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BEHAVIOR OF ELECTRICAL STRESSED FLEXIBLE
RESISITVE LAYER.
PART I1: INTRINSICALLY CONDUCTIVE POLYMER

Detlef BONFERT', Paul SVASTA?, Ciprian IONESCU?

Includerea senzorilor rezistivi in designul dispozitivelor electronice organice
este necesard pentru a extinde domeniul aplicatiilor posibile. Pentru aceasta este
necesarda identificarea materialelor rezistive, a proceselor si metodelor de
structurare, precum §i analiza proprietdtilor rezistive pe substrat flexibil ale
acestora. Doud materiale cu aplicatie larga in electronica organica sunt polimerii
umpluti cu carbon (carbon filled polymer, CFP) si polimerii cu conductie intrinseca
(ICP, poly (3, 4-ethylendioxythiophene) doped with polystyrene sulfonate acid,
PEDOT:PSS). Lucrarea are ca scop prezentarea comportdrii acestor polimeri
conductivi pe suport flexibil sub influenta curentului continuu §i in impulsuri,
subliniind variatiile rezultate ale proprietatilor rezistive. Lucrarea este prezentatd in
doua parti, prima parte analizeaza comportarea polimerilor umpluti cu carbon iar
partea a doua pune accentul pe polimerii cu conductie intrinsecd.

There is a necessity to include sensors (resistors) in the design of organic
electronic devices in order to extend the range of possible applications. It is
essential to identify potential resistive materials, the processes and methods to
structure them and to analyze their resistive properties on flexible substrates. Two
materials widely used in organic electronics are carbon filled polymer (CFP) and
the intrinsically conductive polymer (ICP) poly (3, 4-ethylendioxythiophene) doped
with polystyrene sulfonate acid (PEDOT:PSS). In this paper we focus on the DC and
pulsed stress behavior of these conductive polymers on flexible substrates and the
resulting changes of their resistive properties. The paper is presented in two parts.
Part one deals with carbon filled polymers (CFPs)and part two analyzes the
behavior of intrinsically conductive polymesrs (ICPs).
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NOTE

The first part of the paper analyzed the behavior of electrical stressed carbon
filled polymesrs (CFPs): - Part I: Carbon Filled Polymer. This part was published
in the previous issue of the Scientific Bulletin of UPB.

1. Intrinsically conductive polymer layer
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Fig. 1.1. Optical view and 3D scan of PEDOT:PSS resistive layer on PET foil, Rg 100 /o,
resistor width W 1.4 mm, resistor length L 3.55 mm, L/W=2.5, resistor thickness 5 um.

The intrinsically conductive resistive test structures were also realized in
thick film technology in a screen printing roll-to-roll process. The polymer
PEDOT:PSS paste (Orgacon EL-P 3040) is also designed for the use on polyimide
(PI) and PET foils. Fig. 1.1 gives an optical view and a 3D scan of the used
flexible PEDOT:PSS polymer conductive layer on polyimide (PI) foil, (Upilex S).
The nominal sheet resistance of the processed devices was Rg 2.5 kQ)/o, for a
layer thickness of 5 um.

PEDOT:PSS
grains

a)

b)
Fig. 1.2. Optical view of cured PEDOT:PSS polymer paste, Orgacon 3040, a) resistive layer with
polymer conductor (silver), b) zoomed resistive layer showing PEDOT:PSS grains.

1.1. DC electrical stress

To determine the DC behavior of the layer resistance, a DC sweep was
performed. Fig. 1.3 shows the area where the resistance changes due to excessive
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voltage rating outside the normal operating values. The resistor is heated up and
the resistance decreases because of the negative TCR of the polymer material.
Between pulsing, the DC spot measurement was set in the safe operating

area to 0.1 mA.
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Fig. 1.3. DC resistance during current sweep, PEDOT:PSS resistive layer on PET foil,
Rs 2.5 kQ/o (reversible changes).
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Fig. 1.4. DC resistance during current sampling, PEDOT:PSS resistive layer on PET foil,
a) reversible changes, b) irreversible changes.
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Fig. 1.5. Temperature distribution during self- heating of PEDOT:PSS resistive layer on PET foil,
hot spot in the center of the resistive layer.
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For thermal measurements the current through the PEDOT:PSS layer on
PET foil was increased up to 3 mA. For each sampling current value, represented
in Fig. 1.4 a), a thermal image with an IR-camera was made and analyzed.
Increasing the sampling current up to 5 mA will result in a permanent resistance
decrease of about 5 %, indicated in Fig. 1.4 b). Infrared (IR) measurements during
current sampling give the temperature distribution during self- heating of the
polymer resistor, as represented in Fig. 1.5. It also shows the temperature profile
across the length and width of the resistive layer. In the center of the resistor
occurs again a hot- spot. For a sampling current of 3 mA the hot- spot reaches a
temperature of 102°C.
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Fig. 1.6. Resistance versus temperature during self- heating of PEDOT:PSS resistive layer on PET
foil.

Fig. 1.6 shows the resistance change of the PEDOT:PSS layer versus the
corresponding measured layer temperature. Also represented in this figure is the
simulated temperature dependence of the layer resistance, according to [30].
PEDOT:PSS is considered a disordered, grain sized semiconductor with localized
states in the energy band gap and conduction can be described by Mott’s law for
variable range hopping (VRH), [12], [13], [14] and [15].

PEDOT:PSS Resistor Orgacon 3040, PEDOT:PSS Resistor Orgacon 3040, Dissipated Power,
Current Sweep 0-10mA, R13, PET Foil 01, M11 Current Sweep 0-10mA, R13, PET Foil 01, M11
40 5600 40 300
-o- Voltage Resistor —, 1 5400 -o- Voltage
35 1.5 Resistance burnout 351 o power 1 250
30 4 T 5200 30 Voltage
> o5 | + 5000 > 95 | esistor 200
% Voltage N 14800 & 3 Burnout z
2 20 4 Y 920 T150 E
= T 4600 o = AN =
> 154 1400 © 3159 Dissipated | 100
10 4 10 Power
T 4200
5 ] ™~ 50
Resistance - 4000 51
0 T T T T T T T 3800 0 < 0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Current/ mA Current/ mA
a) b)

Fig. 1.7. a) DC resistance during current sweep, PEDOT:PSS resistor on PI foil, b) power
dissipation in the resistive layer (finally, resistor damage).
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Applying a current sweep up to 7 mA, as represented in Fig. 1.7 a), will
finally lead to the burn- out of the resistive layer in the area of the hot spot. The
dissipated power during burn out, shown in Fig. 1.7b) reaches 0.25 W,
corresponding to a power density of 5 W/ecm? of resistive area, which is less than
the corresponding value of the carbon based resistor. Fig. 1.8 shows the burn out
region in the center of the resistive layer. Because of the excessive heat the
substrate PET foil is melted under the resistive layer. The image also reveals the
straight cut across the resistors width in this area. Similar characteristic damage of
DC- stressed resistive layer is presented in [34].

b)

Fig. 1.8. a) Resistor burnout during DC stressing, b) caused by hot spot in the center of the flexible
polymer PEDOT:PSS resistor on PET foil.

1.2 Pulsed electrical stress

The behavior of the PEDOT:PSS resistive layer during pulsed stress was
studied applying 100 ns wide pulses from transmission line pulser with increasing
and constant amplitudes.

1.2.1 Influence of pulse amplitude on resistance

To determine the influence of pulse amplitude on the resistance, TLP
measurements were performed, similar to those on carbon based resistors, with
stepwise increasing the open source TLP pulse amplitudes. Recording the
measured voltage and current transients at the polymer layer during each voltage
step, gives a 3D representation of the measurement, as shown in Fig. 1.9.
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DUT- Current/ A

Fig. 1.9. 3D representation of a) pulsed voltage at and b) pulsed current through the PEDOT:PSS
resistive layer on PET foil, for TLP pulse width of 100 ns, TLP-voltage 0-1000 V, 2 V step.
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Fig. 1.10. Pulsed voltageat and pulsed current through PEDOT:PSS resistive layer on PET foil for
TLP pulse width of 100 ns, TLP-voltage 900 V.
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Fig. 1.11. Pulsed resistance of PEDOT:PSS resistive layer on PET foil for TLP pulse width of
100 ns, TLP-voltage 100 V and 900 V.
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During the pulses, the pulsed resistance is calculated from each
corresponding point of the current- and voltage transients, represented in
Fig. 1.10. Fig. 1.11 shows the pulsed resistance for two TLP voltages, 100 V to
900 V. The resistance decreases with increasing TLP voltage due to Joule heating
during the pulse and of the negative TCR of the material.

1.2.2 Influence of successive pulsing on resistance

Fig. 1.12 depicts the pulsed current-voltage characteristic for four
successive measurements, M1 — M4. During each measurement the amplitude of
the 100 ns wide pulses was stepwise increased, in 2 V steps, up to 1000 V of the
TLP charging voltage. The different shapes of these characteristics indicate
permanent and reversible changes that take place in the resistor during pulsing.
This is confirmed by the absolute DC- resistance changes shown in Fig. 1.13 and
Fig. 1.14, and by the pulsed resistance changes of Fig. 1.15.
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Fig. 1.12. Pulsed current-voltage characteristic of PEDOT:PSS resistive layer on PET foil for
successive measurements, pulse width 100 ns.
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Fig. 1.13. DC-resistance change versus applied pulse voltage for successive measurements of
PEDOT:PSS resistive layer on PET foil, pulse width 100 ns.



130 Detlef Bonfert, Paul Svasta, Ciprian Ionescu

Rpc, PEDOT:PSS layer on PET Foil 1, R13 1300Q/0, temp., M1-
M3, before and after pulsing TLP 100 ns
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Fig. 1.14. DC-resistance change versus applied DC voltage for successive measurements of
PEDOT:PSS resistive layer on PET foil, before and after pulsed measurements M1-M3, pulse
width 100 ns, pulse voltage 2-1000V, step 2 V.

The final value of a measurement is the starting value for the following
one, indicating irreversible changes in the resistor material.

Rpulsed, TLP 100 ns, 2-1000V, step 2V, PEDOT:PSS
layer on PET Foil 1, R13, 1300/, temp., M1-M4
3500

=M1
—o—M2

3400 A o

—o-Mm4

3300

3200

Pulsed Resistance /Q

3100 -

3000 T T T T T T
0 100 200 300 400 500 600 700
Pulsed Voltage at DUT / V

Fig. 1.15. Pulsed resistance change versus applied pulse voltage for successive measurements of
PEDOT:PSS resistive layer on PET foil, pulse width 100 ns.

1.2.3 Influence of pulse number on resistance

Applying multiple high voltage pulses, below the breakdown value, and with constant
amplitude gives information about the robustness of the resistor to the TLP stress. Up to
4000 pulses of 850 V amplitude were applied with 100 ns wide pulses, as can be seen
from Fig. 1.16, for the applied first 1000 pulses. During the 100 ns pulses there is little
change in voltage and current during transients, while sweeping the pulse amplitude, as
shown in Fig. 1.17. The corresponding DC- and pulsed resistance during the applied
number of 4000 pulses is depicted in Fig. 1.18 and Fig. 1.19, respectively, indicating a
constant behavior of the intrinsic polymer layer.
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Fig. 1.16. 3D representation of a) pulsed voltage at and b) pulsed current through the PEDOT:PSS
resistive layer on PET foil, for TLP pulse width of 100 ns, constant TLP-voltage of 850 V, first
1000 pulses applied.
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Fig. 1.17. Pulsed voltage at and pulsed current through PEDOT:PSS resistive layer on PET foil for
TLP pulse width of 100 ns, constant TLP-voltage 850 V.
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Fig. 1.18. DC-resistance change versus number of applied pulses with constant voltage, TLP -
voltage 850V, pulse width 100 ns, 4000 applied pulses.
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Fig. 1.19. Pulsed resistance change versus number of applied pulses with constant voltage, TLP -
voltage 850V, pulse width 100 ns, 4000 applied pulses.

2. Conclusions

We have analyzed in part one of the paper the flexible carbon based
polymer thick film resistors and in part two the intrinsically conductive polymer
PEDOT:PSS layer, during DC- stress, single and multiple pulse stresses, showing
the behavior before, during and after the stress.

An applied DC- stress outside the safe operating area (SOA) can change
the electrical properties of the layer permanently, by changing the physical
structure of the resistive layer. The thermal simulation and the corresponding IR
measurements revealed a hot spot in the center of the resistor, due to the low
thermal conductivity of the flexible substrate. Increasing further the DC- stress,
this hot spot will be the starting point of the resistors burn out, leading finally to a
cut through the whole resistor width.

The high current-voltage behavior of flexible thick film polymer resistors
on polyimide foil has been investigated by means of rectangular TLP pulses. The
amount of resistance change depends on pulse amplitude as well as on the number
of applied pulses.

The measurements show, that for the flexible thick film resistors, the
resistance decreases with increasing pulse voltage. Multiple pulsing reduces this
effect. Pulsing with constant amplitude produces also a decrease, but continuing
pulsing stabilizes the resistance. Intrinsically conductive polymer PEDOT:PSS
layer show little changes during this stress test, the resistance stabilizes from the
very beginning.

The tested flexible thick film polymer resistors are susceptible to high
energy pulses and this can lead to irreversible changes in the resistor and its value.
Nevertheless the effects are saturating leading to more stable resistors.
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