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MULTI-AGENT MEMBRANE SYSTEMS

Cristian-Ioan Vasile! and Ioan Dumitrache?

In this paper, we discuss the basic concepts of network systems
and the problem of robot coordination. Moreover, we propose a membrane
system model for multi-agent coordination. Membrane systems, also known
as P systems, are a computational paradigm inspired by the structure of
living cells [14)]. Membrane systems were successfully used to model basic
robot controllers, such as obstacle avoidance, localization, follower behavior
etc. However, the use of membranes systems to model the multi-agent be-
havior was not explored in the literature. This study shows that membrane
systems can be used as a high-level framework for multi-agent coordination.
The membranes can simulate swarm behaviors, such as communication be-
tween agents, communication between groups of agents, transport of agents
between groups, transport of agents between subswarm, split of the groups
and regrouping.

Keywords: Membrane Computing, Numerical P Systems, Multi-agent
Systems, Dynamical Systems, Consensus Protocol

1. Introduction

P systems are a computational paradigm inspired by the functioning of
living cells. The framework of membrane computing has been used so far to
model and simulate real-life problems, such as robot behaviors, modeling of
dynamical systems and species evolution, applications in economy etc. [12],
I13], [

Numerical P systems (NP systems) are a class of P systems in which
numerical variables evolve inside the compartments by means of programs [14].
A program (or rule) is composed of a production function and a repartition
protocol. The variables have an initial value and the production function is a
multivariate polynomial. The value of the production function for the current
values of the variables is distributed among variables in certain compartments
according to a repartition protocol.
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In this paper, we show that membrane systems can also be used as a high-
level framework for multi-agent coordination. We define a membrane system
to model the problem of reaching consensus [Il, 10 11, 20, 4, O, [, [6]. This
is a fundamental problem in networked system. Many tasks such as flocking
(reaching the same heading), rendezvous (reaching the same position), leader
election and many others, can be recast as a consensus problem [7], 5], [19].

2. Numerical P systems

Numerical P (NP) systems were first defined in [I4]. P systems present
a membrane structure, the membranes being labeled in a one-to-one manner
with elements of an alphabet H. The compartments contain the wvariables,
their initial values and rules.

The formal definition of NP systems is the following:

I = (m,H pu, (Vary, Pry,Vari(0)),...,(Vary, Pry,, Var,(0))) (1)

where:
e m is the number of membranes used in the system, degree of II; m > 1;
e H is an alphabet that contains m symbols (the labels of the membranes);
e 4, is a membrane structure;
e Var; is the set of variables from compartment ¢, and the initial values for
these variables are Var;(0);
Pr; is the set of programs (rules) from compartment i. Programs process
variables and have two components, a production function and a reparti-
tion protocol.
The j-th program has the following form:

Un, ) (2)

Prj,i = (Fjﬂ'(l‘lﬂ‘, '--7-Tki,i)> Cj71”U1 + ...+ Cjn;

where:

— Fji(x1,4, ..., T, i) is the production function;

— k; represents the number of variables in membrane ¢;

— ¢ja|vr + ... + ¢jn,|Un, is the repartition protocol;

— n; represents the number of variables contained in membrane 7, plus
the the number of variables contained in the parent membrane of 7,
plus the number of variables contained in the children membranes
of 7.

The variables ¢j1,...,¢;j,, are natural numbers (they may be also 0,
case in which it is omitted to write +0|x) [14]. These coefficients specify the
proportion of the current production distributed to each variable vy, ..., v,,.
Let,

ng

Cji=Y Cin (3)

n=1
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A program Prj; is executed as follows. At any time ¢, the function
F;i(z14, ..., 2k, ;) is computed. The value:

. Fj,i(ifl,iw-kai,i) (4)

q i
represents the unitary portion to be distributed to variables vy, . .., v,,, accord-
ing to coefficients ¢;1,...,cj,, in order to obtain the values of these variables

at time t+ 1. Specifically, variable vs which belongs to the repartition protocol
of program j, receives:

q*cjs, forl <s<m; (5)

The variables which receive new values from a rule must be contained
within the current, the parent or a child membrane. If a variable belongs to
membrane ¢, it can appear in the repartition protocol of the parent membrane
of i and also in the repartition protocol of the child membranes of i. After
applying all the rules, if a variable receives such contributions from several
neighboring compartments, then they are added in order to produce the next
value of the variable.

A production function which belongs to membrane ¢ may depend only
on some of the variables from membrane ¢. Those variables which appear in
the production function become 0 after the execution of the program.

Deterministic NP systems have only one rule per membrane (card(Pr;) =
1) or must have a selection mechanism that can decide which rule to apply
[16]. The NP system with multiple rules per membrane is non-deterministic.
Deterministic NP systems are well suited for applications which involve nu-
merical variables and require a deterministic behavior, such as control systems
for mobile robots.

3. Consensus Protocol

In the following, we review average consensus [I}, 10} 1T}, 20] and present
for completeness the main results with proofs. Although the results are pre-
sented only for continuous systems, similar results for discrete systems are well
established [10].

Consider a networked system with N agents and let G = (V| E), |V| = N,
be the communication graph between the agents, where each agent is associ-
ated with a vertex from V. Furthermore, each agent has a state z; € R.

Now, consider the following dynamics for the agents which in is called
average consensus protocol:

jﬁ'i = Z ai,j(mj — l’i), VieV (6)

JEN;
where a;; are some positive weights associated with each edge of the com-
munication graph G such that a;; = a;,;. If we concatenate the states of all
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agents into a column vector x = [zy,...,zy]? we can rewrite the dynamics in
vectorized for in the following way:
it=—Lx (7)

where L is the weighted Laplacian of the communication graph GG between the
agents.

Next, lets define the set Q = {aly|a € R} which is also called the set of
consensus states, because in this case all agents’ states are equal. Notice, that
() is an invariant set the consensus system, Eq. @ and Eq. . Moreover, {2
is the set of equilibria of the consensus system.

The disagreement function for the consensus protocol is defined in this
case as the potential function

(i,J)EE
which captures the difference in opinion between agents. Using the Laplacian
of the communication graph we can write the disagreement function as
®(x) = 2" La

which shows that it is a p.s.d. function. Moreover, we can express the consen-
sus dynamics as a gradient system in the following way

0P

Ox

An interesting property of the consensus protocol is that the mean of the
states is time-invariant.

T =

Proposition 3.1. Consider the consensus protocol Eq. [ with communication
graph G = (V,E). Let & = Zf\il x;, then

=0
where N = |V].

Proof. The proof is straightforward since we can write z = %IJT\,x If we
compute the derivative of the mean state we obtain

) 1 1

T = Nlﬁj: = —NlﬁLx
We know that 1y is an eigenvector of the Laplacian matrix L corresponding
to the eigenvalue 0. Thus, 1%L = (LT1x)T = (L1y)" = 0, because L is a

symmetric matrix. 0
Now, we are ready to state the main theorem of for consensus protocols:

Theorem 3.1 (Theorem 1 from [I0]). Consider the consensus protocol Eq.[7]
with communication graph G = (V, E). Then all agents’ states converge to a
consensus state for any initial state x(0), that is x;(t) — « for all i € V as
t — 0o, where o € R. Moreover, we have the following cases:
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(1) if G is undirected and connected, then a = + S 2,(0) = £(0);

(2) if G is directed, connected and balanced, then oo = SN, 2:(0) = £(0);

(3) if G is directed and strongly connected, then a = + Zij\il%mi(O), where
vi € R and Zfil% =1.

where a balanced graph is defined by the property that for every vertex the

number of outgoing edges is equal to the number of incoming ones.

We provide a proof for the first case dealing with undirected graphs. The
directed cases are more involved, but follow in a similar manner.

Proof. Consider the Lyapunov function

1 1
V() = 1 ol = 3"
Clearly, V(z) is p.s. and radially unbounded. The total derivative of V' (z) is
V() =2"i = —2"La

and since L is p.s.d. it follows that V (z) is n.s.d. Moreover, the total derivative
is zero on the linear space spanned by 1y, which defines the equilibria set of
consensus states (2. Thus, by LaSalle’s invariance principle, we can conclude
that the set ) is asymptotically stable, i.e. all trajectories converge to some
point in 2. This concludes the proof. 0

The convergence rate of the consensus protocol is characterize by the
following result

Theorem 3.2 (Corollary 1 from [10]). The convergence rate of the consensus
protocol Eq. 1 with communication graph G is exponential and the smallest
exponential convergence rate is given by \o(L), where L is the Laplacian matriz
of G and Ao(L) is the second smallest eigenvalue of L.

Proof. Lets use the coordinate transform § = z — 15Z(0) and define the Lya-
punov function

V(o) = 510 = 5075
Notice that ¢ is orthogonal to 1,

150 = 152 — 15152(0) = Nz(t) — Nz(0) =0

where the last equality follows from Proposition [3.1] Next, we compute the
total derivative of V

V(6) = —0TLo

< —Xo(L)[l0]?

On the other hand,

. d /1 1 d
Vo) = 5 (3191°) = 5160 5 1ol
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Thus it follows that 1
— I8l < =Xo(L) ||6

or more explicitly
la@®)]| < [[8(0)[f e =", ¢ >0

This concludes the proof. 0]

Lastly, we want to finish this section by presenting the straightforward
extension of consensus to the vector case. In this setup, the state of each agent
is a vector in some Euclidean space of dimension n > 2 instead of scalar values.

Let the networked system with communication graph G = (V, E) such
that the state of each agent ¢ is #; € R". The system dynamics are defined
by Equation. [0, where, in this case, the equations describe the evolution of
the n-dimensional states of agents. Again, if we concatenate the states of all

agents into a column vector x = [T, ... 2%]T we can rewrite the dynamics in
vectorized for in the following way:

where L is the Laplacian matrix of G and ® is the Kronecker product.

Remark 3.1. Similar results hold for discrete systems as well.

4. Membrane systems as a framework for multi-agent coordina-
tion

Membrane systems were successfully used to model robot controllers Fig-
ure [1(a)l We further show that membrane systems can also be used as a
high-level framework for multi-agent coordination. Figure shows that the
membranes can simulate swarm behaviors, such as communication between
agents, communication between groups of agents, transport of agents between
groups, transport of agents between subswarm, split of the groups and re-
grouping (membrane splitting and merging).

A membrane system that implements consensus protocol is proposed.
The objective of consensus protocol is for all agents to acheive the same state
while running the network control system. Figure illustrates the consensus
membrane system.

The membrane system is composed of N Agent membranes, each cor-
responding to a robot. All these membranes are contained in the Consensus
membrane which is responsible for computing the control input for each agent.
The communication between the robots and the computation of their inputs
is performed in a distributed manner.

The variables of the system have the following interpretation, where i €
{1,..., N} is an agent:

e 1; is the state of the agent at the discrete time t;
e y; is the output of the agent and it is equal to x;;
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Fic. 1. Membrane systems as a framework for multi-robot systems

e u; is the control input signal for the agent and it is computed using the

consensus protocol;
e 1,y is the initial state of the agents.
In the Consenus membrane, we define a consensus rule for each agent.
The consensus rule uses the consenus protocol to compute the input of the
corresponding agent by summing the difference between the agent’s state and
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its neighbors’ states with given weights. The weights represent the importance
of the data received from a neighbor and remain constant during the mission.

Each Agent membrane corresponding to a robot contains two rules. Rule
Pry 4, adds the contribution of the input signal u; to the state of the robot x;,
and consumes it. Rule Pr; 4, copies the state of the robot x; to the next time
step t + 1 and also sets the output of the agent y;.

In this framework the implementation of the control input on the phys-
ical robot is performed using lower level membrane systems, such as obtacle
avoidance, position control and position estimation [3], 2, 18 21 17]. Figure
1(a)| shows the generic structure of a membrane controller for multiple robots
and also highlights that they can communicate with each other. Rule Prj 4,
initiates the execution of the low level membrane controller in order to perform
the correponding physical motion.

In the proposed framework shown in figure [1| we define a top level of
robot management which is responsible with allocating robots to groups based
on mission tasks and with dinamically reassigning robots to groups based on
online demands and constraints during the execution of the mission. This coor-
dination is performed in a distributed and self-organizing manner. Figure
shows the robots organized in two groups and seven subgroups. It also shows
how agents can be moved between subgroups of the same group or between
groups. Fach group performs a specific task such as grouping at a position.
Grouping at a position is implemented using the Consensus membrane shown
in figure [L(c)]

This study proves the utility of membrane computing as a modeling
framework for distributed and descentralized control systems. We further
investigate the membrane computing modeling framework in the context of
networked systems.

5. Conclusions

We propose a membrane system to model multi-agent cooperation. This
module can be easily integrated in a robot swarm architecture to facilitate com-
munications between agents. We will further explore the benefits of membrane
systems in the context of networked systems. However, these preliminary re-
sults show that the utility of membrane systems can be extended beyond the
low level control of autonomous robots. We model consenus protocol for com-
munication in a simple membrane structured module. This module can be
easily integrated into the proposed multi-agent framework. Future work in-
cludes integrate and test the proposed membrane module on simulated and
real robots.
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