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PROPER PROJECTIVE SYMMETRY IN SOME WELL
KNOWN CONFORMALLY FLAT SPACE-TIMES

Ghulam Shabbir, Tauseef Ahmed Khan!

A study of conformally flat- but non flat Bianchi type | and cylindrically
symmetric static space-times according to proper projective symmetry is given by
using some algebraic and direct integration techniques. It is shown that the special
class of the above space-times admit proper projective vector fields.
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1. Introduction

Through out the paper M is representing the four dimensional, connected,
Hausdorff space-time manifold with Lorentz metric g of signature (-, +, +, +).

The curvature tensor associated with g, of the Levi-Civita connection, is
denoted in component form by R4, the Weyl tensor components are C®pd,
and the Ricci tensor components are R,, = R®a. The usual covariant, partial and

Lie derivatives are denoted by a semicolon, a comma and the symbol L,

respectively. Round and square brackets denote the usual symmetrization and
skew-symmetrization, respectively. A Space-Time is said to be conformally flat if

C%c =0 everywhere on M. Finally, M is assumed to be non-flat in the sense
that the curvature tensor does not vanish over a non-empty open subset of M , and
is not of constant curvature.

Any vector field X on M can be decomposed as

X b Z%hab + Fab’ (1)

a

where h,(=h,)=L,0, and F,(=-F,) are symmetric and skew symmetric
tensors on M, respectively. Such a vector field X is called projective if the local
diffeomorphisms y, (for appropriate t) associated with X maps geodesics into
geodesics. This is equivalent to the condition that h,, satisfies

hab;c = 29ab¢c + gac¢b + gbc¢a (2)
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for some smooth closed 1-form on M with local components ¢,. Thus ¢, is
locally gradient and will, where appropriate, be written as ¢, = ¢, for some
function ¢ on some open subset of M. If X is a projective vector field and
#., =0, then X is called a special projective vector field on M. If h, . =0 on
M is, from (2), equivalent to ¢, being zero on M and is, in turn equivalent to
X being an affine vector field on M (so that the local diffeomorphisms v,

preserve not only geodesics but also their affine parameters). If X is projective
but not affine, then it is called proper projective [1]. Further, if X is affine and
h,, =2cg,,,ceR then X is homothetic (otherwise proper affine). If X is

homothetic, and ¢ = 0 it is proper homothetic while if ¢ =0 it is Killing.
2. Projective symmetry

Let X be a projective vector field on M. Then from (1) and (2) [2]
LyR%cd =03 @yc —Oc b, LyxRy =—38,,.
Also the Ricci identity on h gives

haeRede + hbeReaCd = gac¢b;d - gad¢b;c + gbc¢a;d - gbd¢a;c'
Let X be a projective vector field on M such that (1) and (2) holds and
let F be a real curvature eigenbivector at p e M with eigenvalue 4 € R (such

that R F* = AF® at p); thenat p one has [1]
P.F+P.Fa=0 (P = Ah, +24,,) (3)
Equation (3) gives a relation between F? and P, (which is a second
order symmetric tensor) at p and reflects the close connection between h,,, @,
and the algebraic structure of the curvature at p. If F is simple, then the blade of
F (a two dimensional subspace of T ;M) consists of eigenvectors of P with

same eigenvalue. Similarly, if F is non-simple then it has two well defined
orthogonal timelike and spacelike blades at p each of which consists of

eigenvectors of P with same eigenvalue but with the possibly different
eigenvalue for the two blades [3].



Proper projective symmetry in some well known conformally flat Space-Times 27

2.1 Existence of Projective vector field in non flat conformally flat
cylindrically symmetric static space-times

Consider a cylindrically symmetric static space-time in the usual
coordinate system (t,r,8,¢4) (labeled by (x°,x' x?,x*), respectively) with first
fundamental form [4]

ds® =-e"0dt? +dr? +e'“de’® +e""dg?. (4)

Since we are interested in those cases when the above space-time (4)

becomes conformally flat but non flat, | follows from [5,6] there exists only one
possibility namely:

(P1) v(r)=u(r)=w(r).

Case P1
In this case the above Space-Times becomes
ds? =-e"Odt? + dr? +e'“(d6? + dg?). (5)

The above Space-Times (5) admits six independent Killing vector fields,
which are

0.0 0 p0 40 p0 0 40 0

ot 00 o¢p o9 08 ot 00 ot O¢

These six Killing vector fields are clearly tangent to the family of three
dimensional timelike hypersurfaces of constant r. Consequently, these
hypersurfaces are of constant (zero) curvature. The Ricci tensor Segre of the
above Space-Times is {(1,11)1} or {(1,111)}. If the Segre is {(1,111)} then the

space-time is of constant curvature and the projective vector fields are given in
[2]. Here it is assumed that the Space-Times is not of constant curvature. The non-
zero independent components of the Riemann tensor are

R#, =R¥ =RYyp = —E(ZV"+V'2) =L,,
) ©)

R¥*3p = R% 2 = R¥%3 = —%V'z = ..

One can write the curvature tensor with the components R*c at p as a
6x6 matrix in a well known way [7]

R¥®y = diag(B,, By, B, By B2y Br)

where g, and g, are real functions of r only, and where the 6-dimensional
labelling is in the order 01,02,03,12,13, 23 with x° =t. Here, at pe M one may
choose a tetrad (t,r,0,¢) satisfying —t°, =r°r, =0%0, = ¢°¢, =1 (with all
others inner products zero) such that the eigenbivector of the curvature tensor at
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p are all simple with blades spanned by the vector pairs (t,r), (r,8),(r,#) each
with eigenvalue £,(p), and (t,0), (t,9), (€,¢) each with eigenvalue g, (p). Here
we are considering the open subregion where £, and g, are nowhere equal (if
p,. =, then it follws from (6) that the above Space-Times (5) becomes of
constant curvature, which our assumtion; hence g; # f,) and g, #0. If g, =0,

then the rank of the 6 x6 Riemann matrix becomes three and it follows from [8]
that no proper projective vector fieldwill exist. So g3, # 0. Thus, at p, the tensor
P, = B.h,, + 2y, has eigenvectors t,r,0,4 with same eigenvalue, say, o, and
P, = B.h,, +2y,, has eigenvectors t, 8,4 with same eigenvalue, say, J,. Hence
on M one has after using the completeness relation
Bohay 42, = 6190, Bihay + 20, = 8,04 + 04151, (7
where o,, o, and ¢, are some real functions on M. Since g, # g, then it
follows from (7) that
hy =Cdu + DI, oy =F gy +FILL (8)
for some real functions C, D, E and F on M. Next one substitutes the
first equation of (8) in (2) and contracts the resulting expression first with 26"
and then with t*¢°, to get y x* =y ,0* =y ,¢> =0 and hence w, =7, for
some function 7. The same expression transvected with t° gives
C. =2y, = C=C(r). Now again the same expression transvected with r®r®
and using the above information gives D, =27 r, and hence D = D(r). Consider
the equation w, =nr, and after taking the covariant derivative we get

Wap =1 Ty +7, ¥, Next consider the second equation of (8) and use

Wap =1 Vap +17, ¥, and then contract with r® to get 7, ocr, so that 7 =n(r).

Consider the first equation of (8) and use (5) one has the following non-zero
components of h,,

h,, =-Ce’, h, =(C+D), h, =Ce" and h,, =Ce". 9

Now we are interested in finding projective vector fields by using the
following relation

Ly Qap =Nap- (10)

Using equation (9) and (5) in (10) and writing out explicitly we get
VXt+2X§=C (11)
X5 -e'X}=0 (12)

X2 X% =0 (13)
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X3-X9=0 (14)
xi:%(cw) (15)
X2 1 XL Z0 (16)
e'X 3+ X% =0 (17)
VX 42X2 =C (18)
X34 X2 =0 (19)
VX! 42X3 =C. (20)

Equations (15), (16), (17) and (12) give
X! = %j(o +D)dr +Al(t, 0, §)

X% =—Ak(t,0, ¢).|'e’vdr +A*(t,0,9) (21)

X® =—A;(t.0,9)[ e dr +A°(t. 0.9)
X° = A(L,0,9)[ e dr +A*(t.0.¢)
where A'(t,0,4), A’(t,0,4), A%(t,0,¢4) and A*(t,0,4) are functions of
integration. In order to determine A'(t,0,¢), A%*(t,0,4), A’(t,6,4) and

A*(t,0,4) we need to integrate the remaining six equations. To avoid details,
here we will present only the result. The solution of the equations (11) — (20) is

1
X% =ta+0c, +gc, +c,, X'==|(C+D)dr+b,
1+ 4C; +Cy -Jc+p) 22

X?=0a+tc, —gc, +c,, X°®=ga+tc,+6c, +c,
provided that

J(C+D)dx+b=$(C—2a) V' %0,
where a,b,c,,c,,c,,c,,C,Cs € R. After subtracting Killing vector fields from
(22) one has
X%=ta, X! =%I(C+D)dr+b, X?=0a, X®=¢a
provided that
J(C+D)dx+b=%(C—2a) V' #0.
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Suppose X =(ta, p(r),0a,¢4a), where p(r):%j(C+D)dr+b and

p(r) = é(c —2a). The vector field X is then projective if it satisfies (2). So,
using the above information in (2) gives
Vip'—v'(a+ %pv’) = %(V"p +V'p"),  p"=V'p+Vv'p"  (23)
and also v, = p"r,. A particular solution of (23) is
p=ae’ —2a, V=r+a, (24)

where a;,a, e R(a; #0) and C =D =ae". Thus the space-time (5) admits a
proper projective vector field, for the special choice of v as given in (24).

2.2 Existence of Projective vector field in non flat conformally flat
Bianchi type | space-times

Consider a Bianchi type-1 space-time in the usual coordinate system
(t,x,y,z) (labeled by (x°,x*,x?,x?), respectively) with metric [9]

ds? = —dt? + k(t)dx2 + h(t)dy? + f (t)dz2. (25)

The above space-time admits three linearly independent killing vector

fields, which are 2, i i. Since we are interested in those cases when the
oXx oy oz

above Space-Times (25) becomes conformally flat but non flat, It follows from
[5,9] there exists only one possibility, which is:
(P2) k() =h(t)=f(t).

Case P2
In this case the above Space-Times becomes
ds? = —dt? + k(t)(dx? + dy? + dz?) (26)
and it admits six independent Killing vector fields, which are
0 0 0 0 0 0 ¢ o0 0

y——X—,ZI——X—, Yy ——7—, —, —, —.
OX oy oX oz o1 oy ox oy oz

These six Killing vector fields are clearly tangent to the family of three
dimensional timelike hypersurfaces of constant t. Consequently, these
hypersurfaces are constant (zero) curvature. The Segre type of the above space-
time is {1, (111)} or {(1,111)}. If the Segre is {(1,111)} then the Space-Times is
of constant curvature and the projective vector fields are given in [2]. Here it is
assumed that the space-times is not of constant curvature. The proper projective
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vector fields for the above space-time (26) are also available in [10]. The non-zero
independent components of the Riemann curvature tensors are

SR

R%y = R%p = R%3 = 1 K—k— =A
k{2 4k

(27)

1(k?
R1212 = R1313 = R3232 = E(Hj = B.

One can write the curvature tensor with the components R*c at p as a
6x 6 matrix in a well known way [7]

R*y =diag(A A A B,B,B),
where Aand B are real functions of t only and where the 6-dimensional labelling
is in the order 01,02,03,12,13, 23 with x° =t. Here, at pe M one may choose a
tetrad (t,x,y,z) satisfying —t°, = x*x, = y®y, =z%z, =1 (with all other inner
products zero) such that the eigenbivectors of the curvature tensor at p are all
simple with blades spanned by the vector pairs (t,x),(t,y),(t,z) each with eigen
value A(p), and -(x,y),(x,2),(y,z)- each with eigenvalue B(p). Here we are

considering the open subregion where A and B are nowhere equal (if A= B then
it follws from (27) that the above Space-Times (26) becomes of constant
curvature, which contradicts to our assumtion; hence A=B)and A=0. If A=0
than the rank of the 6 x6 Riemann matrix becomes three and it follows from [8]
no proper projective vector field will exist. Hence A= 0. Thus, at p the tensor
P, = Ah, +2y,, has eigenvectors t, X, y and z with same eigenvalue, say, y,

and P, =Bh,, +2y,, has eigenvectors x, y and z with same eigenvalue, say, y, .
First consider the equation P, = Ah, +2y,,, where P, is a second order
symmetric tensor with eigenvectors t, X, y and z with same eigenvalue y,. The
Segre type of P, is {(L111)}, and P,, =7,0, . Substituting back, we get
Ah, +2y., =70, - Now consider P, =Bh, +2y ., where P, is a second

order symmetric tensor with eigenvectors x, y and z with same eigenvalue, say,
7,. The Segre type of P, is {1,(111)} and P, = 7,9, + 7,t,t, . Substituting back,

we get Bh,, +2y ., = 7,9, + 75t.t, . Hence on M one has
ANy +2y o, = 719 Bhy, + 2o, = 7290 + 7atals (28)
where y,,7,and y, are some real functions on M. Since A= B then it

follows from equation (28) that
hab = ﬁ gab +atatb’ l//a;b =E gab +F 1:atb (29)
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for some real functions «, #, E and F on M. Now one substitutes the first
equation of (29) in (2) and contracts the resulting expression with x*y® and then
with x*z" to get w x* =y, y* =w,z>=0 and one has y, =&t, for some
function & The same expression contracted with t%" then infers
(a—-pB), =-45t, and hence (a — B) is a function of t only. Now again contract
the same expression with x*x°. One finds B, =2&t,, which implies
B.x* =4,y =p,2° =0= g = S(t). Substituting back we get o, =-2&t,, and
hence «a =ea(t). Now consider the second equation of (29) and use
Wap = &pla + £, and contract this with t°. One can easily find that & = £(t).
Consider the first equation of (29) and using (26) one obtains the following non
zero components of h,,
heo =(@—=pB), hy =Bk, h, =pk and hy, =gk, (30)
where o =a(t), = () and a— £ =(a — ) (t). Now we are interested

in finding projective vector fields by using the relation (10). Writing out equation
(10) explicitly and using (26) and (30), we get

1
X =E(ﬂ—a) (31)
kX'o—X% =0 (32)
kX%0—-X% =0 (33)
kX%o— X% =0 (34)
1. 1

ZKX® + kX == Bk 35
5 1 zﬁ (35)
X2+ X =0 (36)
X3+ X' =0 (37)
Lixo s kx2, =L gk (38)
2 2

X3, 4+ X%3=0 (39)
%k'xo+kx3,3=%,8k. (40)

Equations (31), (32), (33) and (34), give
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=—J a)dt + A*(x,y,2)

X1 =Ai(x,y,z)J‘Edt +A%(x,y,2)

, (41)

X% =Al(x,y z)J‘Edt +A%(x,y,2)
y i) i) k H H

X*=Ax y,Z)j%dt +AY(x,y,2)

where  A'(x,y,z), A%(x,y,z), A%(x,y,z) and A*(x,y,z) are functions of
integration. In order to determine A'(x,y,z), A*(x,y,z), A*(x,y,z) and A*(X,Y,2)

we need to integrate the remaining six equations. To avoid lengthy calculations,
here we will present only the result. The solution of the equations (31) — (40) is

X°=—J a)dt +c,

X' =xc, —yc® +zc® +c’ (42)
X?=yc, +xc®—zc® +c¥

X% =z¢c, —xc® +yc® +c°

provided that

—j a)dt +c, =— (ﬁ—ch) k 0,
where c,,c,,c’,c®,c’,c?,c’,c e R. After subtracting Killing vector fields from
(42) one has

XO:—I a)dt +¢,, X' =xc,, X? =y, X® =z¢,

provided that

—j a)dt+c, = (ﬁ—ch) k 0,

Suppose X =(7(t),xc,, yc,, zc,), where n(t)zéj(ﬂ—a)dt +c, and

E(ﬂ - 2c1): n (t) The vector field X is said to be projective if it satisfies (2).

Hence using the above information in (2) we infer
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Q_K,]_L kCl+1k77
2 k 2
. (43)
i1 k
T = (Kn+ _
3~ Kn vk 22
and y, =7jt,. Particular solutions of (43) are
7]=k=%eFHFG _%, (44)
k=Le', 7=Ne'-D, (45)

where F,G,I,L,N,ReR(F #0). Thus the space-time (25) admits a proper
projective vector field, for the special choice of k as given in (44) and (45).
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