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MINIMIZATION PROBLEM
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This paper is to investigate iterative techniques for solving a constrained convex
minimization problem in Hilbert spaces. We propose a hybrid gradient projection method
for solving this constrained convexr minimization problem. Strong convergence result is
obtained under some additional conditions.
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1. Introduction

Let 3 be a real Hilbert space with inner product (-,-) and induced norm || - ||. Let
C a nonempty closed and convex subset of J. Recall that the (nearest point or metric)
projection from 3 onto €, is denoted by Pe which assigns, to each ¢ € I, the unique point
Pe(q") € @ fulfilling the following inequality

lg" = Pe(aN < llp —4"l, ¥p € €.
It is well known that Pg satisfies the following basic result: for all ¢t € I,

(¢" = Pe(q"),p— Pe(q") <0, Vpe€. (1)
In this paper, our purpose aims to solve the following constrained convex minimization
problem:
min ¢(z1), (2)
zTeC
where ¢ : H{ — R is a real-valued convex function.
Throughout, we assume that the constrained convex minimization problem (2) is
consistent, i.e., its solution set is nonempty. Denote the solution set of (2) by Sol(C, ¢).
Assume that the convex function ¢ : 5 — R is Fréchet differentiable. Use V¢ to
denote the gradient of ¢. It is well known that ¢ € Sol(C, ¢) is equivalent to solving the
following variational inequality problem

(Veld),p—d') >0, vpee 3)
Note that the above optimality condition (3) can be converted into the following inequality
(a" = (¢" = Veld"),p—d') >0, vpee (4)

With the help of the characteristic inequality (1) of the projection Pe, inequality (4) is
equivalent to the following fixed point equation

q' = Pe(q" — @Ve(qh), (5)
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where @ is an any positive constant.

Based on the fixed point equation (5), we can apply the well-known gradient projection
method to solve the minimization problem (2). The gradient projection method defines an
iterative sequence {z,} by the following form

xg € C,xpy1 = Pe(x, —@Vep(zy,)), n >0, (6)

In general, if V¢ is only assumed to be Lipschitz continuous, then the sequence {z,}
generated by (6) is weak convergent in an infinite dimensional Hilbert spaces. If Ve is
Lipschitz and strongly monotone, then the sequence {x,} generated by (6) strongly con-
verges to a minimizer of ¢ in €. The gradient projection algorithm (6) is a powerful tool
for solving the constrained convex optimization problems ([1, 6, 9-11, 13-15, 17, 24, 47]),
fixed point problems ([3, 8, 12, 16, 19-23, 40]), variational inequality problems ([2, 28, 35—
38, 41-43, 46, 48, 49]), equilibrium problems ([30, 45, 50]), and split feasibility problems
([4, 5, 27, 29, 31-34, 39, 44]). Many scholars constructed and modified various projection
iterative algorithms for solving (2). Especially, Xu [26] suggested a viscosity-type gradi-
ent projective algorithm and proved that the proposed algorithm converges strongly to a
minimizer of (2).

In this paper, we continue to study iterative algorithms for solving the constrained
convex minimization problem (2). We propose a hybrid gradient projection method for
solving this constrained convex minimization problem. Strong convergence result is obtained
under some additional conditions.

2. Preliminaries

Let € be a nonempty closed convex subset of a real Hilbert space H. Use — and —
to stand for strong convergence and weak convergence, respectively. Use w,,(z,) := {x €
JH : there exists a subsequence {x,,} C {x,} such that x,,, — x} to mean the weak w-limit
set of the sequence {z,}.

Definition 2.1. An operator U : € — H is said to be Lipschitz continuous if
1U(z) =U)ll <<llz —yll, Vo, y € €,
where ¢ > 0 is a constant.

We call U nonexpansive when ¢ = 1. It is well-known that the projection Pe is
nonexpansive. If L < 1, then U is said to be contractive.

Definition 2.2. An operator U : € — H is said to be averaged, if and only if U can be
written as the average of the identity I and a nonexpansive operator; namely,

U=(1-y)1+~8 (7)

where v € (0,1) is a constant and S is a nonexapnsive operator.
In general, we call U ~y-averaged if (7) holds. In the sequel, we use Fixz(U) to mean
the fized point set of U.

Definition 2.3. Recall that an operator U : C — H is said to be firmly nonexpansive, if
1Ueh -U@)I* < wph) -v@).p" —d)
for all pt € € and ¢t € C.
It is well known that the metric projection Pe is firmly nonexpansive.

Definition 2.4. Recall that an operator ¢ : H — H is said to be strongly positive if there
exists a constant o > 0 such that (¢(z),z) > ol||z||?, Vo € K.

Lemma 2.1 ([18]). Let {z,} and {yn} be two bounded sequences in H. Suppose that the
following conditions are satisfied:
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o Tpy1 = (1= 00)Yn + Nupn,Vn > 0;
e 1, €(0,1) and 0 < liminf, o0 7n < limsup,,_, oo 7 < 1;
o limsup,, o ([¥nt1 — Ynll = [[Tnr1 — 2n]]) <0.

Then, lim, o0 |2 — yn| = 0.
Lemma 2.2 ([7]). Let C be a nonempty closed convex subset of a real Hilbert space J.

Let S : € — H be a nonexpansive operator. If Fix(S) # 0, then S is demiclosed, namely,
z, —p' and x,, — Sz,, — 0 imply that p' € Fiz(S).

Lemma 2.3 ([25]). Suppose the following conditions hold:

e a, € (0,+00), w, € (0,1) and B, € R;
L4 an—i—l S (1 - wn)an + ﬂn;
° 220:1 wy, = 0o and imsup,,_, . Bn/wn <0 or 220:1 |Bn| < o0.

Then lim,,_yoo &y, = 0.

3. Main results

In this section, we will state and prove our main results.

Let € be a nonempty closed convex subset of a real Hilbert space . Assume that
p : € — R is a Fréchet differentiable convex function with the gradient Vi being ¢-Lipschitz
continuous.

Next, we propose a hybrid iterative algorithm for solving the minimization problem
(2).

Algorithm 3.1. Assume that v : C — H is a contractive operator with coefficient 6 € (0,1).
Assume that ¢ : H — H is a strongly positive bounded linear operator with coefficient o.
Assume that {w,} C (0, %) and {r,} C (0,1) are two real number sequences. Assume that
W is a positive constant. For a given initial point xo € C, define a sequence {x,} iteratively
by the following pattern

Tnt1 = Pe(l — @n Vo) Pe(Tnpitp(zn) + (I — Ta@)Tn), n 2 0. (8)
Now, we demonstrate the convergence of Algorithm 3.1.

Theorem 3.1. Suppose that Sol(C, p) # 0. Suppose that the following conditions hold:

(C1): limy 400 7 =0, Z::(J) Tp = +00 and 0 < p < §;
(C2): 0 < liminf,, 4o @, < limsup,,_,, @, < % and lim,,_, 4 oo (p1 — @n) = 0.

Then the sequence {x,} generated by (8) converges to a minimizer & € Sol(C, ¢) which is
the unique solution of the following VI

(¢(2) — pt(2), x — &) = 0, Vo € Sol(€, ). (9)

Proof. Let z* € Sol(@, ). Note that z* € Sol(C, ¢) & z* = Po(x* — wVe(z*)),Vw > 0.
Thanks to condition (C2), we obtain z* = Po(z* — w, V(z*)) for all n > 0. Since Pe and
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I — @, V¢ are nonexpansive ([26]), from (8), we have

[2n41 — 2" = [[Pe(I — @n Vo) Pelmnput(zn) + (I — Ta@)zn] — Pe(I — @wnV)z™||
< |[Pe[raptp(en) + (I = Tag)zn] — Pela™]||
SN rnptp(zn) + (I — 7o) zn — |
= [rap((zn) — (@) + (I = Tad) (@ — %) + prat(z”) — Tag (2™
< Tapl[ (@) — V(@) + |1 = modll|n — 27| + 7ol e (™) — ()|
< pb7nllen — || + (L= om)[l|zn — 27| + 7ol pyp(z") — o(27)|]
= [ = (o = pé)mallllzn — 2| + mllutp(z") — o(z")]|

o b ot

<
_max{”aﬁn p—

By induction, we have

N CcaErCalN

— ¥l < ma; —
e ="l < ma o o

It follows that the sequence {z,} is bounded. It is obviously that the sequences {9 (x,)},
{¢(z,)} and {Ve(z,)} are all bounded. Observe that Pe(I — @, V) is 25Z= averaged for
each n > 0. Then, according to the definition of the averaged operator, we have

2w, 24w
Pe(l - @, V) = =21 4+ 22220y, (10)

where U, is a nonexpansive operator.
Set vy, = Tpu(xy) + (I — Th¢)x, for all n > 0. Taking into account of (8), we get

Tny1 = Pe(I — w, V) Pelvy)

2 — ¢y, 2 + ¢y, 2 —gqw,
= T on + 1 Uy, Pelvn] + 1 (Pelvn] — xn) (11)
2 — ¢y, 2 + ¢y, 2 —qw,
TR + 1 U, G[U]+2+gwn( elvn] — zn))

Using the definition of v,,, we have

||Un+1 - Un” = HTnJrlﬂl/)(anrl) + (I - Tn+1¢)$n+1 - Tn/ﬂp(xn) - (I - Tn¢)xnl|
< Tl (@ns1) = (@n) || + g — malllv ()|
1 = Tns1dllznis — znll + |7ns1 — Tallo(2n) | (12)
<1 = (o= pd)mni]llTntr — znll + plTns1 — Talllb(zn) |
+ 1Tnt1 = Talllo(@n)ll,

and

vn — xp || = [|[T0pap(xn) + (I = Tn@)xn — || < 70 (el (@) + |6(z0)]])- (13)
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From (10), we receive

4 2 —qwy,
Un1Pefvn] — UnPelvn] = 5——— E— (Pe(I = w41 Vep) Pelon] - —— 1 Pelvn))
4 2 —gcwy,
— ——(Pe(I — @ V) Pelvn] — —" Polvy,
5 oo (Pell = @0 V) Pelun] = =" Pelua])
2 — w41
=——  (Pe(I— Pelv,] — ——*Lp
e Pell = @ Vi) Pelun] = = P Pelun))
4 2 —gwy,
- (Pe(I = @, V) Pe[vy] — =—""Pe[v,
2+cwn+1( e (I — wn Vi) Pelvn] 1 elvn])
+( ! ! )(Pe(! V) Pelvn]
— — TWhn Un
24cwpy1 245w, ¢ p)te
2 —cw,
- = Pelvy)).

It follows that

Uny1Pelva] — UnPelvn]l| £ s——IPe(I — @n+1V)Pe[vn]
24 SWn+1

Sl@nt1 — wn| | Pe[vn]|

— Pe(I — w,Vo)Pe|v,]||| +
G( n 90) @[n]H 2 ¥ cnt1

4 4
+ - Pe(I — @, V)Pelv,
e - g IPel ~ =V Pl
9 _
- T Pl
Then,
4|wn+1 - wn| §|wn+1 - wn'
Uni1Pelvn] — UpPelvn]|| £ —————||Vo(Pelvn])|| + ————— || Pelvn
[Un+1Pelvn] elon]ll Sp— IVe(Pelvn])l — [ Pelvn]|
4§|wn 1— wn|
Bt cmm) @t smy) el ~=n VeI Pelun] )
2—-sw
— 2 P
Set ¥, = UpPelvn] + 3;22: (Pelvn] — xy) for all n > 0. By virtue of (12), (13) and (14), we
acquire '
[Yn+1 = ynll = IUns1Pelvnt1] — UnPelvn] + E;ZZHE (Pe[vn+1] — Tn1) (15)

—31223 (Pe [Un] — )|

< | Uns1Pelvat1] — UntrPelvn]l| + [|Uny1Pe[vn] — UnPelva]||

2—swn —SWn
+oremrt | Pelvnt1] = nrall + 572221 Pelva] — zall

< Un41Pelvn] = UnPelvn]| + 5222 op 41 — T |

H|vnt1 — vnl + 3;2;2 [vn — x|

< [1= (0 = p8)Tnslllznsn — @l + plrass = 7alll(2n)]
+rn1 = Tall@(@n) | + 7l (@)l + 1 (@n)ll) + T ([t (@n i)
Hlg(@ar)) + UZz==al | Veo(Pefva]) | + L5221l e[, ]|

24+Cn 41

-I-MHPC(I — @, V) Pelvn] — 274wn Pelvn]]]-

+STnt1)(2+sn)
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Since the sequences {z,}, {¢(zn)}, {¢(zn)} and {Ve(z,)} are bounded, with the help of
(15), we can deduce

tim sup([l g1 — gall — [2as1 — 2a) < 0. (16)
n—oo

2—qwn,

Owing to (11), we have x,11 = ===z, + 2"'2“’” Yn. By condition (C2), we get 0 <
liminf,, 2_17”" < limsup,, o % < 1. In the light of (16) and Lemma 2.1, we
conclude

lim |y, — zn] = 0.
n—r oo
Hence,
. . 245w
lim |[2p41 — 2p) = lim ———"||y, — 2, = 0. (17)
n—oo n—oo

In terms of (8), we attain
[2n = Pe(I = @nV)on| < llon = Tnirl + [|2n1 — Pe(l — @n V) zn|
= [[en = zniall + [[Pe(l = @n Vo) Pe(Taptp(xn) + (I = Tnd)an)
— Pe(I — @ V)o|
< lzn = @ngall + 7o (pll (@) | + [[d(zn))-
This together with condition (C1) and (17) implies that
iz, Pe(l ~ w2 V)ra] = 0. (18)

Next we show that wy,(x,) C Sol(C, ). Select any & € wy(zy). Since {x,} and {w,}
are bounded, we can choose a common subsequence {n;} C {n} such that z,, — & and
Wy, = W E (0,%) as i — +o0.
Observe that
|z, = Pe(I = @Vp)an, || < lon, — Pe(I — @, Vo) an, | + |[Pe(I — @n, Vo)an,
— Pe(I —wVo)x,,
< ||'rn7. - P@(I - wmvcp)mm

)

which together with (18) implies that
lim ||zn, — Pe(I —@wVe)x,,| =0. (19)

1—+o0o
Since w € (0, %), Pe(I — wV) is nonexpansive. Noting that z,, — Z, applying Lemma
2.2 to (19), we conclude that & € Fiz(Pe(I — @wVp)) = Sol(C, ). Therefore, wiy,(z,) C
Sol(€, ).
It is clear that the VI (9) has a unique solution which is denoted by Z. Next, we show
lim sup,,_, o (pp(Z) — ¢(2), zy, — ) < 0. In fact, we have

lim sup(uyp(2) — (&), on — &) = lim {u)(2) — &(2), n, — ) (20)

Since {xn, } is bounded, there exists a subsequence {n, } of {xn,} such that z,, — zt €
Sol(C, ¢). Note that & solves (9). Hence,

lim (&) = $(2), 0y, — &) = (ub() — 9(8), "~ 2) <0, (21)

Combining (20) and (21), we deduce limsup,,_, . (p(&) — ¢(&), x,, — &) < 0. This together
with 7,, — 0 implies that

lim sup(u(2) — ¢(2), Tnp(P(20) — ¥(2)) + (I — 70) (w5, — 7)) < 0. (22)

n—o0
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Finally, we show x,, — &. From (8), we have
[2ns1 = 2[|* = [|1Pe(I — @wn Vi) Pe(tnpt(20) + (I = Tad)an) — Pe(I — wn V)i

< (@) + (I = Tad) 2y — &2

= [ map(@(zn) = (&) + (I = Tad) (20 — ) + 1o (u0(2) — ¢(2))|1?

< Irap((n) = (&) + (I = 70 (@n — )| (23)
+ 270 (up(2) — G(2), Tap(Y(2n) — () + (I — Tnd) (20 — )

<[ (0 = pd)malllen — &|* + 270 (uip(2) — D(2), Tp((@n) — V(&)
+ (I = o) (xn — 2)).

According to Lemma 2.3, (22) and (23), we conclude that x,, — &. The proof is completed.
]

4. Conclusions

This paper, we investigate iterative algorithms for solving a constrained convex min-
imization problem (2) in Hilbert spaces. A popular way for finding a minimizer of (2)
is to apply the well-known gradient projection algorithm (6). In this paper, we propose
a hybrid gradient projection algorithm [Algorithm 3.1] for solving the constrained convex
minimization problem (2). We prove a strong convergence result [Theorem 3.1] under some
assumptions. Our result improves and extends some existing results in the literature.
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