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DYNAMIC ANALYSIS OF THE 3-3 STEWART PLATFORM

Stefan STAICU'

Lucrarea prezentd stabileste relatii matriceale recursive pentru platforma
Stewart cu sase actuatori prismatici. Controlat de sase forte, prototipul
manipulatorului este un sistem mecanic spatial cu sase grade de libertate §i cu sase
languri cinematice ce conecteaza platforma mobila. Cunoscand pozitia §i miscarea
generald a platformei, se dezvoltd mai intdi cinematica inversd si se determind
pozitia, viteza si acceleratia fiecarui element al manipulatorului. In continuare,
problema dinamicd inversd este rezolvatd cu principiul lucrului mecanic virtual. In
finalul lucrarii sunt obtinute ecuatii matriceale compacte si grafice de simulare
pentru fortele active.

Recursive matrix relations in kinematics and dynamics of the 3-3 Stewart
platform having six prismatic actuators are established in this paper. Controlled by
six forces, the parallel manipulator prototype is a spatial six-degrees-of-freedom
mechanical system with six parallel legs connecting to the moving platform.
Knowing the position and the general motion of the platform, we first develop the
inverse kinematics problem and determine the position, velocity and acceleration of
each manipulator’s link. Further, the inverse dynamic problem is solved using an
approach based on the principle of virtual work. Finally, compact matrix equations
and graphs of simulation for the active forces are obtained

Keywords: dynamics modelling, kinematics, parallel mechanism, virtual work
1. Introduction

Parallel manipulators are closed-loop mechanisms presenting very good
potential in terms of accuracy, rigidity and ability to manipulate large loads. In
general, these manipulators consist of two main bodies coupled via numerous legs
acting in parallel. One body is arbitrarily designated as fixed and is called the
base, while the other is regarded as movable and hence is called the the moving
platform of the manipulator. Several mobile legs or limbs, made up as serial
robots, connect the movable platform to the fixed frame. The links of the robot are
connected one to the other by spherical joints, universal joints, revolute joints or
prismatic joints. Typically, the number of actuators is equal to the number of
degrees of freedom such that every link is controlled at or near the fixed base [1].
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Compared with serial mechanisms, parallel manipulator is a complex
mechanical structure, presenting some the special characteristics such as: greater
rigidity, potentially higher kinematical precision, stabile capacity and suitable
position of arrangement of actuators. However, they suffer the problems of
relatively small useful workspace and design difficulties.

Parallel robots can be equipped with hydraulic or prismatic actuators. They
have a robust construction and can move bodies of large dimensions with high
speeds. That is the reason why the devices which produce translation or spherical
motion to a platform, technically are based on the concept of parallel manipulator.

Parallel mechanisms can be found in practical applications, in which it is
desired to orient a rigid body in space with high speed, such as aircraft simulators
[2], positional tracker and telescopes [3], [4]. More recently, they have been used
by many companies in the development of high precision machine tools [5], [6],
such as Giddings & Lewis, Hexel, Geodetic and Toyoda.

Recently, considerable efforts have been devoted to the kinematics and
dynamic analysis of fully parallel manipulators. Among these, the class of
manipulators known as Stewart-Gough-like platform focused great attention
(Stewart [2]; Merlet [7]; Parenti Castelli and Di Gregorio [8]). They are used in
flight simulators and more recently for Parallel Kinematics Machines.

The prototype of Delta parallel robot (Clavel [9]; Staicu and Carp-Ciocardia
[10]; Tsai and Stamper [11]) developed by Clavel at the Federal Polytechnic
Institute of Lausanne and by Tsai and Stamper at the University of Maryland as
well as the Star parallel manipulator (Hervé and Sparacino [12]) are equipped
with three motors which train on the mobile platform in a three-degree-of-
freedom general translation motion.

Angeles [13], Gosselin and Gagné [14], Wang and Gosselin [15] analysed the
direct kinematics, dynamics and singularity loci of the Agile Wrist spherical
parallel robot with three concurrent actuators.

The analysis of parallel manipulators is usually implemented trough analytical
methods in classical mechanics, in which projection and resolution of vector
equations on the reference axes are written in a considerable number of
cumbersome, scalar relations and the solutions are rendered by large scale
computations together with time consuming computer codes [16], [17].

In the present paper, a new recursive matrix method is introduced. It has been
proved to reduce the number of equations and computation operations
significantly by using a set of matrices for kinematics and dynamics models.

2. Inverse kinematics

A spatial 6-DOF parallel manipulator, which present in several applications
including machine tools, is proposed in this paper. Since the pneumatic joints can
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easily achieve high accuracy and heavy loads, the majority of the 3-DOF or of the
6-DOF parallel mechanisms use the actuated prismatic joints.

Fig. 1 General scheme of the 3-3 Stewart platform

The Stewart platform is a six-degrees-of-freedom fully spatial parallel
mechanism in which a moving platform is connected together to a fixed base by
six extensible legs from universal and spherical joints. Each leg is made up of two
binary links that are connected by a prismatic joint. Ball screws or pneumatic
jacks can be used to vary the lengths of the prismatic joints and to control the
location of the platform.

The first design for industrial purposes can be dated back to 1962, when Gough
implemented a six-linear jack system for use as a Universal tire-testing machine.
In fact, it was a huge force sensor, capable of measuring forces and torques on a
wheel in all directions. Some years later, Stewart published a design of a platform
robot for use as a flight simulator [2].

A special design, called the 3-3 Stewart platforms or the octahedral platforms,
usually contains three concentric spherical joints at the moving platform and three
concentric universal joints at the fixed base (Fig.1). This special construction
makes closed-form direct kinematics solutions feasible.

We suppose a moving platform symbolically represented by three pairs of
concentric spherical joints 4, = B,, C, = D,, E, = F,and a fixed base represented

by another three pairs of concentric universal joints located at the
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points 4, = F, B, =C,, D, = E,. We assume also that the two sets of concentric

joints forms two equilateral triangles.
For the purpose of analysis, we attach a Cartesian coordinate system
Ox,y,z,(T;) to the fixed base with its origin located at triangle centre O, the

Oz,axis perpendicular to the base and theOx,axis pointing along line O4, .
Another coordinate central frame Gx;y;z, could be linked just at the centre G of

the moving platform.

In what follows we consider that the moving platform is initially located at a
central configuration, where the moving platform is not rotated with respect to the
fixed base and the mass centre G is at an elevation OG =k above the centre of the
fixed base.

The mechanism of the manipulator consists of six chains, including six variable
lengths with identical topology, all connecting the fixed base to the moving
platform. One of these identical active legs (legA=4,4,4,4,, for example)

consists of a fixed Hooke joint, characterized by a massm and a tensor of
inertia jl, which has the angular velocity w;; = ¢5 and the angular acceleration
gl =@, and a moving cylinder of length /,, massm,and tensor of inertiajz,

which has a relative rotation about 4, y; axis with the angle 3., so that @3 = @3},
&} =@;,. An actuated prismatic joint is as well as a piston linked to
the 4,x; y{z{ frame, having a relative displacement A%, velocity vy =A% and
accelerationy ;=A% . It has the lengthl,, massm, and tensor of inertia j3.
Finally, a ball-joint or a spherical joint is attached to the moving platform, which
is schematised as a circle of radius/, , mass m ,and inertia tensor J , (Fig. 2).

At the central configuration, we also consider that all legs are extended at equal
lengths and that the angles of orientation of universal joints and spherical joints
are given by

2 2
al=al =0,af =af ===, a =af =-
3 3
T T
_Cc_ & _ B_ _D_ _F_
al=ay =a, =——,ar =al =al == (1
3 3
C E B D 4
Ay =03 =03 =»0y =0y =03 =—

Assuming that the each leg is connected to the fixed base by universal joint
such that it cannot rotate about the longitudinal axis, the orientation of the
leg A with respect to the fixed base can be described by two Euler angles, namely

a rotation angle ¢ about the 4, x;" axis, followed by another rotation of angle p;!
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about the rotated Azyf axis. Pursuing the first leg Ain the O4, 4, 4,4, way, we
obtain the following matrices of transformation [18]:

ayp = al(p()a;aasz’ ay = a;plaﬂﬁ a, =0, (2)
where
i cosa; sina! 0
a! =|-sina/! cosa 0 (i=1,2,3)
0 0 1
[cosp 0 —sinp 0 10
ag=| 0 1 0 |,é=|-1 0 0 3)
|sinf 0 cosp 0 0 1
1 0 0 cosgy; 0 —sing;
aly =R(x,p5)=|0 cosg,, singy |» al =R(y,pi)=| 0 1 0
0 -—sing, cosg/ singp;;, 0 cosg;

k
Aro = Hak—ﬁl,k—j’ (k=1,2.3).
=1

Analogous relations can be written for other five legs of the mechanism.

Six displacements 1 5,,4%5,15,,45,4% 4% of the active links are the
variables that gives the instantaneous position of the mechanism. But, in the
inverse geometric problem, it can be considered that the coordinates of the mass
centre G of the moving platform XOG , yOG , ZOG and the three known Euler angles

a,, a,, a,of successive rotations about the Gx, Gy, Gz, axes give the position

of the mechanism.

For convenience, we introduce three basic rotation matrices. Since all rotations
take place successively about the moving coordinate axes, the resulting rotation
matrix is obtained by multiplying three known rotation matrices:

1 0 0 cosa, 0 -—sina,
R =R(x,a,)=|0 cosa, sing, |, R, =R(y,a,)=| 0 1 0
0 —sing, cosg, sina, 0 cosa,

cosa; sina; 0
R, =R(z,a;)=|-sina; cosa; 0], 4)
0 0 1
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Then, the general rotation matrix of the moving platform fromOx,y,z,(T;)to
Gxy;zreference system is given by

R=RiR,R,. (5)

We suppose that the coordinates of the platform’s centre G and the Euler

angles&,, &, , &, , which are expressed by following analytical functions

. 2 .
x¢ =xOG*(1—cosz?7[t), v =y (l—cos?ﬁt), 28 =h-z¢ (l—cos%rt)

a =a, (1- cos%rt), (1=123), (6)

can describe the general absolute motion of the moving platform.

Fig. 2 Kinematical scheme of first leg A of the mechanism
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The variables gpff), qozAl, A fz, s qolf), qofl, A 1;2 will be determined by several
vector-loop equations, as follows

3

—4 T =4 T—d, _

Ho +Zak0rk+l,k -Rr; =
k=l

T 34 —
=T +Zbk0rk+1k (7

3
_—E T =E _ pT=E,
T +Zek0rk+l,k R'7;

k=1

3

_=F T=F _ T=F _ =G

="y +ka0rk+l,k ar; =rn.,
=1

where

Ro =laldy, B =0, 7Y ==, + A%,

Fa =L, i =1a alli,.
B! 0 0 X

i, =|01,i, =|1|,i,=|0|,7 =y (8)
10 0 1 zy
0 0 0 0 0 1 0 -1 0

u, =0 0 -1Lu,={0 0 Olu,={1 0 Of.
01 0 -1 0 0 0 0 O

Knowing the general motion of the platform by the relations (6), we develop
the inverse kinematical problem and determine the velocities \7,:1), 6?),:10 and
accelerations 74 & { of each of the moving linksa follows.

First, we compute the linear and angular velocities of six legs in terms of the
angular velocity of the moving platform

@y =R' &g =, R, +,R R} i, + &, R i, )
and the velocity of its centre G

—G

Vﬁo [xo yo Z, 01 (10)
The motions of the compoundmg elements of each leg (the leg 4, for example)
are characterized by the following skew symmetric matrices [19]:

~ 4 ~4 T ~4
Oy = A Djy 0y T Dy (K=12.3), (11)

which are associated to the absolute angular velocities given by the recursive
formulae
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0_5:0 = ak,k—la):—l,o + @Zk—l . (12)
Following relations give the velocities v, of joints 4, :
Vio = A ‘7/:171,0 + ak,k—lafw)lj—l,o;kfik—l + ‘71:?/{71 (13)
vl =0 (c=12).

Equations of geometrical constraints (7) can be derivate with respect to time to
obtain the following matrix conditions of connectivity established for the
characteristic relative velocities of leg 4 :

a)lf) ﬁiTalTo Elale {’_;3;l +a3Tz’74§} + a)ZAI ﬁirazro u, {’73;1 + a3Tz’_;4;l} +V3A£ Zj[iTasToﬁz = (14)
=i 7+l RTaSEM, (i=1,2,3),
where
@ =R"@GR=cy R U,R, +¢,R R}ii,R,R, +c,R";R (15)
denotes the skew-symmetric matrix associated to the angular velocity (9) of the
moving platform [20]. From these equations, we obtain the relative velocities
i, w;,,vi as functions of angular velocity of the platform and velocity of mass

centre G . The Jacobian matrix of the robot, given from (14), is a fundamental
element for the analysis of singularity loci and workspace of the robot.
Let us assume now that the manipulator has a first virtual motion determined by
the following virtual velocities
Av By _ Cv Dv __ Ev _ Fv
Via =1V, =0,v355, =0,v55, =0,vy;, =0, vy, =0. (16)
The relations of connectivity (14) about the relative velocities express
immediately the characteristic virtual velocities as function of the position of the
manipulator. Other five sets of compatibility relations can be obtained, if we
. . By Cv _ Dv __ Ev _ Fv
consider successively thatvy), =1, vy, =1, vy, =1, vy, =1, vy, =1.
As for the relative accelerations ¢ [j, &5, 7 4 of the elements of first leg 4 of the
mechanism, following other conditions of connectivity are imposed
A =T T ~ T (=4 T =4 A =T T ~ (=4 T =4 A =T T = _
& o Uy gy WAy {Fyy +asnFs Y+ & 5 Uy Gy Uy Ty +asl T3 U AUy =
=T2G | =T pT (=G ~G | <Gy=4
=u; Iy +u; R {@g @ + Do }rg" —
A JAST Toe ~ T (-4 T -4
— @ Wy oty Uy ay {Fy + sy | —
A A=T T~ ~ (=4 T =4
= O3y U; Aoy Uy {Fyy + 3Ty} —
A A=T T~ T ~ —4 T =4
= 20,,03,U; a0l Gy Uy Ty +asly -
A . A>T T~ T T —
=20y, Vyli; @yl 8y A3yl —
A A=T T~ T — .
=205 vyu; ayu,ani,, (i=1,2,3), (17)

where an useful square matrix is introduced
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~oG ~oG ~oG T, ~G~G ~G
Ogy Oy + gy = R* (059D + gy )R =
=&, R/u,R, + &, R R} tl,R,R, +c,R"tI,R +
L2 pTe~ o~ 2 pT pTe~ ~ 2T~ ~
+a; R uu R +a; R, Ryuu, R, R+ R uus R+
+ 26,0, R, R, R R, +
+20,6,R! RI i, R, R + (18)
+20,0,R'i, RIRIT,R .

The linear accelerations 7}, of the joints 4, and the angular accelerations £/ are
easily calculated with some recurrence relations, founded by the derivatives of the
equations (12) and (13)

=4 _ ~ 4 =4 ~ 4 T =4
Ero T A p1€h-1,0 T Ehha T A1 Dt 0% 1 D 1

@:051:10 + gk/(l) =4ap (51:171,()&111,0 + E/il,o )akT,k—l +

+ 521{715;1(71 + Ekfk—l + 2ak,k—la~) :—I,Oalf,k—laljk—l

77/:10 = ak,k—177kA—1,o +ag, (@ :—1,05) ?—1.0‘*‘ £ I/j—l,o)Fk/,‘Ik—l +

+ 2v/;4,k—1ak,k—lajlj—l,oakr,k—lﬁ3 + 77/:fk—1

7i .=0 (0=12). (19)

If other five kinematical chains of the manipulator are pursued, analogous
relations can be easily obtained.

The relations (14) and (17) represent the inverse kinematics model of the 3-3
Stewart platforms.

3. Equations of motion

The dynamics of parallel manipulators is complicated by the existence of
multiple closed-loop chains. Difficulties commonly encountered in dynamics
modelling of parallel robots include problematic issues such as: complicated
spatial kinematical structure with possess a large number of passive degrees of
freedom, dominance of inertial forces over the frictional and gravitational
components and the problem linked to the solution of the inverse dynamics.

In the recent years, many research works have been conducted on the dynamics
of the Stewart manipulator [21], [22]. There are three methods, which can provide
the same results concerning the determination of the inputs, which must be
exerted by the actuators in order to produce a given motion of the end-effectors.
The first one is using the Newton-Euler classic procedure, the second one applies
the Lagrange equations and multipliers formalism and the third one is based on
the fundamental principle of virtual work [23], [24], [25], [26], [27].
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A lot of works have focused on the dynamics of Stewart platform. Dasgupta
and Mruthyunjaya [16] used the Newton-Euler approach to develop some closed-
form dynamic equations of Stewart platform, considering all dynamic and gravity
effects as well as viscous friction at joints. Tsai [1] presented an algorithm to
solve the inverse dynamics for a Stewart platform-type using Newton-Euler
equations, which can be reduced to six if a proper sequence is taken. This classical
approach requires computation of all constraint forces and moments between the
links.

Geng [28] and Tsai [1] developed Lagrange equations of motion under some
simplifying assumptions regarding the geometry and inertia distribution of the
manipulator. The Lagrange formulation is well structured and can be expressed in
closed form, but a large amount of symbolic computation is needed to find partial
derivatives of the Lagrange’s function, the analytical calculi involved are too long
for each scheme of the manipulator.

Liu et al. [29] derived a set of differential equations for the forward dynamics
of legs and moving platform, using the Huston form of Kane’s equations [30].

In the inverse dynamic problem, in the present paper we applied the principle of
virtual work in order to establish some recursive matrix relations for the forces of
the six active systems.

Six independent pneumatic systems 4,B,C, D, E, F , that generate six forces
f3/21 :fleﬁz’ J73§ =fsgﬁzﬂ 173g :f3gﬁzﬂ f312) :fsgﬁzﬂ J;sg =f3§ﬁzﬂ J—"f; :f3§ﬁz’ which
are oriented along the axes 4,y ,B,yy,C,ys ,D,yy , E;yr F,yl, control the
motion of the moving sliders of the manipulator.

The force of inertia and the resultant moment of the forces of inertia of
the 7, body are determined with respect to the centre of joint 4,. On the other

hand, two vectors 7, and m, evaluate the influence of the weight action 7 g and
all other external and internal forces applied to the same 7', link.

Knowing the position and kinematics state of each link as well as the external
forces acting on the robot, in the present paper we apply the principle of virtual
powers in the inverse dynamic problem. The active forces required in a given
motion of the moving platform will easily be computed using a recursive
procedure.

The closed-loops can artificially be transformed in a set of open chain systems,
which are subjected to the constraints. This is possible by cutting each joint for
moving platform, and takes its effect into account by introducing the
corresponding constraint conditions.

The fundamental principle of the virtual work [1], [13], [30] states that a
mechanism is under dynamic equilibrium if and only if the virtual work developed
by all external, internal and inertia forces vanish during any general virtual
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displacement, which is compatible with the constraints imposed on the
mechanism. Assuming that frictional forces at the joints are negligible, the virtual
work produced by the forces of constraint at the joints is zero.

Applying the fundamental equations of the parallel robots dynamics
established in compact form by Staicu [26], [27], the following matrix relation
results

fE=ilF v+ o il M + o il M3 +
+ a)wa u MP? + a)zf il M3 + (20)
+ a)ma TMC + a)zlau2 MC
+ ol MP + o2 i MP +
+ ol i ME + o i ME +
+olt i+ ol i M +
+vmau1 F +sz12 F +v362Va ;FG +
+a)43 u, M +a)5(22 MG +a)665VaLYTMG
where, for example, we denote
FkA = Fk% +al€+1,kﬁkﬁl

4 A T 4 | ~d4 T y
M, =M, +ak+1kMk+l +rk+1kak+1ka+l

Fiy=m; l7k0 (wlfoa’ko +5k0) J it (21)

M, =mi7 7 +J1:15ko +a)koJAwko e
f,:A =—9.81mj'a,,iis, mZA =-9.81m} rkC Aoty

The relations (20) and (21) represent the inverse dynamics model of the 3-3
Stewart platforms, which can be easily transformed in a model for automatic
command.

As applications let us consider a manipulator, which has the following
characteristics

« 157

Q’I*ZO, (X; 20, a, :ﬁ

Vs
=—, Ar=3s

p 3’

=0.10 m, y¢ =0m, z& =0.15m

m, :1.5kg,m2 =15kg, m;, =10kg, m, = mg =50kg

I, =04, =2.50m,1, =1.50m,/, =3.00 m, /, =2.50 m

— B +1 —1;, OG = h=1lygp
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4. Dynamics simulations

Based on the algorithm derived from above equations, a computer program was
developed to solve the inverse dynamics of the Stewart platform, using the
MATLAB software. To validate the dynamics modelling, it is assumed that the
platform starts at rest from a central configuration and moves along or rotates
about one of three orthogonal directions. Furthermore, at the initial location, the
moving platform is assumed to be located 4.33m lower the fixed base,

namelyr=0: xg =0, y¢ =0,z =433 m.

Assuming that there are not external forces and moments acting on the moving
platform, the time-history evolutions of the
forces £33, fo , for for s for 5 fo required by the three pneumatic active systems are
shown for a period of three second of platform’s motion.

The following examples are solved to illustrate the algorithm. For the first
example, the moving platform moves along the vertical z, direction with variable

acceleration while all the other positional parameters are held equal to zero.

25 : : : : :
220
215

210

Force(M)

205

200

195

- i i i i i
a 0.s 1 15 2 248 3
Stewart-Gough platform  Vertical translation: z=0.3m t(s)

Fig. 3 Forces of the six actuators: vertical translation

As can be seen from Fig. 3, it is proved to be true that all input forces are
permanently equal to one another. When the moving platform is going to the fixed
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base, the limbs become more horizontally oriented, therefore increasing the

actuating forces.

If the centre G moves along a rectilinear trajectory along the horizontal
x, direction without rotation of the platform, the forces f, f5, (Fig. 4) and

£, fF (Fig. 5) required by the actuators are calculated by the program and

plotted versus time in comparison with the input forces fi5, f.» of the prismatic

actuatorsC, D.

Force(M)

Farce(M)

180

270

260

250

240

230

240

230

220

210

200

190

180

170

160

150

| |
0 0.5 1 1.5 2 25 3

T T T T T
' ' Prismatic actuators &, F
____________ bceecb oo el — — Prismatic actuators C, D H

Stewar-Gough platforrn Horizontal translation: x=02m  t(sg)

Fig. 4 Forces of four actuators: horizontal translation

Prismatic actuators B, E

— — Prismatic actuators C, D

1
i 0.5 1 1.5 2 25 3
Stewart-Gough platforrn Horizontal translation: »=02m  t(s)

Fig. 5 Forces of four actuators: horizontal translation



16 Stefan Staicu

For the third example we consider the rotation motion of the moving platform
about the vertical z, axis with a variable angular acceleration ¢, . As can be seen

from £, £, fo and £, fo. fi, (Fig. 6), we remark the anti-symmetrical

distribution of the actuating forces.

380 T T

Prismatic actuators A, C, E
' ' — — Prismatic actuators B, D, F
300 fp-----e- e Fomnemsoeees [RRRE e T"‘va ---------- —

Force(l)

| i i i i
u} 0.5 1 1.5 2 248 3
Stewant-Gough platforrn Rotation motion: 30 degrees t(s)

a0

Fig. 6 Forces of six actuators: rotation about z, axis

5. Conclusions

Most of dynamical models based on the Lagrange formalism neglect the weight
of intermediate bodies and take into consideration the active forces or moments
only and the wrench of applied forces on the moving platform. The number of
relations given by this approach is equal to the total number of the position
variables and Lagrange multipliers inclusive. Also, the analytical calculations
involved in these equations are very tedious, thus presenting an elevated risk of
eITors.

The commonly known Newton-Euler method, which takes into account the
free-body-diagrams of the mechanism, leads to a large number of equations with
unknowns including also the connecting forces in the joints. Finally, the actuating
forces could be obtained.

Within the inverse kinematics analysis, the conditions of connectivity (14), (17)
that give in real-time the relative velocity and acceleration of each element of the
parallel robot have been established in the present paper. The dynamics model
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takes into consideration the mass, the tensor of inertia and the action of weight
and inertia force introduced by each element of the manipulator.

Based on the principle of virtual work, the new approach is far more efficient,
can eliminate all forces of internal joints and establishes a direct determination of
the time-history evolution of input forces and active powers required by the three
actuators. Also, the method described above is quite available in forward and
inverse mechanics of serial and parallel mechanisms, the platform of which
behaves in translation, spherical evolution or more general six-degree-of-freedom
motion.

The recursive matrix relations (20), (21) represent a set of explicit equations of
the dynamic simulation and, in a context of automatic command, can easily be
transformed into a robust model for computerized control of the Stewart parallel
manipulator.
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