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A BACKSTEPPING CONTROL METHOD FOR A 
NONLINEAR PROCESS - TWO COUPLED-TANKS 

Vasile CALOFIR1, Valentin TĂNASĂ2, Ioana FĂGĂRĂŞAN3,                       
Iulia STAMATESCU4, Nicoleta ARGHIRA5, Grigore STAMATESCU6 

The aim of this work is to compute a level backstepping control strategy for a 
coupled tanks system. The coupled tanks plant is a component included in the water 
treatment system of power plants. The nonlinear-model of the process was designed 
and implemented in Matlab-Simulink. The advantages of the control method 
proposed is that it takes into consideration the nonlinearity which can be useful for 
stabilization and a larger operating point with specified performances. The 
backstepping control method is computed using the nonlinear model of the system 
and the performance  was validated on the physical plant. 

Keywords: backstepping, nonlinear-model, level tank system, water treatment, 
process control 

1. Introduction 

The coupled tanks system is a component included in the water treatment 
plant that is an important part of any power plant especially with the development 
of smart grids and with the stress of the enviromental issues nowadays. In 
traditional power plants (thermal, hydro, nuclear etc.) the water treatment part has 
the rol to reduce and even eliminate polluting particles such as S, NO, NO2, etc. . 
The level control of the used tanks has to be very precise and efficient. Many 
processes met in the water treatment / purification station can be modeled as 
systems with three open reservoirs. 
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To design a controller for maintaining constant level in such tanks, the 
need of a mathematical model of the plant is required [3],[4]. To obtain the 
mathematical model of the controlled process may be accomplished by analytical 
and experimental techniques. In case of the use of analytical models, 
mathematical models are obtained by applying the laws that describe functioning 
of the process (energy conservation laws, mass conservation law, etc.) taking into 
account the particularities of each process. In general, the mathematical models 
obtained by means of analytical designs are complex and most often contains 
nonlinear dependencies of the variables. 

If the model of the process is known then nonlinear control strategies such 
as sliding mode control [1], backstepping control [7], passivity based control [8], 
[6] can be employed. 

In the present paper it was chosen the backstepping strategy for nonlinear 
systems as the control method. The backstepping strategy is nowadays frequently 
used in the control design of nonlinear systems admitting strict feedback form. 
These specific state-space forms are used to model electro-mechanical systems 
and other sytems. In particular, a typical difficulty of these structures is that these 
exhibit a relative degree larger than one. This constitutes an obstacle in designing 
passivity based controllers and the backstepping procedure is a suitable tool to 
remove this obstacle[10]. 

The backstepping procedure, in its general formulation, gives the 
ingredients to compute controllers that stabilize the origin globally. Although this 
method can be compared with other state-feedback designs like dynamical 
linearization, its particularity is that the backstepping procedure takes into 
consideration the nonlinearity which can be useful for stabilization. It does not a 
priori cancel the nonlinearity since which can be included then into the controller. 
The main drawback of this procedure, highlighted when the number of cascade 
connections is large is that the controller expressions become quite complex. To 
cope with this, some relaxing procedures are proposed, which achieve semiglobal 
results such as high-gain designs or semiglobal backstepping [9]. 

2. Underlying Theory 

In this article we consider a 2 sub-systems connection as follows  
 
 ( ) = ( ( )) ( ( )) ( )z t f z t g z t tζ+  (1) 

 
 ( ) = ( ( ), ( )) ( ( ), ( )) ( )a a ct f z t t g z t t u tζ ζ ζ+  (2) 
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where the state z  and ζ  are in nR  and R respectively and the control vector 
gfRuc ,,∈  and )(),( ⋅⋅ gfa  in nR  and in  R respectively. 

The following result describes the stabilizing controller through the 
backstepping approach [10] 

Proposition 2.1  [5] - Continuous-time backstepping - Consider the system 
(1)-(2), and suppose the existence of )(zϕ  with 0=(0)ϕ  and a Lyapunov function 

)(zW , radially unbounded, such that  

 /{0}0,<))()()(( nRIzzzgzf
z

W
∈∀+

∂
∂ ϕ  (3) 

 
Then, if ),(1 ζzga

−  exists for all ),( ζz , the state feedback control law 
 

 ))(),()((),(= 1 ϕζζφζ −−−
∂
∂

−−
yaac Kzfzg

z
Wzgu  (4) 

 

with ))()((= ζzgzf
z
f

+
∂
∂

Φ  globally asymptotically stabilizes the origin 

of (1)-(2), with 

 2))((
2
1)(=),( zzWzV ϕζζ −+  (5) 

 as a Lyapunov function.  
 Comments. By considering )(zϕ  as a fictitious control for the first z-

dynamics, it follows from (3) that the fictitious state feedback )(= zϕζ  
asymptotically stabilizes the dynamics (1) at the origin. Setting )(= zy ϕζ − , (1)-
(2) can be rewritten as  

 ))()(()(=)( yzzgzftz ++ ϕ  (6) 
  

 ,),(),(=)( caa uzgz
z

zfty ζϕζ +
∂
∂

−  (7) 

 thus describing the second part as an y-error dynamics. By setting V  as in (5) 
and  

 )))()((),()(,(= 0
1 vzgzf

z
yzfzgu aac ++

∂
∂

+−−− ζϕζζ  (8) 

one achieves yv →  stabilisation with the Lyapunov function V . Then, by setting 
yKv y−=  with 0>yK , one gets, (4) so that  
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 0<))()((= yyKzgzf
z

W T
y−+

∂
∂ ϕ  (9) 

 because of (3). The global asymptotic stabilization at the origin follows, since 
)(zW  is radially unbounded.  

 It follows that the backstepping procedure is very usefull for systems having a 
relative degree larger than one (e.g. the first dynamics z  is not directly driven by 
the control input). The speed of the convergence rate of the states to the 
equilibrium can be adapted in function of the choice of the gain values yK  and 

ϕK . Larger values for yK  and ϕK  means an increased speed and as consequence 
a reduced settling time. The drawback is that the amplitude of the control input is 
increased and this will be often saturated by the physical limitations. The right 
values of these parameters are chosen often experimentaly (or by means of 
simulations) and taking into account the trade off between speed and control 
saturation. 

3.  The experimental plant model and controller design 

3.1 The plant description 

The laboratory platform (ELWE Technick) used to test the proposed 
algorithms, available at Politehnica University Bucharest, consists of 3 main water 
tanks and a water reservoir. The flows of the water is assured by the means of 6 
electro valves and 2 pomps and each liquid level is measured by one of the 3 
piezoresistive transducers (VEGABAR 14).  

In Fig. 1 is presented the schematic of a coupled-tank system that was 
configured on the laboratory platform. The water is pumped into tank 1T  and from 
there through a connection pipe (with a section area 1S ) into the tank 3T . The 
water flows into reservoir through an electro valve (full open) with a section area 

2S .  
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Fig.  1: Schematic of coupled-tanks 

 
The values of the plant parameters are described next:   
    • 2= 0.0154A m  - section area of each tank;  
    • 5 2

1 3= = 5 10S S m−⋅  - the section area of each pipeline;  
    • 4 3

0 = 10 /Q m s− , 0 = 0.6h m  - the maximal values of the inlet flow and 
tank level respectively.  

The connection of the plant with a PC is assured by 2 acquisition cards : 
"Humusoft MF624" for Pump 1 and level transducers and "National Instruments 
PCI-6503" which controls the electro valves. The real-time interface is configured 
in Simulink.  

3.2 Dynamic model 

The dynamic model of the coupled tanks is described by  

 1 1 1 3 1 3
1 1= ( ) | | ( )ih Q t c h h sign h h
A A

− − −  

 3 1 1 3 1 3 2 3
1 1= | | ( )h c h h sign h h c h
A A

− − −  (10) 

with 4
1 = 1.0167 10c −⋅ , 4

2 = 1.7253 10c −⋅  experimentally determined. The 

parameters = 2i i nc az S g  define the product between the flow coefficient iaz , 
the pipe cross area and the gravitational acceleration . The input is the inlet 
volumetric flow rate ( ) = ( )iu t Q t , the state variables represents the liquid levels in 
tank 1T  and 3T  and the output is chosen equal to 1h . In the case of coupled tanks, 
the inequality 1 3h h≥  holds, in every operating point.  
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The structure of the system is similar with the one represented by 
equations (1)-(2) and a backstepping procedure can be applied. In a first step, the 
model has to be brought to an error representation by using the following change 
of coordinates:  

 1 3=z h , 3 1 3=z h h−  (11) 

Also we have renamed the flow coefficients as follows: 1= ca
A

; 2= cb
A

. 

The input is divided into two components su  the stationary component and the 
actual control ( )v t  respectively, hence 0( ) = ( ( ))sQ t Q u v t+ . The dynamics (10) 
are now rewritten as follows:  

 1
1 1 3 3 1

3 3

1= ; =
2 2

zbz b z az z a Q
z Az

− − − +  (12)   

It can be noticed the strict-feedback structure of the proces is now 
available. Further we continue with a new change of coordinates in order to obtain 
the error model dynamics:  

 3 31 1
1 2

0 0

= = rr z zz z
z z

η η −−  (13) 

 with 3 1 3=r red refz h h− . It follows next the error dynamic model.  

               1 0 1 1 2 0 3
0 0

= ( )r r
b az z z z
z z

η η η− + − +  (14) 

               1 0 1 0
2

0 2 0 3 0 0 2 0 3
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η
η

η η
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− + +
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          (15) 

3.3 Controller design 

 In order to compute the controller by using the backstepping strategy in 
the same manner as it it given in Section 2, by looking to equations (1)-(2) and 
based on the error dynamics model we can identify:  

1 1 0 1 3
0 0

( ) = ; =r r
b af z z z g a
z z

η η− + + ; 0
1 2

0 0 2 3

1( , ) =
2a

r

Qg
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0 0 2 3 0 0 0 2 3

( , ) = ;
2 2
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a
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z z Q ub af
z z z z Az z z

η
η η

η η
+

− − +
+ +

 (16) 
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3.3.1 The static control design 

As it was mentioned earlier su  is the static controller and its objectiv it to 
assure a zero steady state error. In order to find this component we impose that 

1 = 0η , 2 = 0η  and = 0v  respectively. After some computations we get the 
following expressions:  

 0 2 3 3
0 0

= ( ) =s r r
aA aAu z z z
Q Q

η +  (17) 

 
3.3.2  The backstepping controller design 
 
We follow next the procedure proposed by Proposition 2.1. Let us define 

the initial Lyapunov function (of the first dynamics)  

 2
1 1

1( ) =
2

W η η  (18) 

Then there exists a function 1( )ϕ η  such that  

 ( )1 1
1

( ) ( ) < 0W f gη ϕ η
η
∂

+
∂

 (19) 

and this function can be computed as  

 1 1 1 1 2 1
2

1( ) = ( ) ( , ) ( ( )
( ) a y

a

a f K
g

ϕ η ϕ η η η η ξ ϕ η
η

⎡ ⎤− − − −⎣ ⎦  (20) 

 with 1 1
1

( ) = ϕϕ η η
η
∂
∂

. Then according to (8) the backstepping controller adapted to 

the problem at hand has the following structure  

 0 0 2 3
1

0 0

2 ( )= r
i y ii

Az z z zv v a K y v
Q z
η η
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 0 1 1 3
0 0 1 1

1= ( )
2ii r r
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v b z z az
z z z

η
η

+ +
+

 and 2 1= ( )y η ϕ η−  

This controller assures the stabilization of the process (defined by the error 
model) in the point where 1 2( , ) = (0,0)η η . In the way these variables were defined 
it follows that the 0  equilibrium correspond to the case when the levels in the 
tanks have riched their setpoints values. The stability of this controller can be 
proved by verifying that the extended  Lyapunov function 
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2
1 2 1

1( , ) = ( )
2

V W yη η η +  has its derivative negative for all admisible values of the 

state variables 1η  and 2η . The controller proposed guarantees the stabilization of 
the system arround the points given by the references. 

4. Results 

The designed controller has been tested on the experimental platform 
described in Section 3. The controller has been implemented in Simulink and 
tested by using a real-time configuration. The sampling period has been set to 1 
seconds (small enough to ensure a good emulation of the continuous time 
controller). 

Simulations have been carried out by setting the reference of the level in 
the first tank to 80% and 50% respectively (blue line in Fig. 2). The evolutions of 
the level in the two tanks are illustrated in the next figures with lines red and light 
blue. The evolution of the control input is represented with green-line. The control 
structure was tested in normal conditions with no major perturbations respectively 
when some faults were introduced (see Fig. 3). 

 

Fig.  2: Simulation results without perturbation  
 

 
Fig.  3: Simulation results with perturbation 
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It must be noticed that in steady state, the level in the first tank follows 
very accurate the reference value. As the tanks are coupled, the level in the second 
tank has the same characteristic.  In Fig. 3 it can be observed that the controller 
reacts rapidly at the changes in the process characteristiques in the direction to 
counteract the faults that occured. 

5. Conclusions 

In this article a backstepping controller has been designed to deal with the 
control of liquid level in a coupled tank system. The proposed strategy is a non-
linear control law which avoids the clasical liniarization designs when dealing 
with linear systems. Also this control law offers the same performances in any 
operating point. The results confirm the efficacy of this controller and some 
steady state errors can be observed due to the unmodeled dynamics or non-
linearities. The procedure proposed requires that the model of the process to be 
exactly determined. 
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