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MODULE MEAN FOR BANACH ALGEBRAS

by A. Bodaghi1, H. Ebrahimi2, M. Lashkarizadeh Bami3 and M. Nemati4

In this paper, the module (ϕ, φ)-amenable Banach algebras are character-
ized. Also, the relations of module (ϕ, φ)-amenability of a Banach algebra and
their ideals are studied. Some mild conditions are found for a Banach algebra to
possess a module (ϕ, φ)-mean of norm 1.
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1. Introduction

For a non-zero character φ on a Banach algebra A, Kaniuth, Lau and Pym
[11] introduced and studied the interesting notion of φ-amenability; see also [9,
13]. Precisely, a Banach algebra A is φ-amenable if there exists a bounded linear
functional m on the dual space A∗ such that m(φ) = 1 and m(f · a) = φ(a)m(f)
for all a ∈ A and f ∈ A∗. Bodaghi and Amini [5] introduced the notion of module
(ϕ, φ)-amenability for a class of Banach algebras that are modules over another
Banach algebra as follows:

Let A and A be Banach algebras such that A is a Banach A-bimodule with
compatible actions, that is

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ A).
Let ΦA be the character space of A and φ ∈ ΦA ∪ {0}. Consider the linear map
ϕ : A −→ A such that

ϕ(ab) = ϕ(a)ϕ(b), ϕ(a · α) = ϕ(α · a) = φ(α)ϕ(a) (a ∈ A, α ∈ A).

We denote the set of all such maps by ΩA. A bounded linear functionalm : A∗ −→ C
is called a module (ϕ, φ)-mean on A∗ if m(f ·a) = φ◦ϕ(a)m(f), m(f ·α) = φ(α)m(f)
and m(φ ◦ ϕ) = 1 for each f ∈ A∗, a ∈ A and α ∈ A. We say A is module (ϕ, φ)-
amenable if there exists a module (ϕ, φ)-mean on A∗ [5]. We note that if A = C and φ
is the identity map then the module (ϕ, φ)-amenability coincides with ϕ-amenability
[11]. In [5], it is characterized the module (ϕ, φ)-amenability of a Banach algebra
A through vanishing of the first Hochschild module cohomology group H1

A(A, X∗)
for certain Banach A-bimodules X (for modification of the first Hochschild module
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cohomology group H1
A(A, X∗), by using module homomorphisms between Banach

algebras, refer to [4]).
In this paper, we characterize the module (ϕ, φ)-amenability of Banach alge-

bras through the existence of a bounded net (aγ)γ inA such that ∥aaγ−φ◦ϕ(a)aγ∥ →
0 and ∥α ·aγ−φ(α)aγ∥ → 0 for all a ∈ A and α ∈ A. Then, we focus on (ϕ, φ)-means
and establish various criteria for their existence.

2. Main Results

Let X be a Banach A-bimodule and a Banach A-bimodule with compatible
actions, that is

α · (a · x) = (α · a) · x, a · (α · x) = (a · α) · x, (α · x) · a = α · (x · a)

for all a ∈ A, α ∈ A, x ∈ X and similarly for the right and two-sided actions. Then
we say that X is a Banach A-A-module. If moreover α · x = x · α for all α ∈ A
and x ∈ X, then X is called a commutative A-A-module. Note that when A acts on
itself by algebra multiplication, it is not in general a Banach A-A-module. Indeed, if
A is a commutative A-module and acts on itself by multiplication from both sides,
then it is also a Banach A-A-module.

Let A and A be Banach algebras such that A is a Banach A-bimodule with
compatible actions. An A-module map D : A −→ X is called a module derivation if

D(ab) = a ·D(b) +D(a) · b (a, b ∈ A).

A module derivation D is called bounded if there exists M > 0 such that ∥D(a)∥ ≤
M∥a∥, for every a ∈ A. Note that boundedness of D implies its norm continuity
while D can be non-linear. If X is a commutative A-A-module, then each x ∈ X
defines an inner module derivation as Dx(a) = a · x − x · a for all a ∈ A. The
Banach algebraA is calledmodule amenable (as an A-module) if for any commutative
Banach A-A-module X, each A-module derivation D : A −→ X∗ is inner [1]; for
other notions of module amenability for Banach algebras refer to [2], [6] and [14].
Note that if if A = C, then the module amenability will absolutely overlap with
Johnson’s amenability [10] for a Banach algebra.

Theorem 2.1. Let A be a Banach A-module with compatible actions and ϕ ∈ ΩA

and φ ∈ ΦA such that φ ◦ ϕ ̸= 0. Then the following assertions are equivalent:

(i) A is module (ϕ, φ)-amenable;
(ii) A is φ ◦ ϕ-amenable.

Proof. That (i) implies (ii) is trivial. So, it suffice to show that (ii) implies (i). To
see this, suppose that m ∈ A∗∗ is a φ ◦ ϕ-mean and a0 ∈ A such that φ ◦ ϕ(a0) = 1.
Then, we set n := a0 ·m ∈ A∗∗. It is easy to see that n(φ ◦ ϕ) = 1. Moreover,

⟨n, f · a⟩ = ⟨m, f · (aa0)⟩ = m(f)φ ◦ ϕ(aa0) = m(f)φ ◦ ϕ(a) = n(f)φ ◦ ϕ(a)

for all a ∈ A, and

⟨n, f · α⟩ = ⟨m, f · (α · a0)⟩ = m(f)φ ◦ ϕ(α · a0) = m(f)φ(α)φ ◦ ϕ(a0) = n(f)φ(α)

for all a ∈ A. It follows that n is a module (ϕ, φ)-mean. �
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Note that Theorem 2.1 does not tell us module (ϕ, φ)-amenability is equivalent
to ϕ-amenability [11] because every character on A is not of the form φ ◦ ϕ where
ϕ ∈ ΩA and φ ∈ ΦA.

We have the following analogue of a result in Gourdeau [8] on amenable Banach
algebras. We bring the proof for the sake of completeness.

Theorem 2.2. Let A be a Banach A-module with compatible actions and ϕ ∈
ΩA, φ ∈ ΦA. Then the following statements are equivalent:

(i) A is module (ϕ, φ)-amenable;
(ii) If X is a Banach A-A-module such that a·x = ϕ(a)·x and α·x = x·α = φ(α)x

for all x ∈ X, a ∈ A and α ∈ A, then any A-module derivation D : A −→ X∗∗

is inner;
(iii) If X is a Banach A-A-module such that a·x = ϕ(a)·x and α·x = x·α = φ(α)x

for all x ∈ X, a ∈ A and α ∈ A, then any A-module derivation D : A −→ X
is approximately inner; that is, there exists a bounded net (xγ) in X such that
D(a) = limγ(a · xγ − xγ · a) for all a ∈ A.

Proof. (i) ⇒ (ii) It follows from the implicatiom (i) ⇒ (ii) of [5, Theorem 2.1].
(ii) ⇒ (iii) If ι : X −→ X∗∗ is the canonical embeding, then ι ◦ D is a

module derivation from A into X∗∗. By assumption, there exists Λ ∈ X∗∗ with
(ι ◦D)(a) = a · Λ− Λ · a for all a ∈ A. Set σ = σ(X∗∗, X∗), the weak∗ topology on
X∗∗, m = ∥Λ∥, and U = {x ∈ X : λ(x) ≤ m}, where λ ∈ X∗. By [7, A.3.29 (i)],

Λ ∈ ι(U)
σ
. Now, fix a1, ..., an ∈ A. Then, the set V =

∏n
j=1(aj · U − U · aj) is a

convex subset of Xn, and (D(a1), · · · , D(an)) belong to the weak closure of V . It
follows from Mazur’s theorem that (D(a1), · · · , D(an)) belongs to the norm closure
of V . Thus, for each finite subset F of A and ϵ > 0, there exists xF,ϵ ∈ U such that

∥D(a)− (a · xF,ϵ − xF,ϵ·a)∥ < ϵ (a ∈ F ).

The family of such pairs (F, ϵ) is a directed for the partial order ≼ given by (F1, ϵ1) ≼
(F2, ϵ2) if F1 ⊂ F2 and ϵ1 ≥ ϵ2. Obviously, (xF,ϵ) is the required net.

(iii)⇒ (i) LetD : A −→ X∗ be a module derivation, and let (λα) be a bounded
net in X∗ such that D(a) = limα(a ·λα−λα ·a) for all ∈ A. By passing to a subnet,
we suppose that λα → λ in (X∗, σ(X∗, X)), and hence D = Dλ is inner. Therefore,
A is module (ϕ, φ)-amenable by [5, Theorem 2.1].

�

Let A be a commutative Banach algebra. It is easy to see that each φ ∈ ΦA

induces a A-module structure on A with actions α·β = β ·α = φ(α)β for all α, β ∈ A.
Let ϕ ∈ ΩA. Then, we define an A-module structure on A by a · α = ϕ(a)α and
α · a = αϕ(a) for all a ∈ A, and α ∈ A. Then A becomes a commutative Banach
A-A-module which is denoted by Aϕ,φ and a bounded module derivation from A

into Aϕ,φ is called a point module derivation on A at (ϕ, φ). So, the following results
follows immediately from Theorem 2.2 (see also [2] and [3]).

Corollary 2.1. If A is commutative and A is module (ϕ, φ)-amenable, then there
is no non-zero bounded module point derivation on A at (ϕ, φ).

Proposition 2.1. Let A be a Banach A-module with compatible actions and ϕ ∈
ΩA, φ ∈ ΦA. Then, A is module (ϕ, φ)-amenable if and only if there exists a bounded
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net (aγ) in A such that φ ◦ ϕ(aγ) = 1 for all γ and

∥aaγ − φ ◦ ϕ(a)aγ∥ → 0 and ∥α · aγ − φ(α)aγ∥ → 0

for all a ∈ A and α ∈ A.

Proof. If m is a w∗-cluster point of (aγ), then clearly m satisfies m(φ ◦ ϕ) = 1,
m(f · a) = φ ◦ ϕ(a)m(f) and m(f ·α) = φ(α)m(f) for all f ∈ A∗, a ∈ A and α ∈ A.

Conversely, let m be a module (ϕ, φ)-mean. Then, m is the w∗-limit of some
net (bγ) in A with ∥bj∥ → ∥m∥. So, φ ◦ ϕ(bγ) → m(φ ◦ ϕ) = 1, and w∗-continuity
gives

abγ − φ ◦ ϕ(a)bγ → 0 and α · bγ − φ(α)bγ → 0

in the w∗-topology for all a ∈ A and α ∈ A. So, the nets (abγ − φ ◦ ϕ(a)bγ) and
(α ·bγ−φ(α)bγ) in A, both converge to 0 weakly for all a ∈ A and α ∈ A. Now, take
any finite subsets F = {a1, ..., ak} and H = {α1, ..., αℓ} of A and A, respectively.
Let

C = {((aib− φ ◦ ϕ(ai)b)ki=1, (αj · b− φ(αj)b)
ℓ
j=1, φ ◦ ϕ(b)− 1) : b ∈ A}.

Then, in the Banach space Ak+ℓ ×C, 0 is in the weak closure of C and hence in the
norm closure because C is convex. Thus, given ε > 0, we can find bF,H,ε ∈ A such
that ∥bF,H,ε∥ ≤ 2∥m∥, say, |φ ◦ ϕ(bF,H,ε) − 1| < ε. Moreover, for each a ∈ A and
α ∈ A we have

∥abF,H,ε − φ ◦ ϕ(a)bF,H,ε∥ < ε and ∥α · bF,H,ε − φ(α)bF,H,ε∥ < ε.

Finally, replace bF,H,ε by a scalar multiple aF,H,ε = λF,H,εbF,H,ε for which φ ◦
ϕ(aF,H,ε) = 1. Hence, |λF,H,ε| < 1

1−ε and

∥aaF,H,ε − φ ◦ ϕ(a)aF,H,ε∥ <
ε

1− ε
and ∥α · aF,H,ε − φ(α)aF,H,ε∥ <

ε

1− ε
.

Therefore, the net (aF,H,ε) is a bounded approximate module (ϕ, φ)-mean and m is
the w∗-limit of (aF,H,ε). �

Lemma 2.1. Let A be a Banach A-module with compatible actions, let I be a closed
left ideal and A-submodule of A and let ϕ ∈ ΩA, φ ∈ ΦA such that I * ker(φ ◦ ϕ).
Then, the module (ϕ|I , φ)-amenability of I implies the module (ϕ, φ)-amenability of
A.

Proof. Since I is module (ϕ|I , φ)-amenable, there is a net (aγ) ⊆ I with ϕ|I(aγ) = 1,
∥baγ−ϕ|I(b)aγ∥ → 0 and ∥α ·aγ −φ|I(α)aγ∥ → 0 for all b ∈ I and α ∈ A. Fix ι0 ∈ I
such that φ ◦ ϕ|I(ι0) = 1 and set ιγ := ι0aγ for all γ. So, φ ◦ ϕ(ιγ) = ϕ|I(aγ) = 1
and for each a ∈ A and α ∈ A we have

∥aιγ − φ ◦ ϕ(a)ιγ∥ = ∥aι0aγ − φ ◦ ϕ(a)ι0aγ∥
≤ ∥aι0aγ − φ ◦ ϕ(a)φ ◦ ϕ|I(ι0)aγ∥
+ ∥φ ◦ ϕ(a)ϕ|I(ι0)aγ − φ ◦ ϕ(a)ι0aγ∥
= ∥aι0aγ − φ ◦ ϕ|I(aι0)aγ∥
+ |φ ◦ ϕ(a)|∥φ ◦ ϕ|I(ι0)aγ − ι0aγ∥ → 0,
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and

∥α · ιγ − φ(α)ιγ∥ = ∥α · (ι0aγ)− φ(α)ι0aγ∥
≤ ∥(α · ι0)aγ − φ(α)φ ◦ ϕ|I(ι0)aγ∥
+ ∥φ(α)φ ◦ ϕ|I(ι0)aγ − φ(α)ι0aγ∥
= ∥(α · ι0)aγ − φ ◦ ϕ|I(α · ι0)aγ∥
+ |φ(α)|∥φ ◦ ϕ|I(ι0)aγ − ι0aγ∥ → 0.

Thus, A is module (ϕ, φ)-amenable. �
The next result which follows from Lemma 2.1 and [5, Lemma 2.6], describes

the interaction between character module-amenability of a Banach algebra and its
closed ideals.

Proposition 2.2. Let A be a Banach A-module with compatible actions and let I
be a closed left ideal which is a A-submodule of A. If ϕ ∈ ΩA, φ ∈ ΦA such that
I * ker(φ ◦ ϕ), then the following statements are equivalent:

(i) I is module (ϕ|I , φ)-amenable;
(ii) A is module (ϕ, φ)-amenable.

Proposition 2.3. Let A be a Banach A-bimodule with compatible actions and φ ∈
ΦA, ϕ ∈ ΩA. Suppose that for each f ∈ A∗∗ there exists mf ∈ A∗∗ such that
∥mf∥ = ⟨mf , φ ◦ ϕ⟩ = 1 and

⟨mf , f · a⟩ = φ ◦ ϕ(a)⟨mf , f⟩, ⟨mf , f · α⟩ = φ(α)⟨mf , f⟩
for all a ∈ A, α ∈ A. Then, A has a module (ϕ, φ)-mean of norm 1.

Proof. Define

S = {m ∈ A∗∗ : ∥m∥ = ⟨m,φ ◦ ϕ⟩ = 1} = {m ∈ A∗∗ : ∥m∥ ≤ 1; ⟨m,φ ◦ ϕ⟩ = 1}.
It is easy to check that S is a semigroup with the first Arens product and w∗-compact
subset of A∗∗. Let F denote the collection of all finite subset F of A∗. For every
F ∈ F, we put

SF = {m ∈ S : ⟨m, f · a⟩ = φ ◦ ϕ(a)⟨m, f⟩,
⟨m, f · α⟩ = φ(α)⟨m, f⟩, a ∈ A, α ∈ A, f ∈ F}.

Then, SF is closed in S and SF1 ⊇ SF2 whenever F1 ⊆ F2. It is obvious that each
m ∈

∩
{SF : f ∈ F} is a module (ϕ, φ)-mean with ∥m∥ = 1. Now, if we show

that SF ̸= Ø for all F ∈ F, then m ∈
∩

F∈F SF is the required module mean by
finite intersection property. We argue this by induction on number of elements in F .
Suppose that some m1 ∈ SF exists and consider g ∈ A∗�F . Set h = m1 · g ∈ A∗.
By assumption, there exists m2 ∈ S{h} such that m = m2m1 ∈ S (since S is a
semigroup). For each f ∈ F and a, b ∈ A, we have

⟨m1 · (f · a), b⟩ = ⟨m1, f · (ab)⟩ = φ ◦ ϕ(a)⟨m1, f⟩φ ◦ ϕ(b).
This shows that m1 · (f ·a) = (φ◦ϕ)(a)⟨m1, f⟩φ◦ϕ. Similarly, m1 ·f = ⟨m1, f⟩φ◦ϕ.
So

⟨m, f · a⟩ = ⟨m2m1, f · a⟩ = ⟨m2,m1 · (f · a)⟩ = φ ◦ ϕ(a)⟨m1, f⟩⟨m2, φ ◦ ϕ⟩
= φ ◦ ϕ(a)⟨m2, ⟨m1, f⟩φ ◦ ϕ⟩ = φ ◦ ϕ(a)⟨m2,m1 · f⟩
= (φ ◦ ϕ)(a)⟨m2m1, f⟩ = φ ◦ ϕ(a)⟨m, f⟩,
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for all f ∈ F and all a ∈ A. Moreover,

⟨m, g · a⟩ = ⟨m2, (m1 · g) · a⟩ = ⟨m2, h · a⟩ = φ ◦ ϕ(a)⟨m2, h⟩
= φ ◦ ϕ(a)⟨m2,m1.g⟩ = φ ◦ ϕ(a)⟨m, g⟩

and similarly ⟨m, g · α⟩ = φ(α)⟨m, g⟩ for all a ∈ A, α ∈ A. Also ∥m∥ = ∥m2m1∥ =
∥m2∥∥m1∥ = 1. Therefore, m ∈ SF

∪
{g}. This completes the proof. �

The upcoming theorem is the main result of the paper which shows that the
existence of module (ϕ, φ)- mean with norm 1 is a pointwise property. In other
words, it follows from the existence of an element of A∗∗ associated with each of the
elements of the ideal ker(φ ◦ ϕ).

Recall that a left Banach A-module X is called left essential if the linear span
of A ·X = {a · x : a ∈ A, x ∈ X} is dense in X.

Theorem 2.3. Let A be a Banach A-module with compatible actions and φ ∈
ΦA, ϕ ∈ ΩA. Consider the following conditions.

(i) There exists a module (ϕ, φ)- mean m such that ∥m∥ = 1;
(ii) There exists a net (uj)j in A such that φ ◦ ϕ(uj) = 1, for all j, ∥uj∥ → 1 and

∥auj∥ → |(φ ◦ ϕ)(a)|, ∥α · uj∥ → |φ(α)| for all a ∈ A and α ∈ A;
(iii) For each a ∈ ker(φ ◦ ϕ) and b ∈ ker(ϕ), there exists ma,b ∈ A∗∗ with ∥ma,b∥ ≤

1, ⟨ma,b, φ ◦ ϕ⟩ = 1 and ama,b = bma,b = 0, α ·ma,b = φ(α)ma,b for all α ∈ A;
(iv) For each a ∈ ker(φ ◦ ϕ), b ∈ ker(ϕ) and ϵ > 0, there exists u ∈ A such that

∥u∥ ≤ 1 + ϵ, ∥au∥ ≤ ϵ, ∥bu∥ ≤ ϵ, ∥α · u − φ(α)u∥ ≤ ϵ and φ ◦ ϕ(u) = 1 for all
a ∈ A, α ∈ A.

Then (iv)⇐(iii)⇐(i)⇒(ii)⇒(iv). If, in addition, A is a left or right essential A-
module, then all assertions are equivalent.

Proof. (i)⇒(ii) Let there exists a module (ϕ, φ)-mean m such that ∥m∥ = 1. Then,
by Proposition 2.1 there exists a net (uj)j in A with the following properties:

∥uj∥ → ∥m∥ = 1, ∥auj − (φ ◦ ϕ)(a)uj∥ → 0, ∥α · uj − φ(α)uj∥ → 0

for all a ∈ A, α ∈ A. Thus

|∥auj∥ − |(φ ◦ ϕ)(a)|| ≤ |∥auj∥ − ∥(φ ◦ ϕ)(a)uj∥|
+ |∥(φ ◦ ϕ)(a)uj∥ − ∥(φ ◦ ϕ)(a)∥|
≤ ∥auj − (φ ◦ ϕ)(a)uj∥+ ||(φ ◦ ϕ)(a)|∥uj∥ − 1|
→ 0

and

|∥αuj∥ − |φ(α)|| ≤ |∥αuj∥ − ∥φ(α)uj∥|+ |∥φ(α)uj∥ − |φ(α)||
≤ ∥αuj − φ(α)uj∥+ |φ(α)|(∥uj∥ − 1)

→ 0

Therefore, ∥auj || → |(φ ◦ ϕ)(a)| and ∥αuj || → |φ(α)| so (ii) holds.
(i)⇒(iii) Ifm is module (ϕ, φ)-mean, we can choosema,b = m, for all a ∈ker(φ◦

ϕ), b ∈ker(ϕ), and thus ∥ma,b∥ ≤ 1, ⟨ma,b, φ ◦ ϕ⟩ = ⟨m,φ ◦ ϕ⟩ = 1. On the other
hand, for all f ∈ A∗, we get

⟨ama,b, f⟩ = ⟨ma,b, f · a⟩ = ⟨m, f · a⟩ = (φ ◦ ϕ)(a)⟨m, f⟩ = 0



Module mean for Banach Algebras 27

and

⟨bma,b, f⟩ = ⟨m, f · b⟩ = φ ◦ ϕ(b)⟨ma,b, f⟩ = φ(0)⟨m, f⟩ = 0.

Also, ⟨α · ma,b, f⟩ = ⟨m, f · α⟩ = φ(α)⟨ma,b, f⟩ for all α ∈ A. The above relations
imply that ama,b = bma,b = 0 and α·ma,b = φ(α)ma,b for all a ∈ker(φ◦ϕ), b ∈ ker(ϕ).

(ii)⇒(iv) It is obvious.
(iii)⇒(iv) Fix a ∈ker(φ ◦ ϕ), b ∈ ker(ϕ) and take any net (uj)j in A such that

∥uj∥ ≤ 1 in which uj → ma,b in w∗-topology. Then (φ ◦ϕ)(uj) → 1. Replacing each
uj with the scaler multiple of itself and taking a coefficient subnet, we may arrange
that ∥uj∥ ≤ 1 + ϵ and (φ ◦ ϕ)(uj) = 1 for all j. We have

w∗ − lim
j

auj = ama,b = 0, w∗ − lim
j

buj = ma,b = 0,

and w∗ − limj(α · uj − φ(α)uj) = 0 for α ∈ A. Thus, 0 is in the weak closure of sets
(auj)j , (buj)j and (α · uj − φ(α)uj)j . Hence, 0 is the norm closure of convex hull of
the mentioned sets. Thus, the set (uj)j beings contained in the closed hyperplane
{x ∈ A; (φ ◦ ϕ)(x) = 1}, we easily arrive our conclusion.

(iv)⇒(i) We claim that for finite subset F,H of A,A and ϵ > 0, there exists
uF,H,ϵ such that (φ ◦ ϕ)(uF,H,ϵ) = 1, ∥uF,H,ϵ∥ ≤ 1 + ϵ and for all a ∈ F, α ∈ H

∥a · uF,H,ϵ − (φ ◦ ϕ)(a)uF,H,ϵ∥ ≤ ϵ, ∥α · uF,H,ϵ − φ(α)uF,H,ϵ∥ ≤ ϵ

Let F = {a1, ..., ak},H = {α1, α2, ..., αk}, and choose δ > 0 such that (1 + δ)k+1 ≤
1+ϵ, by hypothesis , there exists u0 ∈ A such that (φ◦ϕ)(u0) = 1 and ||u0|| ≤ 1+δ.
Since A is a left or right essential A-module, it follows from the proof of [6, Theorem
3.14] that the map ϕ is C-linear. Thus, α1u0 − φ(α1)u0 ∈ ker(ϕ). On the other
hand, a1u0 − (φ ◦ ϕ)(a1)u0 ∈ker(φ ◦ ϕ). Again by (iv) there exists u1 ∈ A such that
(φ ◦ ϕ)(u1) = 1, ∥u1∥ ≤ 1 + δ and

∥(a1u0 − (φ ◦ ϕ)(a1)u0)u1∥ ≤ δ, ∥(α1u0 − φ(α1)u0)u1∥ ≤ δ.

Similarly, a2u0u1 − (φ ◦ ϕ)(a2)u0u1 ∈ker(φ ◦ ϕ), α2u0u1 − φ(α2)u0u1 ∈ ker(ϕ) and
hence there exists u2 ∈ A such that (φ ◦ ϕ)(u2) = 1, ∥u2∥ ≤ 1 + δ and

∥(a2u0u1 − (φ ◦ ϕ)(a2)u0u1)u2∥ ≤ δ, ∥(α2u0u1 − φ(α2)u0u1)u2∥ ≤ δ.

Thus for j = 1, 2 we have ∥uj∥ ≤ 1 + δ, (φ ◦ ϕ)(uj) = 1 and

∥aju0u1u2 − (φ ◦ ϕ)(aj)u0u1u2∥ ≤ δ(1 + δ), ∥αju0u1u2 − φ(αj)u0u1u2∥ ≤ δ(1 + δ).

Proceeding inductively, we see there exits uj (1 ≤ j ≤ k) such that (φ ◦ ϕ)(uj) =
1, ∥uj∥ ≤ 1 + δ and for i = 1, ..., j

∥aiu0u1...uj − (φ ◦ ϕ)(ai)u0u1...uj∥ ≤ δ(1 + δ)j−1 ≤ ϵ,

∥αi · u0u1...uj − φ(αi)u0u1...uj∥ ≤ δ(1 + δ)j−1 ≤ ϵ.

In particular, when j = k, setting uF,H,ϵ =
∏k

j=0 uj gives us (φ ◦ ϕ)(uF,H,ϵ) =∏k
j=0(φ ◦ ϕ)(uj) = 1 and

∥uF,H,ϵ∥ ≤ ∥u0∥∥u1∥...∥uk∥ ≤ (1 + δ)k+1 ≤ 1 + ϵ.

Also, for each a ∈ F, α ∈ H, we have

∥auF,H,ϵ − (φ ◦ ϕ)(a)uF,H,ϵ∥ = ∥au0u1...uk − (φ ◦ ϕ)(a)u0u1...uk∥ ≤ δ(1 + δ)k−1 ≤ ϵ,
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and

∥α · uF,H,ϵ − φ(α)uF,H,ϵ∥ = ∥αu0u1...uk − φ(α)u0u1...uk∥ ≤ δ(1 + δ)k−1 ≤ ϵ.

This proves the above claim. Now, order the Triplet (F,H, ϵ), F ⊆ A,H ⊆ A finite
and ϵ > 0, in the obvious manner manner, and let m be a w∗-cluster point of the
net (uF,H,ϵ)F,H,ϵ in A∗∗. Then, ∥m∥ ≤ 1 and ⟨m,φ ◦ ϕ⟩ = 1 and thus ∥m∥ = 1 and
for all a ∈ A and α ∈ A, we get

⟨m, f · a⟩ = lim
F,H,ϵ

⟨uF,H,ϵ, f · a⟩ = lim
F,H,ϵ

⟨a · uF,H,ϵ, f⟩ = (φ ◦ ϕ)(a)⟨m, f⟩,

and similarly ⟨m, f · α⟩ = φ(α)⟨m, f⟩. Therefore, m is required module (ϕ, φ)-
mean. �
Remark 2.1. Using similar methods to those employed in the proof of above The-
orem, the following can be shown: Let A be a Banach A-module with compatible
actions and φ ∈ ΦA ∪ {0}, ϕ ∈ ΩA. Then for the following conditions, we have the
same implications as Theorem 2.3.

(i) A has a module (ϕ, φ)-mean of norm C;
(ii) A contain an approximate (ϕ, φ)-mean with norm bounded C;
(iii) For each a ∈ker(φ ◦ ϕ), b ∈kerϕ, there exists ma,b ∈ A∗∗ with ∥ma,b∥ =

C, ⟨ma,b, φ ◦ ϕ⟩ = 1 and ama,b = bma,b = 0and α ·ma,b = φ(α)ma,b;
(iv) There exists a net (uj)j in A with (φ ◦ ϕ)(uj) = 1, ∥uj∥ → C, for all j and

auj → 0, for every a ∈ker(φ ◦ ϕ) and ∥α · uj∥ → |φ(α)| for every α ∈ A.

Let A be a Banach A-module with compatible actions and φ ∈ ΦA ∪ {0}, ϕ ∈
ΩA. Consider the set of all f ∈ A∗ with the following property:
For each δ > 0, there exists a sequence (an)n in A such that (φ ◦ ϕ)(an) = 1,
∥an∥ ≤ 1 + δ for all n, and ∥f · an∥ → 0. We denote this set by N(A, φ ◦ ϕ).

We have the following result which is analogous to Lemmas 2.6 and 2.7 from
[12].

Lemma 2.2. Let A be a Banach A-module with compatible actions and φ ∈ ΦA ∪
{0}, ϕ ∈ ΩA. Then, the following hold.

(i) φ ◦ ϕ /∈ N(A, φ ◦ ϕ).
(ii) N(A, φ ◦ ϕ) is closed in A∗ and closed under scaler multiplication.
(iii) If A is commutative, then N(A, φ ◦ ϕ) is closed under addition.
(iv) If A admits a module (ϕ, φ)-mean of norm 1, then N(A, φ ◦ ϕ) is subspace of

A∗.

Proof. The proofs of [12, Lemma 2.6] and [12, Lemma 2.7] work verbatim if we put
φ ◦ ϕ instead of φ in their proofs. �

We now aim at a criterion for the existence of module (φ ◦ ϕ)-mean of norm
1 involving the set N(A, φ ◦ ϕ).

Theorem 2.4. Let A be a Banach A-module with compatible actions and φ ∈ ΦA ∪
{0}, ϕ ∈ ΩA. Then the following four condition are equivalent:

(i) There exists a module (ϕ, φ)-mean with ∥m∥ = 1;
(ii) N(A, φ◦ϕ) is subspace of A∗ and f ·a−f, f ·α−f ∈ N(A, φ◦ϕ) for all f ∈ A∗

and all a ∈ A, α ∈ A with (φ ◦ ϕ)(a) = 1.
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Proof. Let (i) holds. By Lemma 2.2. N(A, φ ◦ ϕ) is a subspace of A∗. Let f ∈ A∗

and a ∈ A, α ∈ A with (φ ◦ ϕ)(a) = 1, φ(α) = 1. By Theorem 2.3 there exists a net
(uj)j in A such that (φ ◦ ϕ)(uj) = 1, ∥uj || → 1 and

∥a · uj − (φ ◦ ϕ)(a)uj∥ = ∥a · uj − uj || → 0, ∥α · uj − φ(α)uj∥ = ∥α · uj − uj∥ → 0.

Since ∥(f · a− f) · uj∥ ≤ ∥f∥∥auj − uj∥ and ∥(f · α− f) · uj∥ ≤ ∥f∥∥α · uj − uj∥, it
follows that f · a− f, f · α− f ∈ N(A, φ ◦ ϕ).

Conversely, suppose that N(A, φ ◦ ϕ) is subspace of A∗ and that (ii) holds.
Since φ◦ϕ /∈ N(A, φ◦ϕ) and ||φ◦ϕ|| = 1, by the Hahn-Banach theorem there exists
m ∈ A∗∗ such that ∥m∥ = ⟨m,φ ◦ ϕ⟩ = 1 and m|N(A,φ◦ϕ) = 0. By assumption, for
each a ∈ A, α ∈ A with (φ ◦ ϕ)(a) = 1 and φ(α) = 1, we have

⟨m, f · a⟩ = ⟨a ·m, f⟩ = (φ ◦ ϕ)(a)⟨m, f⟩,
⟨m, f · α⟩ = ⟨α ·m, f⟩ = φ(α)⟨m, f⟩

for all a ∈ A, α ∈ A and f ∈ A∗. This means that m is a module (ϕ, φ)-mean. �

3. Conclusions

Let Banach algebras A and A be Banach algebras. If φ : A −→ C and
ϕ : A −→ A are the classical character and module character, respectively, we
showed when A is module (ϕ, φ)-amenable. Moreover, we found the relations of
module (ϕ, φ)-amenability of A and its ideals.
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