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IMAGE ANALYSIS BASED ON THE STUDY OF THE 
ATTRACTOR OF A TIME SERIES  

Andreea UDREA1, Mircea OLTEANU2 

Lucrarea are ca scop optimizări ale metodei seriilor de timp pentru analiza 
de imagini, cu aplicaţii pentru clasificarea texturilor. Dimensiunea de corelaţie a 
atractorului seriei de timp este criteriul de caracterizare. În această lucrare sunt 
prezentate şi argumentate metodele şi implementările lor. Concluziile studiului se 
bazează pe o analiză statistică a 50 de imagini TC (tomografii computerizate).  

 
The paper proposes some improvements of nonlinear time series methods 

for image analysis; used for texture classification. The correlation dimension of the 
time series attractor is the criterion for characterization. In this paper we present 
and argument the methods and their implementations.  The conclusions of the study 
are based on the statistical analysis of 50 CT images (computer tomographies). 
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1. Introduction 

Nonlinear time series analysis and fractal analysis, branches of chaos 
theory, provide useful methods for the characterization of single and multi 
variable signals (time series, images).  

Typically, nonlinear time series analysis deals with signals that are sets of 
values of a single variable function, usually measured as function of time 
(dynamic features). Nonlinear methods were developed in the last 20 years, 
motivated by the concept of deterministic chaos which was proved to exist within 
many real systems in chemistry, physics, biology, medicine, electronics. The 
studied time series are: recordings of the electrical activity – electrocardiograms 
[1], electroencephalograms [2] and physiological parameters – blood pressure , 
breathing [3]; voice signal [4], laser output signal [5], meteorological parameters 
values [6], etc . 

On the other hand, fractal analysis methods are used for the description 
and classification of geometric features of irregular forms and patterns. Its most 
known tool is the fractal dimension used to provide information on the irregularity 
of the contour of an object or selfsimilarities of a texture.  It was largely applied 
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for the study of biological systems and subsystems at microscopic and 
macroscopic scale, image enhancement and compression, fracture analysis, 
texture classification ([7], [8], [9]).  

In this paper we describe and test a methodology derived from the time 
series analysis, which, by means of studying the attractor of a spatial series 
associated to an image or image region, provides information that can be used for 
image classification and  characterization.  

2. Nonlinear time series analysis – theoretical background  

In this section we present a few basic results and methods on nonlinear 
time series analysis. 

Let (M, d) be a complete metric space (M - is the set of states and S - the 
time set) and let (S, +) be an abelian semigroup. 

A dynamical system on M is an arbitrary map :  T S M M× → such that: 
(0, ) ,  
( , ( , )) ( , ),   ,  ,

T x x x M
T t T s x T t s x t s S x M

= ∀ ∈
= + ∀ ∈ ∀ ∈

 

A dynamical system  :  T N M M× →  is said to be a discrete dynamical 
system if there is a map :f M M→  such that: 

( , ) ( )( ) ( ),
, .

nT n x f f f x f x
n N x M

= =
∀ ∈ ∀ ∈

D D…D  

A dynamical system T is called chaotic if: 

- T has a sensible dependence on the initial condition on M 

- T  is topologic transitive on M 

- the periodic orbits generated by T are dense in M. 
A nonempty set of states K M⊂ is called an attractor or attracting set for 

the system T if the following properties hold: 
1. – K is closed  
2. – K is T- invariant,   
3. – there is a neighborhood U of K such that: 

    lim ( ( , ), ) 0,   
t

d T t x K x U
→∞

= ∀ ∈ . 

The largest open set U satisfying the third condition is called the basin of 
attraction of K. An attractor is said to be global if the basin of attraction is the 
entire M. 

The attractor of a chaotic system is called a strange attractor if it has a non-
integer fractal dimension.  

A real valued map  
:F M R→  
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is interpreted as a physical measure on the state space. If ,  t s S∀ ∈ are fixed (s is 
called delay) and x M∈ is a fixed state, then a sequence of measurements: 

 
( ( , )), ( ( , )), ( ( 2 , )), , ( ( ( 1) , )),F T t x F T t s x F T t s x F T t d s x+ + + −… …  

 
is called a time series starting from (t, x) associated to the system T.  

If T is a discrete dynamical system defined by the map f, then the 
associated time series starting from (0, x) is: 

2( ), ( ( )), ( ( )), , ( ( ))nF x F f x F f x F f x… …  
By investigating the time series associated to a dynamical system, one can 

observe the behavior of that system. More precisely, by using Taken’s Embedding 
Theorem ([10]) one can reconstruct, in an appropriate embedding space, the 
attractor from the time series generated by the system. The theorem is stated for 
an infinite time series, but for practical applications it can be implemented for a 
long enough signal sample. 

Bellow we present a version of Taken’s theorem due to T. Sauer, J.Yorke, 
M.Casdaglia ( [11]). 

Let :  T R M M× → be a smooth dynamical system of class 2C  on M and let 
:F M R→ be a map (physical measurement) of class 2C . Let t R∈  be a fixed 

moment and let 0τ >  be a time delay. If K is a compact invariant set of T and if b 
is the box-counting dimension of K, then the map: 

2 1: bH K R +→  
defined by: 

( ) ( ( ( , )), ( ( , )), , ( ( 2 , )))H x F T t x F T t x F T t b xτ τ= − −…  
is generically injective (a property is called generic if it holds on a set which 
contains a countable intersection of open dense sets), hence it is an embedding of 
the attractor in the space R2b+1. 

Presuming that the fractal dimension of the attractor is known, the attractor 
can be reconstructed from a univariate time series in a higher dimensional space 
([12]- [14]).  

The correlation integral is defined by the following expression: 
                                                   

2
, 1

1( ) lim ( | |)
N

i jN i j
C H y y

N
ε ε

→∞
=

= − −∑        (1) 

where: 

-   H(x) - is the Heaviside function, 1, 0
( )

0,
x

H x
otherwise
>⎧

= ⎨
⎩

; 

-   ε   -   accepted distance between points; 
-   yi - is a point in the embedded phase space constructed from a single 

time series according to Taken’s theorem:  
2 ( 1)( , , , , )

Ei i i i i dy x x x xτ τ τ+ + + −= … ; 
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-    dE  -   the dimension of the embedding space; 
-    τ  - the time delay; 
-    i= N-τ (dE+1) – number of embedding vectors;  
-    N - initial time series length.  
So, ( )C ε  gives the proportion of the number of pairs of points in the 

embedding space with the Euclidian distance less than a specified smallε .  
The dependence between the correlation integral and the correlation 

dimension is given by: 
  ( )( ) CdC εε ε=                              (2) 

The correlation dimension of the attractor is calculated using the formula: 
                                      

0

ln ( )lim
lnC
Cd

ε

ε
ε→

=                                                     (3) 

The dC for a closed curve is 1, for a two-dimensional surface is 2, while 
for a strange attractor is a non-integer number.  

The autocorrelation function of a signal x of length N is given by the 
following expression:  

                 
( )( )
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                      (4) 

3. Image analysis 

The time series associated to an image 
In order to perform nonlinear analysis on an image, a number of steps 

must be made. First, the region of interest must be isolated from the image. The 
selected region is, in fact, a matrix -A- containing values of each pixels’ shade (the 
value can vary between 0 and 255 corresponding to different shades of grey; 0 
stands for black and 255 for white): 

{ }1,
1,

( ) ;    0,  1,  ,  255ij i n ij
j m

A a a=
=

= ∀ ∈ …  

 The time (spatial) series is generated in the following manner [17]-[19]: 
1. The matrix obtained from the original image is cut in horizontal 

strips of 1, 4, 8, … pixels. The strip’s width is a parameter chosen by the analyst 
by taking into account of the image resolution (for low resolutions the strip’s 
width must be one pixel). 

2. All strips are put together one after another and generate one single 
strip. 
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3. The time (spatial) series - x(t) - is generated by computing either 
the mean value or the maximal (dominant)  value of each column of pixels within 
the strip. 

4. The series is normalized by dividing each value at the domain 
variation, namely the grey degrees (256 shades).  

Steps 1-2 stand for applying the vec operator to the image. Vec is a linear 
operator. It creates a column vector from a matrix A by stacking the column 
vectors of A below one another: 

 
,

____

1 2 im

: ( )

( ) ( ,  , , a ), 1,

n m
n m

i i

vec A R R

vec A col a a i n

⋅→

= =…
; 

 
The correlation dimension is invariant to smooth transforms so by 

applying vec to the image matrix its value is unchanged.  
As result of this procedure, the time (spatial) series associated to the 

section of the analyzed tissue is obtained (Fig. 1.).  
 

 ⇒ ⇒    
Fig. 1.  Liver CT image region, the image matrix and the associated time series 

 (position in the strip vs. grey level) 
 

Having the associated series, the next step of the procedure implies the 
computation of the correlation dimension of the attractor. This value will be used 
as a discrimination criterion.  

However, in practical applications, in order to determine the dC, we can 
not directly use the above formulae due to the following aspects: the 
measurements are finite sequences of values (they are not time series in the 
mathematical sense), the measurements are corrupted by noise, the fractal 
dimension of the attractor is unknown and for different τ - delay values one 
obtains different results. 

That is why specific methods for determining the delay, the suitable 
embedding space and the correlation dimension were refined over the years. Here 
are given the outlines for these methods together with our improvements. They 
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were implemented as a new MatLab nonlinear analysis toolbox dedicated to 
image analysis. 

 
The procedure for the time delay 
The delay or lag value, τ , used to create the delayed embedding must be 

chosen carefully. A small value of the delay generates correlated vector elements 
and the geometry in the reconstructed phase space is stretched out along the 
diagonal (Fig. 2.a). A large value chosen for the delay generates uncorrelated 
vectors and a random distribution of points in the embedding space (Fig. 2.b).  

 

          
Fig. 2. Attractor in embedding dimension 3; the delay for the embedding  is a) too small  τ =2 

– correlated vectors; b) too large τ =20 – random distributed vectors 
 

According to [16] an appropriate delay, τ , can be chosen with good results 
(Fig. 3.b) if the autocorrelation function of the reconstructed series decays with 
1/e of its initial value (Fig. 3.a): 

                 ( ) (1)(1 1/ )RN RN eτ < − .                     (5) 

          
Fig. 3. a) delay value vs. autocorrelation function; b) reconstructed attractor in embedding 

dimension 3 with delay τ =5   
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In order to determine this value, the MatLab routine searches over a 
specified range, given by the user [1, maxτ ] for the first value that satisfies relation 
(5). Generally, the lag value (delay) is found between 3 and 10. 

 
The procedure for the embedding dimension 
The minimum allowed embedding dimension is the dimension where the 

number of so called false nearest neighbors (concept introduced by Kennel, 
Brown & Abarbanel (1992)) drops under a certain percent. A false neighbor is a 
point that under a certain higher dimensional embedding is projected near a point 
that in the previous embedding was not in its vicinity. 

  In order to implement this procedure, each point of the delayed series is 
tested by taking its closest neighbor in dE dimensions, and computing the ratio of 
the distances between these two points in dE +1 dimensions and in dE dimensions. 
If this ratio is larger than a certain threshold 

Edε see relation (6), the neighbor was 
false (this threshold is taken large enough to take in consideration points that 
exponential divergence due to deterministic chaos):  

 
1 1, ,

, ,

E E

E

E E

i d j d
d

i d j d

y y

y y
ε+ +

−
>

−
                                                (6) 

where ||.|| is the Euclidian distance.  
The MatLab routine calculates the percentage of false neighbors over a 

range of embedding dimensions (dE between 2 and 15) and until it reaches a value 
less than a specified limit; otherwise it considers the minimal obtained value. 

Once a proper delay and a minimum allowed embedding dimension are 
determined, the correlation dimension is calculated over a range of different ε  - 
values and embedding dimensions higher than the first assuring a decreased 
number of false neighbors.  The trusted interval for ε  is searched generally 
between 0.001 and 1. The double logarithmic linear region between ε  and the 
correlation integral is used for computing the dC value. 

Also, the dC differs from one embedding dimension to another due to noise 
in the data, but there is a particular region, usually called the scaling region where 
dC stabilizes ([16]). There is the interval where a mean value for the correlation 
dimension of an attractor is calculated. 

4. Results and statistical analysis 

In order to demonstrate if the above methodology can be applied with 
promising results for pattern classification, we analyze a set of 50 CT images 
containing normal and modified liver tissue. 
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a)  b) c)  d) 

e) f)  g) h) 
Fig. 4. Liver regions selected from CT image with contrast substance a),c) – normal; b), d) malign 

and their  reconstructed attractors in e) - h) 
 

In Fig. 4 two pairs of samples (normal and modified tissue) are presented. 
It can be observed that the attractors have distinct structures: connected - for 
normal tissue and disconnected (sometimes with several different attracting 
regions) - for the modified tissue. 

In order to determine the ε -interval, we plotted the correlation dimension 
vs. the logarithm from ε  (Fig 5.) and determined the intervals: for the normal 
tissue –I1=[0.001, 0.007] and for the modified tissue – I2=[0.003,0.01]. In order 
to process the images automatically, the ε - interval is chosen as the intersection 
between I1 and I2: I=[0.003,0.007]. Using these values the correlation integral is 
determined. 

 
Fig 5. In red (normal tissue) and in blue (modified tissue) 

log(ε ) vs. correlation dimension plot 
 

The correlation dimension was calculated over a set of embedding 
dimensions and the determined scaling region was found in the interval [11-14]. 
For our study, in order to automate the process dE was chosen 13.  

The statistical analysis was done on a set of 50 CT liver images, divided 
into two samples (normal and modified).  

For the statistical analysis, descriptive and comparison procedures were 
performed. For the correlation dimension of each sample, the average, standard 
deviation, standard skewness and standard kurtosis are computed.  
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The dC confidence interval for normal tissue is [1.2920, 1.5217] and for 
modified tissue [1.8248, 2.8181]. 

Table 1.  
Descriptive statistical methods results 

Descriptive methods Normal tissue dC Modified tissue dC 

Average 1.39683                          2.4074               
Stnd. Deviation   0.0828342 0.294393             
Stnd. Skewness       0.348448              1.10369                         
Stnd. Kurtosis -0.859346            0.582716          

 
Fig. 6.  Frequency histogram of the two samples a) normal b) modified 

 
Fig.7. Comparison of the dC density traces 

 
          By means of statistical analysis - Kolmogorov-Smirnoff test - we have 
compared the two distributions. Since the P-value is 0.00024682 (less than 0.05), 
there is a statistically significant difference between the two distributions at the 
95.0% confidence level.   

5. Conclusions 

This paper presents some improvements towards texture classification based 
on nonlinear time series methods; it can be applied to spatial series obtained from 
the studied medical images. The differences between textures are captured by the 
correlation dimensions of the attractors of the spatial series. The applicability of the 
proposed method was demonstrated on a set of CT images containing normal and 
modified liver tissue. The method captures the differences between the two samples.  

The statistical analysis reveals significant differences between the correlation 
dimension of the normal tissue and the correlation dimension of the modified tissue. 
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Future work aims at enlarging the liver CT images data base; and also apply 
the procedure to other kind of tissues. 
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