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ON RESOLVABILITY IN DOUBLE-STEP CIRCULANT 
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In this paper, we study the metric dimension of double-step circulant graphs 
)(1,2,kCn  for any positive integer 13≥n  and when 4=k . We prove that these 

double-step circulant graphs have constant metric dimension.  
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 1.  Introduction 

 Metric dimension is a parameter that has appeared in various applications of 
graph theory, as diverse as, pharmaceutical chemistry [5, 6], robot navigation [16], 
combinatorial optimization [19] and sonar and coast guard Loran [20], to name a 
few. Metric dimension is a generalization of affine dimension to arbitrary metric 
spaces (provided a resolving set exists). 

In a connected graph G , the distance ),( vud  between two vertices 
)(, GVvu ∈  is the length of a shortest path between them. Let ,,,{= 21 …wwW  }kw  

be an ordered set of vertices of G  and let v  be a vertex of G . The representation 
)|( Wvr  of v  with respect to W  is the k -tuple ),,(),,(( 21 wvdwvd  

)),(,),,( 3 kwvdwvd … . W  is called a resolving set [6] or locating set [20] if every 
vertex of G  is uniquely identified by its distances from the vertices of W , or 
equivalently, if distinct vertices of G  have distinct representations with respect to 
W . A resolving set of minimum cardinality is called a basis for G  and this 
cardinality is the metric dimension of G , denoted by )(Gdim  [2]. The concepts of 
resolving set and metric basis have previously appeared in the literature (see [2-6, 
9-23]). 

For a given ordered set of vertices },,,{= 21 kwwwW …  of a graph G , the 
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ith component of )|( Wvr  is 0 if and only if iwv = . Thus, to show that W  is a 
resolving set it suffices to verify that )|()|( WyrWxr ≠  for each pair of distinct 
vertices WGVyx \)(, ∈ . 

A useful property in finding )(Gdim  is the following lemma: [22] Let W  
be a resolving set for a connected graph G  and )(, GVvu ∈ . If ),(=),( wvdwud  
for all vertices },{\)( vuGVw∈ , then ∅≠∩Wvu },{ . Motivated by the problem of 
uniquely determining the location of an intruder in a network, the concept of metric 
dimension was introduced by Slater in [20, 21] and studied independently by 
Harary and Melter in [9]. Applications of this invariant to the navigation of robots 
in networks are discussed in [16] and applications to chemistry in [6] while 
applications to problem of pattern recognition and image processing, some of 
which involve the use of hierarchical data structures are given in [17]. 

Let F  be a family of connected graphs 1)(=: ≥nnn GG F  depending on n  as 
follows: the order )(|=)(| nGV ϕ  and ∞

∞→
=)(lim n

n
ϕ . If there exists a constant 

0>C  such that CGdim n ≤)(  for every 1≥n  then we shall say that F  has bounded 
metric dimension; otherwise F  has unbounded metric dimension. 

If all graphs in F  have the same metric dimension (which does not depend 
on n ), F  is called a family with constant metric dimension [13]. A connected 
graph G  has 1=)(Gdim  if and only if G  is a path [6]; cycles nC  have metric 
dimension 2  for every 3≥n . Also generalized Petersen graphs ,2)(nP , antiprisms 

nA  and circulant graphs (1,2)nC  are families of graphs with constant metric 
dimension [13]. Recently some classes of regular graphs with constant metric 
dimension have been studied in [12]. 

Other families of graphs have unbounded metric dimension: if nW  denotes 
a wheel with n  spokes and nJ 2  the graph deduced from the wheel nW2  by 

alternately deleting n  spokes, then ⎦
+

⎣
5

22=)( nWdim n  for every 7≥n  [2] and 

⎦⎣
3

2=)( 2
nJdim n  [23] for every 4≥n . 

An example of a family which has bounded metric dimension is the family 
of prisms. In [3] it was proved that  

 

 nm CPdim ×( )=
⎩
⎨
⎧

.3,
;2,

otherwise
oddisnif

  

 Since prisms  nD  are the trivalent plane graphs obtained by the cross 
product of path 2P  with a cycle nC , so prisms constitute a family of 3 -regular 
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graphs with bounded metric dimension. Also generlized Petersen graphs ,3)(nP  
have bounded metric dimension [10]. 

Note that the problem of determining whether kGdim <)(  is an 
NP -complete problem [8]. Some bounds for this invariant, in terms of the diameter 
of the graph, are given in [16] and it was shown in [6, 16, 17, 18] that the metric 
dimension of trees can be determined efficiently. It appears unlikely that significant 
progress can be made in determining the dimension of a graph unless it belongs to a 
class for which the distances between vertices can be described in some systematic 
manner. 

The metric dimension of double-step circulant graphs (1,2)nC  has been 
investigated in [13]. Recently, we have studies the metric dimension of double-step 
circulant graphs (1,2,3)nC  [11]. In this paper, we extend this study to double-step 
circulant graphs )(1,2,kCn  for any positive integer 13≥n  when 4=k . 

In what follows all indices i  which do not satisfy inequalities ni ≤≤1  will 
be taken modulo n . 

 2. Upper bounds for the metric dimension of double-step circulant 
graphs )(1,2,kCn  for any positive integer 13≥n  and 4=k  

The circulant graphs are an important class of graphs, which can be used in the 
design of local area networks [1]. Let mn,  and maa ,,1 "  be positive integers, 

⎦⎣≤≤
2

1 nai  and ji aa ≠  for all mji ≤≤ <1 . An undirected graph with the set of 

vertices },,{= 1 nvvV "  and the set of edges },11:{= mjnivvE
jaii ≤≤≤≤+ , the 

indices being taken modulo n , is called a circulant graph and is denoted by 
),,( 1 mn aaC " . The numbers maa ,,1 "  are called the generators and we say that the 

edge 
jaiivv +  is of type ja . 

It is easy to see that the circulant graph ),,( 1 mn aaC "  is a regular graph of 
degree r , where  

 
⎪⎩

⎪
⎨
⎧ ∈−

.,2

};,,{
2

1,2= 1

otherwisem

aanifmr m"  

The metric dimension of circulant graphs (1,2)nC  has been studied in [13] where it 
has been proved that 3=(1,2))( nCdim  for )4(mod0,2,3≡n  and 4(1,2))( ≤nCdim  
otherwise. 
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Fig. 1: double-step circulant graphs (1,2,4)13C  and (1,2,4)14C  

 
The metric dimension of double-step circulant graphs )(1,2,kCn  for any 

positive integer n  and 3=k  has been determined by Imran et al. (2012) [11]. In 
the next theorem, we give the upper bounds for the metric dimension of double-step 
circulant graphs (1,2,4)nC . Note that the choice of an appropriate basis of vertices 
(also referred to as landmarks in [15]) is core of the problem. 
Theorem 1. For the double-step circulant graphs )(1,2,kCn  for any positive 
integer 13≥n  and 4=k , we have  

 4))(1,2,( ≤kCdim n  
Proof. Case (i) When )4(mod0≡n  

In this case, we can write +∈≥ Zkkkn 4,,4= . Let 
(1,2,4))(},,,{= 4321 nCVvvvvW ⊂ , we show that W  is a resolving set for (1,2,4)nC  

in this case. For this purpose, we give the representations of (1,2,4))( nCV  with 
respect to },,,{= 4321 vvvvW .  
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One can obviously verify that the set W  can distinguish all the vertices of 
(1,2,4)nC  which implies that },,,{= 4321 vvvvW  is a resolving set for (1,2,4)nC , 

thus showing that that 4(1,2,4))( ≤nCdim  in this case. 
 
Case (ii) When )4(mod1≡n  

In this case, we can write +∈≥+ Zkkkn 3,1,4= . Let 
(1,2,4))(},,,{=

1
2

42
2

421 nkk CVvvvvW ⊂
−⎤⎡−⎤⎡

, we show that W  is a resolving set for 

(1,2,4)nC  in this case. For this purpose, we give the representations of 
(1,2,4))( nCV  with respect to },,,{=

1
2

42
2

421
−⎤⎡−⎤⎡

kk vvvvW . 
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The set W  can distinguish all the vertices of (1,2,4)nC  which implies that 
},,,{=

1
2

42
2

421
−⎤⎡−⎤⎡

kk vvvvW  is a resolving set for (1,2,4)nC , thus showing that that 

4(1,2,4))( ≤nCdim  in this case too. 
 
Case (iii) When )4(mod2≡n  

In this case, we can write +∈≥+ Zkkkn 3,2,4= . Let 
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resolving set for (1,2,4)nC . For this purpose, we give the representations of 
(1,2,4))( nCV  with respect to },,,{=
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One can see that the set W  can distinguish all the vertices of (1,2,4)nC  which 
implies that },,,{=

1
2

142
2

1421
−⎤

+
⎡−⎤

+
⎡

kk vvvvW  is a resolving set for (1,2,4)nC , thus 

showing that that 4(1,2,4))( ≤nCdim  in this case also. 
 
Case (iv) When )4(mod3≡n  

In this case, we can write +∈≥+ Zkkkn 3,3,4= . Let 
(1,2,4))(},,,{=

1
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421 nkk CVvvvvW ⊂
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. We show that W  is a resolving set for 

(1,2,4)nC . For this purpose, we give the representations of (1,2,4))( nCV  with 
respect to },,,{=

1
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kk vvvvW . 
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Again, One can see that the set W  can distinguish all the vertices of (1,2,4)nC  
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which implies that },,,{=
1

2
42

2
421

−⎤⎡−⎤⎡
kk vvvvW  is a resolving set for (1,2,4)nC , thus 

showing that that 4(1,2,4))( ≤nCdim  in this case, which completes the proof.  

3. Metric dimension of double-step circulant graphs )(1,2,kCn  for any 
positive integer 13≥n  and 4=k  

In this section, we will prove that 4))(1,2,( ≥kCdim n  for any positive integer 
13≥n  and 4=k . For this purpose, we define the outer cycle as the cycle induced 

by },,,{ 21 nvvv … . Due to the rotational symmetry of the circulant graphs )(1,2,kCn  
where 4=k , we deduce that  For any two vertices iu  and ju  ( ji ≠ ) on the outer 
cycle induced by (1,2,4))( nCV , we have );(=);( rjriji uuduud ++  for any 

11 −≤≤ nr .  For the concept of gaps and size of a gap (to be used later), we 
adopted the definitions and terminology used in [2]. Let nC  be a cycle with n  
vertices. We denote its vertices by nvvv ,...,, 21 . Let lk,  be positive integers, 

nlk ≤≤ <1 . Then the vertices 121 ,...,, −++ lkk vvv  are the vertices in the gap 
determined by the vertices kv  and lv  and the size of the gap is 1−− lk .  
 
Theorem 2. For every positive integer 13≥n , we have 4))(1,2,(( ≥kCdim n  when 

4=k . 
 
Proof. Let lkn +4=  where {0,1,2,3}∈l . To prove this theorem, it suffices to 
show that there is no resolving set with 3 vertices for (1,2,4))(( nCV . Suppose to 
contrary that there exists a resolving set W  with three vertices for (1,2,4))( nCV . 

Without loss of generality, we can assume that },,{= 1 ji vvvW  is a resolving 
set where ji ≠  and 1, ≠ji . We make the following claims. 
 
Claim 1: No two vertices with consecutive indices on outer cycle can appear in any 
resolving set with three elements for (1,2,4))( nCV . 

Without loss of generality, we can suppose that },,{= 21 jvvvW ′  is a 
resolving set with two vertices having consecutive indices. By symmetry, we need 
only consider the case for 133 +≤≤ kj . Then  
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a contradiction. 
Claim 2: No first two gaps of same size between the indices of resolving vertices on 
outer cycle can appear in any resolving set with 3 elements for (1,2,3))( nCV . 

Let },,{= 121 −′ ii vvvW  be a resolving set with 3 elements and having first 
two gaps of same size between the indices of resolving vertices. By symmetry, for 

2=l , we consider the case for 1;33 +≤≤ kj  for 3,4=l , we consider the case for 
233 +≤≤ kj ; for 5=l , we consider the case for 333 +≤≤ kj . Then  

 
⎩
⎨
⎧

≡′′
≡′′

++

+−

.3)(mod1,2),|(=)|(
;3)(mod0),|(=)|(

31

12

lallforandjifWvrWvr
lallforandjifWvrWvr

ii

ii  

a contradiction. 
A consequence of Claim 1 and Claim 2 implies Claim 3. 

Claim 3: No first two gaps with different size between the indices of resolving 
vertices on outer cycle can appear in any basis with 3 elements for (1,2,3))( nCV . 

Let },,{= 1 ji vvvW ′  be a resolving set with three elements and having first 
two gaps of different size. For each fixed value of i , ki 23 ≤≤ , we have variation 
of j  as 143 +≤≤+ kji . We have the following possibilities. 

(i) The first gap is of odd size and the second gap is of even size. 
(ii) The first two gaps are of odd size. 
(iii) The first gap is of even size and second gap is of odd size.  
(iv) The first two gaps are of even size. 
But in each of the above possibilities, we get either 

)|(=)|( 12 WvrWvr jj ′′ +−  or )|(=)|( 31 WvrWvr jj ′′ −−  or )|(=)|( 42 WvrWvr jj ′′ −−  
or )|(=)|( 13 WvrWvr nj ′′ −− , or )|(=)|( 31 WvrWvr jj ′′ ++  or 

)|(=)|( 42 WvrWvr jj ′′ ++ , or 
)|(=)|( 13 WvrWvr nj ′′ −+ , or )|(=)|( 53 WvrWvr jj ′′ ++ , leading to a 

contradiction.  
Hence, from above it follows that 4(1,2,3))( ≥nCdim  which completes the 

proof.  
 As an immediate consequence of Theorem 1 and Theorem 2, we deduce the 

following theorem.  
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Theorem 3. For circulant graphs ))(1,2,kCn  when 4=k , we have 
4=))(1,2,( kCdim n  for every positive integer 13≥n .  

 4. Conclusion 

 The metric dimension of double-step circulant graphs )(1,2,kCn  for any 
positive integer 12≥n  and 3=k  has been determined by Imran et al. in [11] 
where it was proved that the double-step circulant graphs (1,2,3)nC  have metric 
dimension equal to 4 for )6(mod2,3,4,5≡n . For )6(mod0≡n  only 5 vertices 
appropriately chosen suffice to resolve all the vertices of (1,2,3)nC , thus implying 
that 5(1,2,3))( ≤nCdim  except )6(mod1≡n  when 6(1,2,3))( ≤nCdim . In this 
paper, we have studied the metric dimension of double-step circulant graphs 

)(1,2,kCn  for any positive integer 13≥n  and 4=k . We proved that the metric 
dimension of these circulant graphs )(1,2,kCn  when 4=k  is constant and does 
not depend on the number of vertices in the graphs. Moreover, only 4 vertices 
chosen appropriately suffice to resolve all the vertices of circulant graphs 

)(1,2,kCn  when 4=k . We see that the behavior of metric dimension for circulant 
graphs )(1,2,kCn  varies rapidly for each value of k , even for the class of circulant 
graphs of same degree, the nature of metric dimension is not the same. However we 
believe that the metric dimension of circulant graphs will never depend upon the 
number of vertices in the graphs. 

 5. Open Problem 

 Find the exact value of metric dimension or some good bounds in terms of 
other graphical parameters for double-step circulant graphs )(1,2,kCn  when 5≥k . 
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