 
motion to a platform, technically are based on the concept of parallel manipulator. 

Parallel mechanisms can be found in practical applications, in which it is 
desired to orient a rigid body in space with high speed, such as aircraft simulators 
[2], positional tracker and telescopes [3], [4]. More recently, they have been used 
by many companies in the development of high precision machine tools [5], [6], 
such as Giddings & Lewis, Hexel, Geodetic and Toyoda.  

Recently, considerable efforts have been devoted to the kinematics and 
dynamic analysis of fully parallel manipulators. Among these, the class of 
manipulators known as Stewart-Gough-like platform focused great attention 
(Stewart [2]; Merlet [7]; Parenti Castelli and Di Gregorio [8]). They are used in 
flight simulators and more recently for Parallel Kinematics Machines. 

The prototype of Delta parallel robot (Clavel [9]; Staicu and Carp-Ciocardia 
[10]; Tsai and Stamper [11]) developed by Clavel at the Federal Polytechnic 
Institute of Lausanne and by Tsai and Stamper at the University of Maryland as 
well as the Star parallel manipulator (Hervé and Sparacino [12]) are equipped 
with three motors which train on the mobile platform in a three-degree-of-
freedom general translation motion. 

Angeles [13], Gosselin and Gagné [14], Wang and Gosselin [15] analysed the 
direct kinematics, dynamics and singularity loci of the Agile Wrist spherical 
parallel robot with three concurrent actuators. 

The analysis of parallel manipulators is usually implemented trough analytical 
methods in classical mechanics, in which projection and resolution of vector 
equations on the reference axes are written in a considerable number of 
cumbersome, scalar relations and the solutions are rendered by large scale 
computations together with time consuming computer codes [16], [17]. 

In the present paper, a new recursive matrix method is introduced. It has been 
proved to reduce the number of equations and computation operations 
significantly by using a set of matrices for kinematics and dynamics models. 

 
2. Inverse kinematics 

 
A spatial 6-DOF parallel manipulator, which present in several applications 

including machine tools, is proposed in this paper. Since the pneumatic joints can 
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easily achieve high accuracy and heavy loads, the majority of the 3-DOF or of the 
6-DOF parallel mechanisms use the actuated prismatic joints. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 Fig. 1 General scheme of the 3-3 Stewart platform 
 

The Stewart platform is a six-degrees-of-freedom fully spatial parallel 
mechanism in which a moving platform is connected together to a fixed base by 
six extensible legs from universal and spherical joints. Each leg is made up of two 
binary links that are connected by a prismatic joint.  Ball screws or pneumatic 
jacks can be used to vary the lengths of the prismatic joints and to control the 
location of the platform. 

The first design for industrial purposes can be dated back to 1962, when Gough 
implemented a six-linear jack system for use as a Universal tire-testing machine. 
In fact, it was a huge force sensor, capable of measuring forces and torques on a 
wheel in all directions. Some years later, Stewart published a design of a platform 
robot for use as a flight simulator [2]. 

A special design, called the 3-3 Stewart platforms or the octahedral platforms, 
usually contains three concentric spherical joints at the moving platform and three 
concentric universal joints at the fixed base (Fig.1). This special construction 
makes closed-form direct kinematics solutions feasible. 

We suppose a moving platform symbolically represented by three pairs of 
concentric spherical joints ,44 BA =  ,44 DC = 44 FE = and a fixed base represented 
by another three pairs of concentric universal joints located at the 
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points 111111 ,, EDCBFA === . We assume also that the two sets of concentric 
joints forms two equilateral triangles. 

For the purpose of analysis, we attach a Cartesian coordinate system 
)( 0000 TzyOx to the fixed base with its origin located at triangle centreO , the 

0Oz axis perpendicular to the base and the 0Ox axis pointing along line 1OA . 
Another coordinate central frame GGG zyGx  could be linked just at the centreG of 
the moving platform. 

In what follows we consider that the moving platform is initially located at a 
central configuration, where the moving platform is not rotated with respect to the 
fixed base and the mass centreG is at an elevation hOG =  above the centre of the 
fixed base. 

The mechanism of the manipulator consists of six chains, including six variable 
lengths with identical topology, all connecting the fixed base to the moving 
platform. One of these identical active legs (leg A≡ 4321 AAAA , for example) 
consists of a fixed Hooke joint, characterized by a mass 1m and a tensor of 
inertia 1Ĵ , which has the angular velocity AA

1010 ϕω =  and the angular acceleration 
AA

1010 ϕε = , and a moving cylinder of length 2l , mass 2m and tensor of inertia 2Ĵ , 
which has a relative rotation about AyA 22 axis with the angle A

21ϕ , so that AA
2121 ϕω = , 

AA
2121 ϕε = . An actuated prismatic joint is as well as a piston linked to 

the AAA zyxA 3333 frame, having a relative displacement A
32λ , velocity AAv 3232 λ=  and 

acceleration AA
3232 λγ = . It has the length 3l , mass 3m  and tensor of inertia 3Ĵ . 

Finally, a ball-joint or a spherical joint is attached to the moving platform, which 
is schematised as a circle of radius 0l , mass pm and inertia tensor pĴ  (Fig. 2). 

At the central configuration, we also consider that all legs are extended at equal 
lengths and that the angles of orientation of universal joints and spherical joints 
are given by 

                                
3

2,
3

2,0 111111
πααπαααα −====== EDCBFA   

                                
3222
πααα −=== ECA ,

3222
πααα === FDB                                  (1) 

                                
3333
πααα === ECA ,

3333
πααα −=== FDB . 

Assuming that the each leg is connected to the fixed base by universal joint 
such that it cannot rotate about the longitudinal axis, the orientation of the 
leg A with respect to the fixed base can be described by two Euler angles, namely 
a rotation angle A

10ϕ about the AxA 11 axis, followed by another rotation of angle A
21ϕ  
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about the rotated AyA 22 axis. Pursuing the first leg A in the 4321 AAAOA  way, we 
obtain the following matrices of transformation [18]: 
                                 θβ

ϕ
αα

ϕ === 322121121010 ,, aaaaaaaa AA ,                           (2) 
where 
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Analogous relations can be written for other five legs of the mechanism. 
Six displacements A

32λ , B
32λ , C

32λ , D
32λ , E

32λ , F
32λ  of the active links are the 

variables that gives the instantaneous position of the mechanism. But, in the 
inverse geometric problem, it can be considered that the coordinates of the mass 
centreG of the moving platform GGG zyx 000 ,, and the three known Euler angles 

,, 21 αα 3α of successive rotations about the GGG GzGyGx ,,  axes give the position 
of the mechanism. 

For convenience, we introduce three basic rotation matrices. Since all rotations 
take place successively about the moving coordinate axes, the resulting rotation 
matrix is obtained by multiplying three known rotation matrices: 
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Then, the general rotation matrix of the moving platform from )( 0000 TzyOx to 

GGG zyGx reference system is given by 

                                                        123 RRRR = .                                                (5) 
We suppose that the coordinates of the platform’s centre G and the Euler 

angles 321 ,, ααα , which are expressed by following analytical functions 

       )
3

2cos1(00 txx GG π
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                                      )3,2,1(),
3

2cos1(* =−= ltll
παα ,                                     (6)  

can describe the general absolute motion of the moving platform. 
 

 
                           Fig. 2 Kinematical scheme of first leg A of the mechanism 
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The variables FFFAAA
322110322110 ,,,...,,, λϕϕλϕϕ  will be determined by several 

vector-loop equations, as follows 
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Knowing the general motion of the platform by the relations (6), we develop 
the inverse kinematical problem and determine the velocities A

k
A

kv 00 , ω  and 
accelerations ,0

A
kγ  A

k0ε  of each of the moving linksa follows. 
First, we compute the linear and angular velocities of six legs in terms of the 

angular velocity of the moving platform 
                       3322121116060 uRuRRuRR TTTTGTG αααωω ++==                         (9) 
and the velocity of its centre G  
                                            TGGGGTG zyxvRr ][ 000600 == .                                  (10) 

The motions of the compounding elements of each leg (the leg A , for example) 
are characterized by the following skew symmetric matrices [19]:  
                                )3,2,1(,~~~

1,1,0,11,0 =+= −−−− kaa A
kk

T
kk

A
kkk

A
k ωωω ,                   (11)  

which are associated to the absolute angular velocities given by the recursive 
formulae 
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                                            A
kk

A
kkk

A
k a 1,0,11,0 −−− += ωωω .                                      (12) 

Following relations give the velocities A
kv 0 of joints kA : 

                              A
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A
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                              )2,1(01, ==− σσσ
Av . 

Equations of geometrical constraints (7) can be derivate with respect to time to 
obtain the following matrix conditions of connectivity established for the 
characteristic relative velocities of leg A : 
       A

10ω TT
i au 10 ++ }{~

433232211
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4332322
ATA raru + + Av32 =230uau TT
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i ω , 
where 
                RuRRRuRRRuRRR TTTTGTG

3312221211116060
~~~~~ αααωω ++==              (15) 

denotes the skew-symmetric matrix associated to the angular velocity (9) of the 
moving platform [20]. From these equations, we obtain the relative velocities 

,10
Aω AA v3221,ω  as functions of angular velocity of the platform and velocity of mass 

centreG . The Jacobian matrix of the robot, given from (14), is a fundamental 
element for the analysis of singularity loci and workspace of the robot.  

Let us assume now that the manipulator has a first virtual motion determined by 
the following virtual velocities   
                       132 =Av

av , 032 =Bv
av , 032 =Cv
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av , 032 =Ev

av , 032 =Fv
av .                  (16) 

The relations of connectivity (14) about the relative velocities express 
immediately the characteristic virtual velocities as function of the position of the 
manipulator. Other five sets of compatibility relations can be obtained, if we 
consider successively that 132 =Bv

bv , 132 =Cv
cv , 132 =Dv

dv , 132 =Ev
ev , 132 =Fv

fv . 
As for the relative accelerations A

10ε , A
21ε , A

32γ of the elements of first leg A of the 
mechanism, following other conditions of connectivity are imposed 
            A

10ε TT
i au 10 ++ }{~

433232211
ATAT rarau A

21ε TT
i au 20 }{~

4332322
ATA raru + + A

32γ =230uau TT
i  

         −++= 4}~~~{ 6060600
A

G
GGGTT

i
GT

i rRuru ωωω  
        1101010

~uau TT
i

AAωω− −+ }{~
433232211
ATAT rarau  

        2202121
~uau TT

i
AAωω− −+ }{~

4332322
ATA raru  

        TTT
i

AA auau 211102110
~2 ωω− −+ }{~

4332322
ATA raru  

        −− 232211103210
~2 uaauauv TTTT

i
AAω  

        2322203221
~2 uauauv TTT

i
AAω− , )3,2,1( =i ,                                                            (17) 

where an useful square matrix is introduced 
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The linear accelerations A
k0γ  of the joints kA and the angular accelerations A

k 0ε  are 
easily calculated with some recurrence relations, founded by the derivatives of the 
equations (12) and (13) 
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If other five kinematical chains of the manipulator are pursued, analogous 
relations can be easily obtained. 

The relations (14) and (17) represent the inverse kinematics model of the 3-3 
Stewart platforms. 
 

3. Equations of motion 
 

The dynamics of parallel manipulators is complicated by the existence of 
multiple closed-loop chains. Difficulties commonly encountered in dynamics 
modelling of parallel robots include problematic issues such as: complicated 
spatial kinematical structure with possess a large number of passive degrees of 
freedom, dominance of inertial forces over the frictional and gravitational 
components and the problem linked to the solution of the inverse dynamics. 

In the recent years, many research works have been conducted on the dynamics 
of the Stewart manipulator [21], [22]. There are three methods, which can provide 
the same results concerning the determination of the inputs, which must be 
exerted by the actuators in order to produce a given motion of the end-effectors. 
The first one is using the Newton-Euler classic procedure, the second one applies 
the Lagrange equations and multipliers formalism and the third one is based on 
the fundamental principle of virtual work [23], [24], [25], [26], [27]. 
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A lot of works have focused on the dynamics of Stewart platform. Dasgupta 
and Mruthyunjaya [16] used the Newton-Euler approach to develop some closed-
form dynamic equations of Stewart platform, considering all dynamic and gravity 
effects as well as viscous friction at joints. Tsai [1] presented an algorithm to 
solve the inverse dynamics for a Stewart platform-type using Newton-Euler 
equations, which can be reduced to six if a proper sequence is taken. This classical 
approach requires computation of all constraint forces and moments between the 
links.  

Geng [28] and Tsai [1] developed Lagrange equations of motion under some 
simplifying assumptions regarding the geometry and inertia distribution of the 
manipulator. The Lagrange formulation is well structured and can be expressed in 
closed form, but a large amount of symbolic computation is needed to find partial 
derivatives of the Lagrange’s function, the analytical calculi involved are too long 
for each scheme of the manipulator. 

Liu et al. [29] derived a set of differential equations for the forward dynamics 
of legs and moving platform, using the Huston form of Kane’s equations [30]. 

In the inverse dynamic problem, in the present paper we applied the principle of 
virtual work in order to establish some recursive matrix relations for the forces of 
the six active systems. 

Six independent pneumatic systems A , B , C , D , E , F , that generate six forces 
23232 uff AA = , 23232 uff BB = , 23232 uff CC = , 23232 uff DD = , 23232 uff EE = , 23232 uff FF = , which 

are oriented along the axes AyA 33 , ByB 33 , CyC 33 , DyD 33 , EyE 33 , FyF 33 , control the 
motion of the moving sliders of the manipulator.  

The force of inertia and the resultant moment of the forces of inertia of 
the kT body are determined with respect to the centre of joint kA . On the other 

hand, two vectors *
kf and *

km evaluate the influence of the weight action gmk and 
all other external and internal forces applied to the same kT link. 

Knowing the position and kinematics state of each link as well as the external 
forces acting on the robot, in the present paper we apply the principle of virtual 
powers in the inverse dynamic problem. The active forces required in a given 
motion of the moving platform will easily be computed using a recursive 
procedure. 

The closed-loops can artificially be transformed in a set of open chain systems, 
which are subjected to the constraints. This is possible by cutting each joint for 
moving platform, and takes its effect into account by introducing the 
corresponding constraint conditions. 

The fundamental principle of the virtual work [1], [13], [30] states that a 
mechanism is under dynamic equilibrium if and only if the virtual work developed 
by all external, internal and inertia forces vanish during any general virtual 
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displacement, which is compatible with the constraints imposed on the 
mechanism. Assuming that frictional forces at the joints are negligible, the virtual 
work produced by the forces of constraint at the joints is zero. 

Applying the fundamental equations of the parallel robots dynamics 
established in compact form by Staicu [26], [27], the following matrix relation 
results 
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The relations (20) and (21) represent the inverse dynamics model of the 3-3 
Stewart platforms, which can be easily transformed in a model for automatic 
command. 

As applications let us consider a manipulator, which has the following 
characteristics  

      0*
1 =α , 0*

2 =α , 
180
15*

3
πα =   

      
3
πβ = , 3=Δt s  

      10.0*
0 =Gx  m, 0*

0 =Gy m, 15.0*
0 =Gz m    

      5.11 =m kg, 152 =m kg, 103 =m kg, 506 == mmp kg 
      50.210 ==OAl m, 50.12 =l m, 00.33 =l  m, 50.24 =l  m 

      3
22

01 lhll −+= , βtglhOG 0==   
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1.0
1.0

2.0
ˆ

1J , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

15
15

5
ˆ

2J , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

30
5

30
ˆ

3J , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

80
40

40
ˆ

pJ . 

 
4. Dynamics simulations 

 
Based on the algorithm derived from above equations, a computer program was 

developed to solve the inverse dynamics of the Stewart platform, using the 
MATLAB software. To validate the dynamics modelling, it is assumed that the 
platform starts at rest from a central configuration and moves along or rotates 
about one of three orthogonal directions. Furthermore, at the initial location, the 
moving platform is assumed to be located m33.4  lower the fixed base, 
namely :0=t ,00 =Gx  mzy GG 33.4,0 00 == .      

Assuming that there are not external forces and moments acting on the moving 
platform, the time-history evolutions of the 
forces Af32 , Bf32 , Cf32,

Df32 , Ef32 , Ff32 required by the three pneumatic active systems are 
shown for a period of three second of platform’s motion. 

The following examples are solved to illustrate the algorithm. For the first 
example, the moving platform moves along the vertical 0z  direction with variable 
acceleration while all the other positional parameters are held equal to zero.  

                    
                                    Fig. 3 Forces of the six actuators: vertical translation 
 
As can be seen from Fig. 3, it is proved to be true that all input forces are 

permanently equal to one another. When the moving platform is going to the fixed 
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base, the limbs become more horizontally oriented, therefore increasing the 
actuating forces. 

If the centre G moves along a rectilinear trajectory along the horizontal 
0x direction without rotation of the platform, the forces FA ff 3232 ,  (Fig. 4) and 

EB ff 3232 ,  (Fig. 5) required by the actuators are calculated by the program and 
plotted versus time in comparison with the input forces DC ff 3232 ,  of the prismatic 
actuators DC, . 

                      
                                    Fig. 4 Forces of four actuators: horizontal translation  

                       
                                   
                                     Fig. 5 Forces of four actuators: horizontal translation 
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For the third example we consider the rotation motion of the moving platform 
about the vertical 0z  axis with a variable angular acceleration 3α . As can be seen 
from CA ff 2132 , , Ef32  and FDB fff 323232 ,,  (Fig. 6), we remark the anti-symmetrical 
distribution of the actuating forces. 

                   
 
                                     Fig. 6 Forces of six actuators: rotation about 0z axis 

 
5. Conclusions 

 
Most of dynamical models based on the Lagrange formalism neglect the weight 

of intermediate bodies and take into consideration the active forces or moments 
only and the wrench of applied forces on the moving platform. The number of 
relations given by this approach is equal to the total number of the position 
variables and Lagrange multipliers inclusive. Also, the analytical calculations 
involved in these equations are very tedious, thus presenting an elevated risk of 
errors. 

The commonly known Newton-Euler method, which takes into account the 
free-body-diagrams of the mechanism, leads to a large number of equations with 
unknowns including also the connecting forces in the joints. Finally, the actuating 
forces could be obtained. 

Within the inverse kinematics analysis, the conditions of connectivity (14), (17) 
that give in real-time the relative velocity and acceleration of each element of the 
parallel robot have been established in the present paper. The dynamics model 
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takes into consideration the mass, the tensor of inertia and the action of weight 
and inertia force introduced by each element of the manipulator. 

Based on the principle of virtual work, the new approach is far more efficient, 
can eliminate all forces of internal joints and establishes a direct determination of 
the time-history evolution of input forces and active powers required by the three 
actuators. Also, the method described above is quite available in forward and 
inverse mechanics of serial and parallel mechanisms, the platform of which 
behaves in translation, spherical evolution or more general six-degree-of-freedom 
motion. 

The recursive matrix relations (20), (21) represent a set of explicit equations of 
the dynamic simulation and, in a context of automatic command, can easily be 
transformed into a robust model for computerized control of the Stewart parallel 
manipulator. 
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