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ON RESOLVABILITY IN DOUBLE-STEP CIRCULANT
GRAPHS"

Muhammad IMRAN?, Syed Ahtsham Ul Haq BOKHARY?

In this paper, we study the metric dimension of double-step circulant graphs
C,(1,2,k) for any positive integer N >13 and when K = 4. We prove that these
double-step circulant graphs have constant metric dimension.
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1. Introduction

Metric dimension is a parameter that has appeared in various applications of
graph theory, as diverse as, pharmaceutical chemistry [5, 6], robot navigation [16],
combinatorial optimization [19] and sonar and coast guard Loran [20], to name a
few. Metric dimension is a generalization of affine dimension to arbitrary metric
spaces (provided a resolving set exists).

In a connected graph G , the distance d(u,v) between two vertices

u,veV (G) is the length of a shortest path between them. Let W ={w,,w,,..., W}
be an ordered set of vertices of G and let v be a vertex of G . The representation
r(viw) of v with respect to W is the k -tuple (d(v,w,),d(v,w,),
d(v,w;),...,d(v,w,)). W is called a resolving set [6] or locating set [20] if every
vertex of G is uniquely identified by its distances from the vertices of W, or
equivalently, if distinct vertices of G have distinct representations with respect to

W . A resolving set of minimum cardinality is called a basis for G and this
cardinality is the metric dimension of G, denoted by dim(G) [2]. The concepts of

resolving set and metric basis have previously appeared in the literature (see [2-6,
9-23)).
For a given ordered set of vertices W ={w,,w,,...,w,} of a graph G, the
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ith component of r(v|W) is 0 if and only if v=w,. Thus, to show that W is a
resolving set it suffices to verify that r(x|W) = r(y|W) for each pair of distinct
vertices X,y eV (G)\W.

A useful property in finding dim(G) is the following lemma: [22] Let W
be a resolving set for a connected graph G and u,veV(G). If d(u,w) =d(v,w)
for all vertices weV (G) \{u,Vv}, then {u,v}nW = & . Motivated by the problem of

uniquely determining the location of an intruder in a network, the concept of metric
dimension was introduced by Slater in [20, 21] and studied independently by
Harary and Melter in [9]. Applications of this invariant to the navigation of robots
in networks are discussed in [16] and applications to chemistry in [6] while
applications to problem of pattern recognition and image processing, some of
which involve the use of hierarchical data structures are given in [17].

Let F be a family of connected graphs G, :F = (G,),., depending on n as

follows: the order |V(G)|=¢(n) and limg(n) =oo . If there exists a constant

C >0 suchthat dim(G,) <C forevery n>1 then we shall say that F has bounded

metric dimension; otherwise F has unbounded metric dimension.

If all graphs in F have the same metric dimension (which does not depend
on n), F is called a family with constant metric dimension [13]. A connected
graph G has dim(G) =1 if and only if G is a path [6]; cycles C, have metric
dimension 2 for every n> 3. Also generalized Petersen graphs P(n,2), antiprisms
A, and circulant graphs C,(1,2) are families of graphs with constant metric

dimension [13]. Recently some classes of regular graphs with constant metric
dimension have been studied in [12].

Other families of graphs have unbounded metric dimension: if W_ denotes
a wheel with n spokes and J,, the graph deduced from the wheel W, by
2n+2

: | for every n>7 [2] and

alternately deleting n spokes, then dim(\Nn):L

dim(J,,) = L%nJ [23] for every n>4.
An example of a family which has bounded metric dimension is the family
of prisms. In [3] it was proved that

. 2, if nisodd;
dim(P,xC,)= .
3, otherwise.
Since prisms D, are the trivalent plane graphs obtained by the cross
product of path P, with a cycle C_, so prisms constitute a family of 3-regular
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graphs with bounded metric dimension. Also generlized Petersen graphs P(n,3)

have bounded metric dimension [10].
Note that the problem of determining whether dim(G)<k is an

NP -complete problem [8]. Some bounds for this invariant, in terms of the diameter
of the graph, are given in [16] and it was shown in [6, 16, 17, 18] that the metric
dimension of trees can be determined efficiently. It appears unlikely that significant
progress can be made in determining the dimension of a graph unless it belongs to a
class for which the distances between vertices can be described in some systematic
manner.

The metric dimension of double-step circulant graphs C,(1,2) has been

investigated in [13]. Recently, we have studies the metric dimension of double-step
circulant graphs C,(1,2,3) [11]. In this paper, we extend this study to double-step

circulant graphs C_(1,2,k) for any positive integer n >13 when k = 4.

In what follows all indices i which do not satisfy inequalities 1<i <n will
be taken modulo n.

2. Upper bounds for the metric dimension of double-step circulant
graphs C,(1,2,k) for any positive integer n>13 and k =4

The circulant graphs are an important class of graphs, which can be used in the
design of local area networks [1]. Let n,m and a,,---,a, be positive integers,

1<a, SLgJ and a, =a, for all 1<i< j<m. An undirected graph with the set of

vertices V ={v,,---,v,} and the set of edges E ={v,v,

|+aj

:1<i<nl< j<m}, the
indices being taken modulo n, is called a circulant graph and is denoted by
C,(a,--,a,). The numbers a,,---,a, are called the generators and we say that the
edge v\v,,, isoftype a;.

|+aj
It is easy to see that the circulant graph C,_(a,,---,a,,) is a regular graph of
degree r, where

2m, otherwise.
The metric dimension of circulant graphs C,(1,2) has been studied in [13] where it
has been proved that dim(C,(1,2)) =3 for n=0,2,3(mod4) and dim(C,(1,2)) <4
otherwise.

. N .
r :{Zml, if Ee{ai, a0 h
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Fig. 1: double-step circulant graphs C;(1,2,4) and C,,(1,2,4)

The metric dimension of double-step circulant graphs C,(1,2,k) for any

positive integer n and k =3 has been determined by Imran et al. (2012) [11]. In
the next theorem, we give the upper bounds for the metric dimension of double-step
circulant graphs C_(1,2,4) . Note that the choice of an appropriate basis of vertices

(also referred to as landmarks in [15]) is core of the problem.
Theorem 1. For the double-step circulant graphs C,(1,2,k) for any positive

integer n>13 and k =4, we have
dim(C,(1,2,k))<4

Proof. Case (i) When n=0(mod4)

In this case, we can writt n=4k,k>4,keZ" . Let
W ={v,,v,,v;,v,}=V(C,(1,2,4)), we show that W is aresolving set for C_(1,2,4)
in this case. For this purpose, we give the representations of V (C,(1,2,4)) with
respectto W ={v,,v,,v,,v,}.

(i+1ii), 1sisf%;
F(Vyn (W)= _
(k—i,k—i+1,k—i+1,f% —i), f%hlgisk.
(i+1,i,i+1,i), 1sis|_u;
r.(\/4i+2|W): k—l 2
(k—i+1,k—ik—i+1k—i+1), FThlsisk.
(i+1,i+1,i,i+1), 1sisrﬂ;
r(Vy3 W)= 2

(k—i,k—i+1,k—ik—i+1), r%THsisk.
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(i+1,i,i,i+1), 1sis|_%1;

k+1 rk+l

rv, |W)=4(k-i+1,k—-i+1,2 —=1-i,2 —i+1),

F%hlsisk.

One can obviously verify that the set W can distinguish all the vertices of
C,(1,2,4) which implies that W ={v,,v,,v,,v,} is a resolving set for C (1,2,4),
thus showing that that dim(C,(1,2,4)) <4 in this case.

Case (ii)) When n=1(mod 4)
In this case, we <can writte n=4k+1, k>3, keZ" . Let

={v,,V,,Vv S 4rk1 l}cV(Cn (1,2,4)), we show that W is a resolving set for
2 2

C,(1,2,4) in this case. For this purpose, we give the representations of
V(C,(1,2,4)) with respectto W ={v,,v,,v }.

A

K K
4F§1—2 4FET—1

i ,r“z _i,rgw-i), msrgh;

(k—|+2,k—i+1,i—F%hl,i—(%? ),

r(Vyy |W)= k
FET+1sisk—1;
(21F Kyrk=t 1) i =k.
(|+1,|,r 1-i F"ZZT—i), 1£i£r;1—1;
_ - _rke,
r(v, |W)= (FEMLFEMJ), |_FEW,
(k—i+1,k—i+2,i—rg-|+1,i—|_gh1), thlsigk.
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(tﬂ{?—ﬂgﬁu 191%Lm
+1 . )
(r5—|,r7—|,1,1), 1= E—L

r(v,, |W)= (k—i+1,k—i+1,i—f%—|+2,i—|_g—| +1),

thlsisk—l;

k- rk+1 .
(1,1,r5—|,r7—|), i=k.
(i+1,i,r51_i_1 rhw_i), mgrgw_z;
<r Lk “12), i=[ %
r(V4i+2|W)_ k k 2
(k—| k—|+1|—F—1+1,i—F§1+2), F§1+1sisk;
@1y Wk”b i=k.

The set W can distinguish all the vertices of C (1,2,4) which implies that

={v,,v, ,v( 2 z’v4rk1 1} is a resolving set for C (1,2,4), thus showing that that
24k

dim(C, (1,2,4)) <4 in this case too.

Case (iii) When n=2(mod4)
In this case, we can writt n=4k+2,k>3,keZ* . Let

W ={v,v,, 2V g,V rk*lw }<V(C,(1,23)) . Again we show that W is a
L kel
resolving set for C (1,2,4) . For this purpose, we give the representations of

V(C,(1,2,4)) withrespectto W ={v,,v,,v rk;lu,v‘w%wil}.

(i’il
(v, W) = d(k—i+1 k—is2i-[ KL 1 1,i- Fk”T +2),

|’k+1—|<|<k

r%w rk”w_) 1gi<r"+11 1.
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k+1—| |—k+3-| k+1—|

(i+Lil i), 1<i<[ 1:
r(v, (W) ={(k—i+2, k—|+1|—|_ 1 1i— rk+11 +1),
fk+11<isk.
rk+17— rﬂ —i), 1si<Fk+1W 1;
(Vg0 [W) = (k—i+1,k_.+2,|—FTT+1,i- rk”
Fk+11< <k.
(I+1Ifk211' Fk+1 i 1si<rk+11 2:
(Vg W) = (k—i+1,k—|+1,._r71+1,._ rk+11 +2)
|_k+1_|<|<k

One can see that the set W can distinguish all the vertices of Cn(1,2,4) which
implies that W ={v1,v2,v4(k+11 Vi l} is a resolving set for C (1,2,4), thus

showing that that dim(C,(1,2,4)) <4 in this case also.

Case (iv) When n =3(mod4)

In this case, we can write n=4k+3,k>3,keZ” . Let
={v,,V,,V s 4rk1 l}cV(Cn(1,2,4)) . We show that W is a resolving set for
2 2

C,(1,2,4) . For this purpose, we give the representations of V(C,(1,2,4)) with

respectto W =4{v,,v,,v ,V )
P {1 2 4%1—2 4(%1-1}



38 Muhammad Imran, Syed Ahtsham Ul Haq Bokhary

(i,i,F%W—m,FgW), 13isf§1—1;

. . . rk . rk
(k—|+2,k—|+2,|—r51+1,|—r§1 ):

r(Vy, |W)= K
F§T+1sisk—1;
k- -k -
(1,1,|—§—|,|—§—|), i=k.
(ill,i,l[;—i,rghu), 1siskFgL1;
+1 . .
(v w) =1 (5 157120 =15t

(k—i+2,k—i+1,i—|_%_|+2,i—|_g-|+1), r%_|+1£i§k.

ai+1[g]_nr§1_n, 1giir§1_x
+ - . O
(FEHTMJ), i=[ 21

(v, |W)= (k-i+1,k—i+1,i—F§1+2,i-f%1 +1),

thlsisk—l;

kK- rk+1 .
(1,l,|—5—|,|_7—|), i=Kk.
(i;l,i,rglj—i—l,rgh), 1siskFgT—2;
+1 . _
(fT—HE—Ll,Z), I_FE—L
F(Vyio W) =

(k—i+1,k-i+2,i—F%1+1,i—F%1+ 1),

rg-|+1§isk.

Again, One can see that the set W can distinguish all the vertices of C,(1,2,4)
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which implies that W ={v,,v,,v ,

,V . }isaresolving set for C (1,2,4), thus
a1l

51—1

showing that that dim(C, (1,2,4)) <4 in this case, which completes the proof.

3. Metric dimension of double-step circulant graphs C,(1,2,k) for any
positive integer n>13 and k=4

In this section, we will prove that dim(C,(1,2,k)) >4 for any positive integer

n>13 and k = 4. For this purpose, we define the outer cycle as the cycle induced
by {v,,v,,...,v,}. Due to the rotational symmetry of the circulant graphs C_(1,2,k)
where k =4, we deduce that For any two vertices u; and u; (i= j) on the outer
cycle induced by V(C,(1,2,4)) , we have d(u;u;)=d(u;,;u;,,) for any
1<r<n-1. For the concept of gaps and size of a gap (to be used later), we
adopted the definitions and terminology used in [2]. Let C, be a cycle with n
vertices. We denote its vertices by v,,v,,...,v, . Let k,I be positive integers,

1<k <l<n. Then the vertices v,,,,V,,,,..,V,, are the vertices in the gap
determined by the vertices v, and v, and the size of the gap is k—1-1.

Theorem 2. For every positive integer n>13, we have dim((C, (1,2,k)) >4 when
k=4.

Proof. Let n=4k +1 where 1 €{0,1,2,3}. To prove this theorem, it suffices to
show that there is no resolving set with 3 vertices for V((C,(1,2,4)) . Suppose to
contrary that there exists a resolving set W with three vertices for V(C,(1,2,4)).

Without loss of generality, we can assume that W ={v,,v;,v;} is aresolving
set where i# j and i, j 1. We make the following claims.

Claim 1: No two vertices with consecutive indices on outer cycle can appear in any
resolving set with three elements for V(C,(1,2,4)).

Without loss of generality, we can suppose that W'={v,,v,,v;} is a

resolving set with two vertices having consecutive indices. By symmetry, we need
only consider the case for 3< j<3k+1. Then
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r(vg W) =r(v,,|W"), if j=3and forallI;

r(v; |W" =r(v, |W"), if j=0,2(mod)4and for all I;

r(v, W% =r(vg |W"), if j=1(mod)4, j=4k+1and for all I;
r(v;, W) =r(v,,|W’), if j=3(mod)4, j=4k+1land foralll;
r(v,, IW)=r(v,,,IW"), if j=4k+1land foralll.

a contradiction.

Claim 2: No first two gaps of same size between the indices of resolving vertices on
outer cycle can appear in any resolving set with 3 elements for V (C,(1,2,3)) .

Let W' ={v,,v,,v,, ,} be a resolving set with 3 elements and having first

two gaps of same size between the indices of resolving vertices. By symmetry, for
I =2, we consider the case for 3< j<3k+1; for | = 3,4, we consider the case for

3<j<3k+2;for | =5, we consider the case for 3< j<3k+3. Then
r(vi, IW") =r(v,,|W'), if j=0(mod)3and for all I;
r(Vi W) =r(vi5|W"), if j=1,2(mod)3and for all .

a contradiction.

A consequence of Claim 1 and Claim 2 implies Claim 3.
Claim 3: No first two gaps with different size between the indices of resolving
vertices on outer cycle can appear in any basis with 3 elements for V (C,(1,2,3)).

Let W' ={v,,v;,v;} be a resolving set with three elements and having first
two gaps of different size. For each fixed value of i, 3<i <2k, we have variation
of j as i+3< j<4k+1.We have the following possibilities.

(i) The first gap is of odd size and the second gap is of even size.

(ii) The first two gaps are of odd size.

(iii) The first gap is of even size and second gap is of odd size.

(iv) The first two gaps are of even size.

But in each of the above possibilities, we get either
PV, (W) =r(vi, (W) or r(vi, [W)=r(v,;[W') or r(v;,|W)=r(v,,|W
or IV [W)=rv W) or (v [W)=r(v; W) or
r(Vj+2 W) = r(Vj+4 |W"), or

r(V; s W)=r(v,,[W) , or r(vj;|W)=r(v, s|W’) , leading to a
contradiction.

Hence, from above it follows that dim(C,(1,2,3)) >4 which completes the
proof.

As an immediate consequence of Theorem 1 and Theorem 2, we deduce the
following theorem.
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Theorem 3. For circulant graphs C,(1,2,k)) when k =4, we have
dim(C,(1,2,k)) = 4 for every positive integer n>13.

4. Conclusion

The metric dimension of double-step circulant graphs C,(1,2,k) for any

positive integer n>12 and k =3 has been determined by Imran et al. in [11]
where it was proved that the double-step circulant graphs C,(1,2,3) have metric

dimension equal to 4 for n=2,3,4,5(mod6) . For n=0(mod6) only 5 vertices
appropriately chosen suffice to resolve all the vertices of C,(1,2,3), thus implying
that dim(C,(1,2,3)) <5 except n=1(mod6) when dim(C (1,2,3))<6 . In this

paper, we have studied the metric dimension of double-step circulant graphs
C,(1,2,k) for any positive integer n>13 and k = 4. We proved that the metric

dimension of these circulant graphs C (1,2,k) when k =4 is constant and does

not depend on the number of vertices in the graphs. Moreover, only 4 vertices
chosen appropriately suffice to resolve all the vertices of circulant graphs
C,(1,2,k) when k = 4. We see that the behavior of metric dimension for circulant

graphs C,(1,2,k) varies rapidly for each value of k, even for the class of circulant

graphs of same degree, the nature of metric dimension is not the same. However we
believe that the metric dimension of circulant graphs will never depend upon the
number of vertices in the graphs.

5. Open Problem

Find the exact value of metric dimension or some good bounds in terms of
other graphical parameters for double-step circulant graphs C, (1,2,k) when k >5.
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