U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 1, 2016 ISSN 2286-3540

REMOTE EXECUTION FUNCTION BLOCKS FOR
DISTRIBUTED SYSTEMS

Oana ROHAT', Dan POPESCU?

Remote execution allows a distributed controller to have access to higher
computational power and knowledge than provided by its own resources. Using the
benefits gained by the standardization of distributed applications based on the
IEC61499 reference model, the paper presents a function block remote execution
system that can be used for a large variety of applications like process optimization,
image processing, plant risk analysis etc. The system was designed as a web
application using open technologies like PHP, Java and IEC 61499.

Keywords: remote execution, distributed systems, function block programming,
software integration

1. Introduction

The benefits gained from connecting a plant to a supervisory control
center are no longer questioned by process control engineers. Next generation
applications must conform to the industrial needs to support enterprise integration,
remote supervisory control and even web-based systems able to support
cooperative work [1][2]. This trend comes to fulfill the needs of the process
engineers for increased efficiency, productivity, flexibility and reliability.

Remote execution allows a distributed controller to have access to higher
computational power and knowledge than provided by its own resources. This
way algorithms that require great processing effort (from areas like process
modelling, optimization, advanced control based on artificial intelligence
techniques, plant risk analysis, image processing etc.) can be stored and executed
on a remote server and use a simple network connection to have access to process
parameters and send their results.

The IEC 61499 standard [3] provides a methodology for implementing
platform-independent applications for distributed systems. Its support in defining
communication objects and designing a system based on an application-centric
approach provide a strong basis in the implementation of distributed control
algorithms residing on remote nodes. As the standard gains more adopters and

" Eng., Dept. of Automation and Computer Science, University POLITEHNICA of Bucharest,
Romania, e-mail: oana.rohat@gmail.com

? Prof., Dept. of Automation and Computer Science, University POLITEHNICA of Bucharest,
Romania, e-mail:dan_popescu_2002@yahoo.com

30 Oana Rohat, Dan Popescu

was already successfully implemented in a variety of applications [4][5], it is time
to take the next step towards its web integration.

A web-based execution system gives the possibility of easy
reconfiguration, diagnosis and optimization. While in most typical scenarios an
application is run on local centralized controllers, the engineering process may be
more efficient and more flexible with a distributed control architecture in which
certain process-intensive functions are executed remotely. That is because the
process control engineer can have access to a variety of algorithms that can be
used without the need of a controller upload, just by using the existing
communication link. Such a system can be used for different applications, from
slow process control (agriculture, biology etc.), building management systems,
plant monitoring, complex algorithms testing, model learning, detecting optimal
control parameters etc. These applications most not have hard real-time
constraints as the reaction time depends both on the network performance and
server load.

This work presents the design and implementation of a web-based library
that allows the remote execution of IEC 61499 function blocks using the FBDK
(Function Block Development Kit) environment. The library provides access to
reusable algorithms that can be configured for on-line execution with the results
sent to a remote device.

The rest of this paper is organized as follows: Section 2 presents the
system architecture, components and functions. Section 3 details the
implementation aspects from the technology, communication and distributed
execution points of view. In Section 4 a system prototype is evaluated.
Conclusions are summarized in Section 5.

2. System architecture

The system architecture illustrated in Fig. 1 presents the system structure
and defines the transfer of information between the corresponding subsystems.
The system structure follows a multilevel hierarchical model that allows the
decomposition of the implemented functions.

Remote execution function blocks for distributed systems 31

WEB-BASED CONFIGURATION
INTERFACE
A
USER |
: USER DATA
APPLICATION MANAGER |
1

i— ————— > PARSER = =wem == *l
| — |
| |
| ALGORITHM A ALGORITHM B |
| STARTER STARTER |
S
E’ | |
S : : ALGORITHM PARAMETERS
Wy
9 ALGORITHM A ALGORITHM B
o} EXECUTION EXECUTION
2
a
//\ /\\ ALGORITHM RESULTS
REMOTE DEVICE REMOTE DEVICE REMOTE DEVICE
H‘ ” H PROCESS COMANDS
FIELD ELEMENTS

Fig. 1. System architecture

The highest level is represented by the web-based configuration interface
that allows the user interaction and involvement in the control process. This level
controls the execution of the algorithms and sends to the next level the algorithm
parameters as they were entered by the user. These parameters include algorithm
identification, execution data and the remote device addresses.

The application manager has the highest complexity as it has to implement
the interface with the higher level, by the use of a parser block, and the specific
algorithm starter blocks that ensure the connection to the execution environment.
The algorithm parser is responsible for the correct interpretation of the received
user data, the algorithm identification and for the generation of a specific handling
process for every requested algorithm. Each such process is illustrated as an
algorithm starter block and implements the algorithm start and stop control
functions and the transmission of parameters to the next level.

The algorithm execution level receives the input parameters from the
application manager in a format that it can understand, executes the algorithm and
sends the results using the communication interface to the level below.

The remote device level is represented by the field controllers and
implements a specific communication interface that allows it to access the

32 Oana Rohat, Dan Popescu

algorithm results so that it can use them in its control logic to command the field
devices from the lowest level. Information regarding the plant response is sent
back to the algorithm execution through the remote device.

In the current implementation, the plant response or the algorithm results
are not accessible from the web interface. The user can observe the process
reaction to a certain algorithm configuration and react accordingly by adjusting
algorithms parameters in the web interface or by selecting a different algorithm. In
addition future extension of the system will include making the feedback and
algorithm results available also in the user interface.

The two upper levels in the system architecture are general levels, as their
functionality does not change depending on the user interaction. The next two
levels are specific levels as an algorithm is executed or a remote device is selected
according to the user’s options. Also, these last two levels are designed as generic,
reusable components meaning that any algorithm can be used for any remote
device considering they have matching communication interfaces.

3. Implementing the Web Execution System

3.1. Technologies used

The system is based on open technologies allowing the easy integration
and interoperability of its components. Also, using open technologies provides the
benefit of a wider community of users and developers that can quickly offer
answers and opinions for good solutions.

The web application uses HTML for interface configuration and design
and PHP for forms and user session handling, database access and data
encapsulation into XML. PHP scripts are easy to write, easy to use and can be
embedded into HTML. Using text file operation functions like fread() and fwrite()
from PHP allows the programmer to encapsulate information regarding parameter
values into XML files so that they can be transmitted to the next level [6].

The application manager was implemented using Java. This object-
oriented platform independent technology allows developing secure, reliable
applications and has inherently integrated network capabilities that ease the effort
of connecting to the adjacent levels [7]. In addition to that it provides the tools for
multithreaded programming that are needed for user requests and algorithm
execution management. Java is also the technology behind the IEC 61499 FBDK
editor [8] used for developing and running the algorithms.

The main technology behind the lower levels, algorithm execution and
remote device, is the IEC 61499 standard because it provides the tools for
developing distributed applications, uses an open representation format and is not
dependable of the implementation platform. These levels use the IEC 61499
standard for algorithm implementation, execution and communication. Since the

Remote execution function blocks for distributed systems 33

IEC 61499 was designed for developing distributed applications, an important
role is played by the communication objects [9] described below.

3.2. Communication

3.2.1. XML over TCP Protocol

The communication between the web interface and the application
manager uses the TCP protocol. The TCP protocol is a reliable transport protocol
that guarantees the correct order of the data transmitted over the underlying
networking layers.

The web application collects the algorithm parameters entered by the user
as input in the web page and sends the parameters using a TCP socket that
connects to the application manager. The parameters entered by the user in the
web application forms are encapsulated into an XML message. This message is
sent to the Java application implemented at the application manager level using
the TCP protocol, the message is parsed and the parameter values are extracted.
This transfer was depicted in Fig. 2.

PARAM 1 N N PARAM 1
code TCP code
PARAM 2 —code> XML ————> XML <code—h PARAM 2
code code
PARAM 3 v N PARAM 3
PHP JAVA

Fig. 2. Message encapsulation and transfer

3.2.2. Publish/Subscribe messaging

Sending the parameters from the application manager and the algorithm
execution levels, as well as from the algorithm execution level to the remote
device level is done using the Publish/Subscribe and Client/Server mechanisms.
At the application manager level we have a publisher implemented as a software
object using Java. It is responsible for transmitting the parameters from the user
interface. At the algorithm level, we have implemented both a subscribe function
block for the connection to the upper level and a server function block that sends
the results to the plant device. Both these functions are based on the IEC 61499
standard.

The standard IEC 61499 standard defines two generic communication
objects that implement standard messaging protocols: Publish/Subscribe for
unidirectional point-to-multipoint communication and Client/Server for
bidirectional point-to-point communication [10]. These objects can be used as
they are or can be further developed for implementing specific industrial

34 Oana Rohat, Dan Popescu

communication protocols like Modbus, Profibus, CAN, OPC etc. The choice of
the communication pattern was done according to the network requirements. The
publish/subscribe pattern is recommended for use in local communications while
the client/server for data transfer over the Internet.

In both mechanisms the link between the two blocks is done by the ID
parameter. It represents the network address and must have the same value on
each side. Parameters are sent from the publisher to the subscriber and
bidirectional to and from the client and server in the same order they were
received as input. While in the unidirectional communication the publisher is not
informed if the subscriber received the data, nor if it was received correctly, the
client server mechanism runs over TCP so data tracking and retransmission are
available.

3.3. Distributed execution system

The system was designed following the Model Driven Architecture
(MDA) presented in [10] that proposes an application-centric approach that looks
at the system as a whole and afterwards distributes functionalities on different
devices. This methodology was created to improve the design, development and
implementation process by developing generic applications and applying them to
specific platforms. This means that instead of defining the system specifications
regarding the hardware components at the beginning of a project the application is
designed as a Platform Independent Model (PIM) that implements only the system
functionality. Following this, a Platform Definition Model (PDM) captures the
devices and communication infrastructure so that in the end a Platform Specific
Model (PSM) defines the assignment of system components to devices, input and
output modules and addresses etc.

In designing the distributed system we first imagined and tested the system
functionality as a whole, following a PIM, in a centralized approach based on the
IEC 61499 standard. This method allows the process control engineer to
implement and test all system requirements without depending on a specific
hardware platform. A model of the centralized application for a specific algorithm
was illustrated in the upper side of Fig. 3. Based on the role of each function block
and the devices involved, the components of the centralized system were divided
between three modules: execution parameters area, the algorithm area and the
commands area.

In a standard application this would be followed by cutting the
connections between the different modules and adding standard communication
objects in the points where the cutting occurred so that afterwards these modules
can by assigned to specific devices in the system configuration to obtain the PDM.
Fig. 3 illustrates how the centralized application was split up between three
modules: user interface, algorithm execution and process. As the standard does

Remote execution function blocks for distributed systems 35

not provide web HMI interface, after splitting the three areas and adding the
communication blocks we further transformed the execution parameters software
module with a web-based configuration interface. To ensure the proper connection
to algorithm area in a way that would not interfere with the remaining two
modules, we designed an application manager that would "translate” the
interaction between the user interface and the algorithm execution. In order to
have a minimum impact on the system model, this application manager was
represented as a generic object that needs no additional reconfiguration when
applied on a different algorithm.

PLATFORM INDEPENDENT MODEL

COMMANDS

USER INTEREAC t THV EX 7 PROCESS

el COMMUNICATION

COMMUNICATION

PLATFORM DEFINITION MODEL

Fig. 3. Applying the model Driven Architecture (MDA) in the design of the distributed system

The PSM is obtained by the user when selecting an algorithm and applying
specific parameters values and device addresses, thus defining a configuration that
is applicable only to a specific process.

36 Oana Rohat, Dan Popescu

This modelling approach must be applied for every available algorithm.
Even if the resulting system does not follow the true MDA modelling approach as
the web interface is not based on the same programming standard as the algorithm
execution and commands modules and an additional object is inserted, it still
benefits from its advantages. That is because it provides a generic structure that
can be applied on any algorithm with minimum reconfiguration effort and on any
process that ensures the proper communication interface.

3.4. Handling communication problems

Using the Internet for remote control rises several problems related to the
reliability and speed of the transmitted data. As it is based the TCP protocol, this
ensures a minimum level of data transmission protection by using error detection
and packet sequencing mechanisms that enable the packet retransmission in case
of packet alteration or loss. Still, the retransmission and path induced latencies
lead to uncertain delays. This may affect the control system performance and even
lead to the destabilization of the process [11].

The FBDK editor provides Publish/Subscribe and Client/Server
communication function blocks that can detect network problems and report them
through the Status parameter. This allows us to implement delay-handling or
timeout mechanisms that would deal with network errors or loss of
communication situations.

A presentation of different network control algorithms for delay handling
is available in [11]. The selection of a specific network control methodology must
be done according to the particularities of the process. For example, the robust
control methodology can be applied for both linear and non-linear control systems
and does not require a priori information of the probability distributions of the
network delays. Considering t.; the delay between the execution system and the
remote device, t.. the delay between the remote device and execution system the
network delay can be expressed by the following equation (adapted from [11]):

1 1
t=—(.+t +—(t_ -t _)a
2(min max) 2(max mm)
=(l-c)t

;)

+act_ .

max

Where a € [-1, 1] is a delay variation factor, C is a constant in the interval
[0,1/2] specific to the process and t represents the delay between the execution
system and the remote device, either at data transmission or reception, and is
bounded in the interval [tmin, tmax]-

In the frequency domain, the delay from (1) can be approximated with:

Remote execution function blocks for distributed systems 37

e—ts — e—(l—c)tmaxse—actmaxs

1-s(1- c)tmax 1-sact, /2 ()
I1+s(l-o)t l+sact /2

max

The second term of equation (2) is considered simultanecous multiplicative
perturbation that can be represented as:

1-sact /2 14 Ct .S A=1+W(s)A 3)
1+sact,, /2 1+ct S/3.465
Where A is the perturbation function and W(s) is a weight factor. The
robust controller for the closed loop system is designed based of these factors as
can be seen in Fig. 4. A more accurate representation can be obtained by
modelling also the delay between the actuator and the field sensor to the remote
device. As this network has different characteristics, these delays will also have
different values for the a and ¢ parameters, as well as for the delay interval.

Reference

—

Control Remote
algorithm device

Process
Sensor «—

Fig. 4. System configuration based on the robust control methodology

—— Actuator ——

Process value

4. System evaluation

A prototype based on the FBDK environment was evaluated using the
system configuration presented in Fig. 5. This prototype aims at proving the
system’s usability, reliability and ease of reconfiguration.

The system configuration includes three computers: one with a web
browser for user interface access, one where resided the web application server
that also is responsible for executing the algorithm and one simulating a remote
process device. The platform independency of the IEC 61499 standard allows us
to use a remote computer running an FBDK application instead of a real process.
These computers are connected in a local network.

For evaluating the system functionality we added two algorithms to the
web library: Flasher, an example of a simple distributed system presented in [9],
and PSO, an algorithm that can be used for example in the optimal tuning of the
PID control method.

38 Oana Rohat, Dan Popescu

APPLICATION MANAGER &
WEB INTERFACE ALGORITHM EXECUTION REMOTE DEVICE

LAN

Fig. 5. System evaluation configuration

The system evaluation was conducted based on these use cases:

1) One user configures the execution on one algorithm on one device

The use case was tested on the PSO algorithm. To use the algorithm for
remote execution a user must login to the library web-page using a standard web
browser and select a desired algorithm following the Industry Solution/Process
Control menu. The user specifies the IP and port needed for the connection to the
remote device and then enters the algorithm parameters. Afterwards he can start or
stop the remote execution of the algorithm. Leaving a field blank in the web
interface or entering incorrect data type leads to an error message on the screen.
The user must then enter the requested parameter and retry to start the algorithm.
A status massage is available to show the current state of the algorithm. Closing
the web page does not imply stopping the algorithm. The user can modify the
parameter values at runtime but he can’t change the IP or port of the remote
device without stopping the algorithm execution.

For the communication with the application manager the system
automatically generates a port number known by both components. This is used
in combination with the application manager IP.

2) One user configures the execution of two different algorithms on one
device

Each time a user logs in, he receives a session ID that helps the
management of his running algorithms. This way, he can view the status of the
configured algorithm, the current values of the input parameters and how much
time passed since the algorithm was started. For testing this functionality, on the
same computer one user started both the Flasher and the PSO algorithm and was
able to see their status, their uptime and access the algorithm configuration page
from the On-line configurations menu. The parameters of each algorithm could be
modified without affecting the other one. Stopping an algorithm has no effect on
the other algorithm as the communication with the controller is based on the UDP
protocol that has no link status notification mechanism. This means the device

Remote execution function blocks for distributed systems 39

will continue to use the last known value of the algorithm parameters, even if the
algorithm was stopped.

3) Two users configure the execution of the same algorithm on different
devices

This use case was implemented by accessing the PSO algorithm
configuration page in the web execution system from the computer 1 as in the
earlier situation, and also from the computer 2. In this case the application
manager creates an additional algorithm file (a system configuration file *.sys
from FBDK), each containing the specific IP and port for the target device. For
the communication with the FBDK execution environment, the application
manager generates different port numbers for each algorithm execution session.

Several design options were tested and better evaluated using this
prototype. At the application manager level we had the possibility of
implementing the Publish/Subscribe messaging as a software object, or to have a
direct mapping to the corresponding parameters in the algorithm source file.
While the second solution was easier to implement, only by use of the
communication software objects the system allowed modifying the algorithm
parameter values at runtime. This provides greater flexibility as the user can
adjust the execution more easily and have a faster process response.

5. Conclusions

This paper describes an approach for the development of a web-based IEC
61499 function block execution system capable of sending the execution results to
a remote device. The system integrates different open technologies as software
modules, easing the debugging and communication process. The authors adapted
the MDA methodology for including different software modules while keeping
the generic and easy reconfigurable characteristics. The presented prototype
comes to demonstrate the system’s opportunities and advantages. This system
further develops the programming capabilities of IEC 61499 and opens the
possibility for designing other web-based or remote execution applications, like
web-based HMI, cloud execution of algorithms, web GPS tracking applications,
power systems Smart-GRID integration etc.

Some open issues that need to be addressed in future work refer to the
analysis of how the system can support running more instances of the same
algorithm, system security, process feedback and IP conflict resolution. All these
capabilities must be added before implementing it in a real-time process
application.

40 Oana Rohat, Dan Popescu
REFERENCES

[11 G. Florea, R.Dobrescu, D. Popescu, L. Ocheana, O.Rohat, PH Center a step to the next
generation of Process Control Architecture, Proceedings of the 11th WSEAS International
Conference on Systems Theory and Scientific Computation, aug 2011.

2] P. Ferreira, V. Reyes, J. Maestre, A Web-Based Integration Procedure for the Development
of Reconfigurable Robotic Work-Cells, International Journal of Advanced Robotic
Systems, Jan. 2013.

[31 R. W. Lewis, Modelling control systems using IEC 61499: applying function blocks to
distributed systems, Control Engineering Series 59, IEE, U.K., 2001.

[4] V. Vyatkin, IEC 61499 as Enabler of Distributed and Intelligent Automation: State of the
Art Review”, IEEE Transactions on Industrial Informatics, vol.7, issue 4, 2011, p. 768 —
781.

[51 T. Strasser,J. H Christensen, A. Valente, J. Chouinard, E. Carpanzano, A. Valentini, H.
Mayer, V. Vyatkin, A. Zoitl, The IEC 61499 Function Block Standard: Launch and Takeoff,
ISA Automation Week 2012.

[6] L. Noabeb, XML and PHP Simplified, www.webreference.com.

[71 D.Flanagan, Java in a nutshell, Third Edition, O’Reilly press, November 1999.

[8] FBDK, Resources for the New Generation of Automation and Control. Function Block
Development Kit (FBDK), www.holobloc.com/.

[91 V. Vyatkin, IEC 61499 Function Blocks for Embedded and Distributed Control Systems
Design, ISA Publishing, USA, 2012.

[10] F. Andren, T. Strasser, A. Zoitl, I. Hegny, A Reconfigurable Communication Gateway for
Distributed Embedded Control Systems, Proc. of 38th Annual Conference of the IEEE
Industrial Electronics Society 2012, October 25-28, 2012, Montreal, Canada.

[11] Y. Tipsuwan, M.Y. Chow, Control methodologies in networked control systems, Control

engineering practice 11, 2003.

