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HYBRID ITERATIVE TECHNIQUES APPROACH TO A

MINIMIZATION PROBLEM
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This paper is to investigate iterative techniques for solving a constrained convex

minimization problem in Hilbert spaces. We propose a hybrid gradient projection method
for solving this constrained convex minimization problem. Strong convergence result is

obtained under some additional conditions.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let
C a nonempty closed and convex subset of H. Recall that the (nearest point or metric)
projection from H onto C, is denoted by PC which assigns, to each q† ∈ H, the unique point
PC(q†) ∈ C fulfilling the following inequality

‖q† − PC(q†)‖ ≤ ‖p− q†‖, ∀p ∈ C.

It is well known that PC satisfies the following basic result: for all q† ∈ H,

〈q† − PC(q†), p− PC(q†)〉 ≤ 0, ∀p ∈ C. (1)

In this paper, our purpose aims to solve the following constrained convex minimization
problem:

min
z†∈C

ϕ(z†), (2)

where ϕ : H→ R is a real-valued convex function.
Throughout, we assume that the constrained convex minimization problem (2) is

consistent, i.e., its solution set is nonempty. Denote the solution set of (2) by Sol(C, ϕ).
Assume that the convex function ϕ : H → R is Fréchet differentiable. Use ∇ϕ to

denote the gradient of ϕ. It is well known that q† ∈ Sol(C, ϕ) is equivalent to solving the
following variational inequality problem

〈∇ϕ(q†), p− q†〉 ≥ 0, ∀p ∈ C. (3)

Note that the above optimality condition (3) can be converted into the following inequality

〈q† − (q† −∇ϕ(q†)), p− q†〉 ≥ 0, ∀p ∈ C. (4)

With the help of the characteristic inequality (1) of the projection PC, inequality (4) is
equivalent to the following fixed point equation

q† = PC(q† −$∇ϕ(q†)), (5)
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where $ is an any positive constant.
Based on the fixed point equation (5), we can apply the well-known gradient projection

method to solve the minimization problem (2). The gradient projection method defines an
iterative sequence {xn} by the following form

x0 ∈ C, xn+1 = PC(xn −$∇ϕ(xn)), n ≥ 0, (6)

In general, if ∇ϕ is only assumed to be Lipschitz continuous, then the sequence {xn}
generated by (6) is weak convergent in an infinite dimensional Hilbert spaces. If ∇ϕ is
Lipschitz and strongly monotone, then the sequence {xn} generated by (6) strongly con-
verges to a minimizer of ϕ in C. The gradient projection algorithm (6) is a powerful tool
for solving the constrained convex optimization problems ([1, 6, 9–11, 13–15, 17, 24, 47]),
fixed point problems ([3, 8, 12, 16, 19–23, 40]), variational inequality problems ([2, 28, 35–
38, 41–43, 46, 48, 49]), equilibrium problems ([30, 45, 50]), and split feasibility problems
([4, 5, 27, 29, 31–34, 39, 44]). Many scholars constructed and modified various projection
iterative algorithms for solving (2). Especially, Xu [26] suggested a viscosity-type gradi-
ent projective algorithm and proved that the proposed algorithm converges strongly to a
minimizer of (2).

In this paper, we continue to study iterative algorithms for solving the constrained
convex minimization problem (2). We propose a hybrid gradient projection method for
solving this constrained convex minimization problem. Strong convergence result is obtained
under some additional conditions.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Use → and ⇀
to stand for strong convergence and weak convergence, respectively. Use ωw(xn) := {x ∈
H : there exists a subsequence {xni

} ⊂ {xn} such that xni
⇀ x} to mean the weak ω-limit

set of the sequence {xn}.

Definition 2.1. An operator U : C→ H is said to be Lipschitz continuous if

‖U(x)− U(y)‖ ≤ ς‖x− y‖, ∀x, y ∈ C,

where ς > 0 is a constant.

We call U nonexpansive when ς = 1. It is well-known that the projection PC is
nonexpansive. If L < 1, then U is said to be contractive.

Definition 2.2. An operator U : C → H is said to be averaged, if and only if U can be
written as the average of the identity I and a nonexpansive operator; namely,

U = (1− γ)I + γS (7)

where γ ∈ (0, 1) is a constant and S is a nonexapnsive operator.
In general, we call U γ-averaged if (7) holds. In the sequel, we use Fix(U) to mean

the fixed point set of U .

Definition 2.3. Recall that an operator U : C→ H is said to be firmly nonexpansive, if

‖U(p†)− U(q†)‖2 ≤ 〈U(p†)− U(q†), p† − q†〉
for all p† ∈ C and q† ∈ C.

It is well known that the metric projection PC is firmly nonexpansive.

Definition 2.4. Recall that an operator φ : H → H is said to be strongly positive if there
exists a constant σ > 0 such that 〈φ(x), x〉 ≥ σ‖x‖2, ∀x ∈ H.

Lemma 2.1 ([18]). Let {xn} and {yn} be two bounded sequences in H. Suppose that the
following conditions are satisfied:
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• xn+1 = (1− ηn)yn + ηnxn,∀n ≥ 0;
• ηn ∈ (0, 1) and 0 < lim infn→∞ ηn ≤ lim supn→∞ ηn < 1;
• lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then, limn→∞ ‖xn − yn‖ = 0.

Lemma 2.2 ([7]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let S : C → H be a nonexpansive operator. If Fix(S) 6= ∅, then S is demiclosed, namely,
xn ⇀ p† and xn − Sxn → 0 imply that p† ∈ Fix(S).

Lemma 2.3 ([25]). Suppose the following conditions hold:

• αn ∈ (0,+∞), $n ∈ (0, 1) and βn ∈ R;
• αn+1 ≤ (1−$n)αn + βn;
•
∑∞
n=1$n =∞ and lim supn→∞ βn/$n ≤ 0 or

∑∞
n=1 |βn| <∞.

Then limn→∞ αn = 0.

3. Main results

In this section, we will state and prove our main results.
Let C be a nonempty closed convex subset of a real Hilbert space H. Assume that

ϕ : C→ R is a Fréchet differentiable convex function with the gradient ∇ϕ being ς-Lipschitz
continuous.

Next, we propose a hybrid iterative algorithm for solving the minimization problem
(2).

Algorithm 3.1. Assume that ψ : C→ H is a contractive operator with coefficient δ ∈ (0, 1).
Assume that φ : H → H is a strongly positive bounded linear operator with coefficient σ.
Assume that {$n} ⊂ (0, 2ς ) and {τn} ⊂ (0, 1) are two real number sequences. Assume that

µ is a positive constant. For a given initial point x0 ∈ C, define a sequence {xn} iteratively
by the following pattern

xn+1 = PC(I −$n∇ϕ)PC(τnµψ(xn) + (I − τnφ)xn), n ≥ 0. (8)

Now, we demonstrate the convergence of Algorithm 3.1.

Theorem 3.1. Suppose that Sol(C, ϕ) 6= ∅. Suppose that the following conditions hold:

(C1): limn→+∞ τn = 0,
∑+∞
n=0 τn = +∞ and 0 < µ < σ

δ ;

(C2): 0 < lim infn→+∞$n ≤ lim supn→+∞$n <
2
ς and limn→+∞($n+1 −$n) = 0.

Then the sequence {xn} generated by (8) converges to a minimizer x̂ ∈ Sol(C, ϕ) which is
the unique solution of the following VI

〈φ(x̂)− µψ(x̂), x− x̂〉 ≥ 0, ∀x ∈ Sol(C, ϕ). (9)

Proof. Let x∗ ∈ Sol(C, ϕ). Note that x∗ ∈ Sol(C, ϕ) ⇔ x∗ = PC(x∗ − $∇ϕ(x∗)),∀$ > 0.
Thanks to condition (C2), we obtain x∗ = PC(x∗ −$n∇ϕ(x∗)) for all n ≥ 0. Since PC and
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I −$n∇ϕ are nonexpansive ([26]), from (8), we have

‖xn+1 − x∗‖ = ‖PC(I −$n∇ϕ)PC[τnµψ(xn) + (I − τnφ)xn]− PC(I −$n∇ϕ)x∗‖
≤ ‖PC[τnµψ(xn) + (I − τnφ)xn]− PC[x∗]‖
≤ ‖τnµψ(xn) + (I − τnφ)xn − x∗‖
= ‖τnµ(ψ(xn)− ψ(x∗)) + (I − τnφ)(xn − x∗) + µτnψ(x∗)− τnφ(x∗)‖
≤ τnµ‖ψ(xn)− ψ(x∗)‖+ |I − τnφ|‖xn − x∗‖+ τn‖µψ(x∗)− φ(x∗)‖
≤ µδτn‖xn − x∗‖+ (1− στn)|‖xn − x∗‖+ τn‖µψ(x∗)− φ(x∗)‖
= [1− (σ − µδ)τn]|‖xn − x∗‖+ τn‖µψ(x∗)− φ(x∗)‖

≤ max

{
‖xn − x∗‖,

‖µψ(x∗)− φ(x∗)‖
σ − µδ

}
.

By induction, we have

‖xn+1 − x∗‖ ≤ max

{
‖x0 − x∗‖,

‖µψ(x∗)− φ(x∗)‖
σ − µδ

}
.

It follows that the sequence {xn} is bounded. It is obviously that the sequences {ψ(xn)},
{φ(xn)} and {∇ϕ(xn)} are all bounded. Observe that PC(I−$n∇ϕ) is 2+ς$n

4 -averaged for
each n ≥ 0. Then, according to the definition of the averaged operator, we have

PC(I −$n∇ϕ) =
2− ς$n

4
I +

2 + ς$n

4
Un, (10)

where Un is a nonexpansive operator.
Set vn = τnµψ(xn) + (I − τnφ)xn for all n ≥ 0. Taking into account of (8), we get

xn+1 = PC(I −$n∇ϕ)PC[vn]

=
2− ς$n

4
xn +

2 + ς$n

4
UnPC[vn] +

2− ς$n

4
(PC[vn]− xn)

=
2− ς$n

4
xn +

2 + ς$n

4

(
UnPC[vn] +

2− ς$n

2 + ς$n
(PC[vn]− xn)

)
.

(11)

Using the definition of vn, we have

‖vn+1 − vn‖ = ‖τn+1µψ(xn+1) + (I − τn+1φ)xn+1 − τnµψ(xn)− (I − τnφ)xn‖
≤ τn+1µ‖ψ(xn+1)− ψ(xn)‖+ µ|τn+1 − τn|‖ψ(xn)‖

+ |I − τn+1φ|‖xn+1 − xn‖+ |τn+1 − τn|‖φ(xn)‖
≤ [1− (σ − µδ)τn+1]‖xn+1 − xn‖+ µ|τn+1 − τn|‖ψ(xn)‖

+ |τn+1 − τn|‖φ(xn)‖,

(12)

and

‖vn − xn‖ = ‖τnµψ(xn) + (I − τnφ)xn − xn‖ ≤ τn(µ‖ψ(xn)‖+ ‖φ(xn)‖). (13)
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From (10), we receive

Un+1PC[vn]− UnPC[vn] =
4

2 + ς$n+1
(PC(I −$n+1∇ϕ)PC[vn]− 2− ς$n+1

4
PC[vn])

− 4

2 + ς$n
(PC(I −$n∇ϕ)PC[vn]− 2− ς$n

4
PC[vn])

=
4

2 + ς$n+1
(PC(I −$n+1∇ϕ)PC[vn]− 2− ς$n+1

4
PC[vn])

− 4

2 + ς$n+1
(PC(I −$n∇ϕ)PC[vn]− 2− ς$n

4
PC[vn])

+ (
4

2 + ς$n+1
− 4

2 + ς$n
)(PC(I −$n∇ϕ)PC[vn]

− 2− ς$n

4
PC[vn]).

It follows that

‖Un+1PC[vn]− UnPC[vn]‖ ≤ 4

2 + ς$n+1
‖PC(I −$n+1∇ϕ)PC[vn]

− PC(I −$n∇ϕ)PC[vn]‖+
ς|$n+1 −$n|

2 + ς$n+1
‖PC[vn]‖

+ | 4

2 + ς$n+1
− 4

2 + ς$n
|‖PC(I −$n∇ϕ)PC[vn]

− 2− ς$n

4
PC[vn]‖

Then,

‖Un+1PC[vn]− UnPC[vn]‖ ≤ 4|$n+1 −$n|
2 + ς$n+1

‖∇ϕ(PC[vn])‖+
ς|$n+1 −$n|

2 + ς$n+1
‖PC[vn]‖

+
4ς|$n+1 −$n|

(2 + ς$n+1)(2 + ς$n)
‖PC(I −$n∇ϕ)PC[vn]

− 2− ς$n

4
PC[vn]‖.

(14)

Set yn = UnPC[vn] + 2−ς$n

2+ς$n
(PC[vn]− xn) for all n ≥ 0. By virtue of (12), (13) and (14), we

acquire

‖yn+1 − yn‖ = ‖Un+1PC[vn+1]− UnPC[vn] + 2−ς$n+1

2+ς$n+1
(PC[vn+1]− xn+1) (15)

− 2−ς$n

2+ς$n
(PC[vn]− xn)‖

≤ ‖Un+1PC[vn+1]− Un+1PC[vn]‖+ ‖Un+1PC[vn]− UnPC[vn]‖
+ 2−ς$n+1

2+ς$n+1
‖PC[vn+1]− xn+1‖+ 2−ς$n

2+ς$n
‖PC[vn]− xn‖

≤ ‖Un+1PC[vn]− UnPC[vn]‖+ 2−ς$n+1

2+ς$n+1
‖vn+1 − xn+1‖

+‖vn+1 − vn‖+ 2−ς$n

2+ς$n
‖vn − xn‖

≤ [1− (σ − µδ)τn+1]‖xn+1 − xn‖+ µ|τn+1 − τn|‖ψ(xn)‖
+|τn+1 − τn|‖φ(xn)‖+ τn(µ‖ψ(xn)‖+ ‖φ(xn)‖) + τn+1(µ‖ψ(xn+1)‖

+‖φ(xn+1)‖) + 4|$n+1−$n|
2+ς$n+1

‖∇ϕ(PC[vn])‖+ ς|$n+1−$n|
2+ς$n+1

‖PC[vn]‖

+ 4ς|$n+1−$n|
(2+ς$n+1)(2+ς$n)

‖PC(I −$n∇ϕ)PC[vn]− 2−ς$n

4 PC[vn]‖.
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Since the sequences {xn}, {ψ(xn)}, {φ(xn)} and {∇ϕ(xn)} are bounded, with the help of
(15), we can deduce

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. (16)

Owing to (11), we have xn+1 = 2−ς$n

4 xn + 2+ς$n

4 yn. By condition (C2), we get 0 <

lim infn→∞
2−ς$n

4 ≤ lim supn→∞
2−ς$n

4 < 1. In the light of (16) and Lemma 2.1, we
conclude

lim
n→∞

‖yn − xn‖ = 0.

Hence,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

2 + ς$n

4
‖yn − xn‖ = 0. (17)

In terms of (8), we attain

‖xn − PC(I −$n∇ϕ)xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − PC(I −$n∇ϕ)xn‖
= ‖xn − xn+1‖+ ‖PC(I −$n∇ϕ)PC(τnµψ(xn) + (I − τnφ)xn)

− PC(I −$n∇ϕ)xn‖
≤ ‖xn − xn+1‖+ τn(µ‖ψ(xn)‖+ ‖φ(xn)‖).

This together with condition (C1) and (17) implies that

lim
n→+∞

‖xn − PC(I −$n∇ϕ)xn‖ = 0. (18)

Next we show that ωw(xn) ⊂ Sol(C, ϕ). Select any x̃ ∈ ωw(xn). Since {xn} and {$n}
are bounded, we can choose a common subsequence {ni} ⊂ {n} such that xni ⇀ x̃ and
$ni → $ ∈ (0, 2ς ) as i→ +∞.

Observe that

‖xni
− PC(I −$∇ϕ)xni

‖ ≤ ‖xni
− PC(I −$ni

∇ϕ)xni
‖+ ‖PC(I −$ni

∇ϕ)xni

− PC(I −$∇ϕ)xni‖
≤ ‖xni − PC(I −$ni∇ϕ)xni‖+ |$ni −$|‖∇ϕ(xni)‖,

which together with (18) implies that

lim
i→+∞

‖xni
− PC(I −$∇ϕ)xni

‖ = 0. (19)

Since $ ∈ (0, 2ς ), PC(I − $∇ϕ) is nonexpansive. Noting that xni ⇀ x̃, applying Lemma

2.2 to (19), we conclude that x̃ ∈ Fix(PC(I − $∇ϕ)) = Sol(C, ϕ). Therefore, ωw(xn) ⊂
Sol(C, ϕ).

It is clear that the VI (9) has a unique solution which is denoted by x̂. Next, we show
lim supn→∞〈µψ(x̂)− φ(x̂), xn − x̂〉 ≤ 0. In fact, we have

lim sup
n→∞

〈µψ(x̂)− φ(x̂), xn − x̂〉 = lim
k→∞

〈µψ(x̂)− φ(x̂), xnk
− x̂〉 (20)

Since {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
} such that xnkj

⇀ x† ∈
Sol(C, ϕ). Note that x̂ solves (9). Hence,

lim
j→∞
〈µψ(x̂)− φ(x̂), xnkj

− x̂〉 = 〈µψ(x̂)− φ(x̂), x† − x̂〉 ≤ 0. (21)

Combining (20) and (21), we deduce lim supn→∞〈µψ(x̂)− φ(x̂), xn − x̂〉 ≤ 0. This together
with τn → 0 implies that

lim sup
n→∞

〈µψ(x̂)− φ(x̂), τnµ(ψ(xn)− ψ(x̂)) + (I − τnφ)(xn − x̂)〉 ≤ 0. (22)
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Finally, we show xn → x̂. From (8), we have

‖xn+1 − x̂‖2 = ‖PC(I −$n∇ϕ)PC(τnµψ(xn) + (I − τnφ)xn)− PC(I −$n∇ϕ)x̂‖2

≤ ‖τnµψ(xn) + (I − τnφ)xn − x̂‖2

= ‖τnµ(ψ(xn)− ψ(x̂)) + (I − τnφ)(xn − x̂) + τn(µψ(x̂)− φ(x̂))‖2

≤ ‖τnµ(ψ(xn)− ψ(x̂)) + (I − τnφ)(xn − x̂)‖2

+ 2τn〈µψ(x̂)− φ(x̂), τnµ(ψ(xn)− ψ(x̂)) + (I − τnφ)(xn − x̂)〉
≤ [1− (σ − µδ)τn]‖xn − x̂‖2 + 2τn〈µψ(x̂)− φ(x̂), τnµ(ψ(xn)− ψ(x̂))

+ (I − τnφ)(xn − x̂)〉.

(23)

According to Lemma 2.3, (22) and (23), we conclude that xn → x̂. The proof is completed.
�

4. Conclusions

This paper, we investigate iterative algorithms for solving a constrained convex min-
imization problem (2) in Hilbert spaces. A popular way for finding a minimizer of (2)
is to apply the well-known gradient projection algorithm (6). In this paper, we propose
a hybrid gradient projection algorithm [Algorithm 3.1] for solving the constrained convex
minimization problem (2). We prove a strong convergence result [Theorem 3.1] under some
assumptions. Our result improves and extends some existing results in the literature.
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